Preview only show first 10 pages with watermark. For full document please download

Tabela De Integrais

tabela de integrais

   EMBED

  • Rating

  • Date

    December 2018
  • Size

    26.2MB
  • Views

    9,232
  • Categories


Share

Transcript

P r e f The pur-pose of this handbook is to supply a collection of mathematical formulas and tables which will prove to be valuable to students and research workers in the fields of mathematics, physics, engineering and other sciences. TO accomplish this, tare has been taken to include those formulas and tables which are most likely to be needed in practice rather than highly specialized results which are rarely used. Every effort has been made to present results concisely as well as precisely SOthat they may be referred to with a maximum of ease as well as confidence. Topics covered range from elementary to advanced. Elementary topics include those from algebra, geometry, trigonometry, analytic geometry and calculus. Advanced topics include those from differential equations, vector analysis, Fourier series, gamma and beta functions, Bessel and Legendre functions, Fourier and Laplace transforms, elliptic functions and various other special functions of importance. This wide coverage of topics has been adopted SOas to provide within a single volume most of the important mathematical results needed by the student or research worker regardless of his particular field of interest or level of attainment. The book is divided into two main parts. Part 1 presents mathematical formulas together with other material, such as definitions, theorems, graphs, diagrams, etc., essential for proper understanding and application of the formulas. Included in this first part are extensive tables of integrals and Laplace transforms which should be extremely useful to the student and research worker. Part II presents numerical tables such as the values of elementary functions (trigonometric, logarithmic, exponential, hyperbolic, etc.) as well as advanced functions (Bessel, Legendre, elliptic, etc.). In order to eliminate confusion, especially to the beginner in mathematics, the numerical tables for each function are separated, Thus, for example, the sine and cosine functions for angles in degrees and minutes are given in separate tables rather than in one table SOthat there is no need to be concerned about the possibility of errer due to looking in the wrong column or row. 1 wish to thank the various authors and publishers who gave me permission to adapt data from their books for use in several tables of this handbook. Appropriate references to such sources are given next to the corresponding tables. In particular 1 am indebted to the Literary Executor of the late Sir Ronald A. Fisher, F.R.S., to Dr. Frank Yates, F.R.S., and to Oliver and Boyd Ltd., Edinburgh, for permission to use data from Table III of their book S T tf B a Aao i b a gtMy o R l n ir e l e e d si d 1 also wish to express my gratitude to Nicola Menti, Henry Hayden and Jack Margolin for their excellent editorial cooperation. M. R. SPIEGEL Rensselaer Polytechnic Institute September, 1968 o s s tc i CONTENTS Page 1. Special Constants.. ............................................................. 1 2. Special Products and Factors .................................................... 2 3. The Binomial Formula and Binomial Coefficients ................................. 3 4. Geometric Formulas ............................................................ 5 5. Trigonometric Functions ........................................................ 11 6. Complex Numbers ............................................................... 21 7. Exponential and Logarithmic Functions ......................................... 23 8. Hyperbolic Functions ........................................................... 26 9. Solutions of Algebraic Equations ................................................ 32 10. Formulas from Plane Analytic Geometry ........................................ ................................................... 34 40 11. Special Plane Curves........~ 12. Formulas from Solid Analytic Geometry ........................................ 46 13. Derivatives ..................................................................... 53 14. Indefinite Integrals .............................................................. 57 15. Definite Integrals ................................................................ 94 16. The Gamma Function ......................................................... ..10 1 17. The Beta Function ............................................................ 18. Basic Differential Equations and Solutions ..................................... 19. Series of Constants..............................................................lO 20. Taylor Series...................................................................ll 21. Bernoulliand 22. Formulas from Vector Analysis.. 23. Fourier Series ................................................................ ..~3 1 24. Bessel Functions.. ..13 6 2s. Legendre Functions.............................................................l4 26. Associated Legendre Functions ................................................. .149 27. 28. Hermite Polynomials............................................................l5 Laguerre Polynomials .......................................................... 1 .153 29. Associated Laguerre Polynomials ................................................ 30. Chebyshev Polynomials..........................................................l5 Euler Numbers ................................................. ............................................. ............................................................ ..lO 3 .104 7 0 ..114 ..116 6 KG 7 Part I FORMULAS THE GREEK Greek name G&W ALPHABET Greek name Greek Lower case tter Capital Alpha A Nu N Beta B Xi sz Gamma l? Omicron 0 Delta A Pi IT Epsilon E Rho P Zeta Z Sigma 2 Eta H Tau T Theta (3 Upsilon k Iota 1 Phi @ Kappa K Chi X Lambda A Psi * MU M Omega n 1.1 1.2 = natural base of logarithms 1.3 fi = 1.41421 35623 73095 04889.. 1.4 fi = 1.73205 08075 68877 2935. 1.5 fi = 2.23606 79774 1.6 h = 1.25992 1050.. . 1.7 & = 1.44224 9570.. . 1.8 fi = 1.14869 8355.. . 1.9 b = 1.24573 0940.. . 1.10 eT = 23.14069 26327 79269 006.. . 1.11 re = 22.45915 77183 61045 47342 715.. 1.12 ee = 22414 . 1.13 logI,, 2 = 0.30102 99956 63981 19521 37389. .. 1.14 logI,, 3 = 0.47712 12547 19662 43729 50279.. . 1.15 logIO e = 0.43429 44819 03251 82765.. 1.16 logul ?r = 0.49714 98726 94133 85435 12683. 1.17 loge 10 In 10 1.18 loge 2 = ln 2 = 0.69314 71805 59945 30941 1.19 loge 3 = ln 3 = 1.09861 22886 68109 1.20 y = 1.21 ey = 1.22 fi = 1.23 6 = 15.15426 = 0.57721 56649 1.78107 r(&) = 79264 2.30258 190.. 12707 6512. 9852.. 00128 1468.. 1.77245 2.67893 85347 07748.. . 1.25 r(i) 3.62560 99082 21908.. . 1-26 1 radian 1.27 1” = ~/180 radians . = = .. . 57.29577 0.01745 .. 7232. . 69139 5245.. .. = Eukr's co%stu~t [see 1.201 . 38509 05516 II’(&) = 180°/7r . 02729 ~ZLYLC~~OTZ [sec pages 1.24 = . 50929 94045 68401 7991.. 01532 86060 F is the gummu = . 99789 6964.. 24179 90197 1.64872 where = .. 8167.. .O 95130 8232.. 32925 . 101-102). 19943 29576 92. 1 .. radians THE 4 BINOMIAL FORMULA PROPERTIES OF AND BINOMIAL BINOMIAL COElFI?ICIFJNTS COEFFiClEblTS 3.6 This leads to Paseal’s [sec page 2361. triangk 3.7 (1) + (y) + (;) + ... 3.8 (1) - (y) + (;) - ..+-w(;) 3.10 (;) + (;) + (7) + .*. = 2n-1 3.11 (y) + (;) + (i) + ..* = 2n-1 + (1) = 27l = 0 3.9 3.12 3.13 -d 3.14 MUlTlNOMlAk 3.16 (zI+%~+...+zp)~ where q+n2+ the mm, ... denoted +np = 72.. by 2, = FORfvlUlA ~~~!~~~~~..~~!~~1~~2...~~~ is taken over a11 nonnegative integers % %, . . , np fox- whkh 1 4 GEUMElRlC FORMULAS & RECTANGLE 4.1 Area 4.2 Perimeter OF LENGTH b AND WIDTH a = ab = 2a + 2b b Fig. 4-1 PARAllELOGRAM 4.3 Area = 4.4 Perimeter bh = OF ALTITUDE h AND BASE b ab sin e = 2a + 2b 1 Fig. 4-2 ‘fRlAMf3i.E Area 4.5 = +bh OF ALTITUDE h AND BASE b = +ab sine * ZZZI/S(S - a)(s - b)(s - c) where s = &(a + b + c) = semiperimeter b Perimeter 4.6 n_ L,“Z ., .,, = u+ b+ c Fig. 4-3 : ‘fRAPB%XD 4.7 Area 4.8 Perimeter C?F At.TlTUDE fz AND PARAl.lEL SlDES u AND b = 3h(a + b) = = /c- a + b + h Y&+2 sin 4 C a + b + h(csc e + csc $) 1 Fig. 4-4 5 / - GEOMETRIC 6 REGUkAR 4.9 Area = $nb?- cet c 4.10 Perimeter = POLYGON inbz- FORMULAS OF n SIDES EACH CJf 1ENGTH b COS(AL) sin (~4%) = nb 7,’ 0.’ 0 Fig. 4-5 CIRÇLE OF RADIUS 4.11 Area 4.12 Perimeter r = & = 277r Fig. 4-6 SEClOR 4.13 4.14 Area = &r% OF CIRCLE OF RAD+US Y [e in radians] T Arc length s = ~6 A 8 0 T Fig. 4-7 RADIUS 4.15 OF C1RCJ.E INSCRWED r= where &$.s- tN A TRtANGlE * OF SIDES a,b,c U)(S Y b)(s -.q) s s = +(u + b + c) = semiperimeter Fig. 4-6 RADIUS- OF CtRClE 4.16 R= where CIRCUMSCRIBING A TRIANGLE OF SIDES a,b,c abc 4ds(s - a)@ - b)(s - c) e = -&(a.+ b + c) = semiperimeter Fig. 4-9 G 4 A =. 4 P . & sr s = 2e s 1= n + 1 = FE 3 ise n 7 r n OO 6 ni a 2 nr s i y 8 2r RM 0 n n ri i n M7E UT ° 2 r mn z e t e ! ? Fig. 4-10 4 A =. 4 P . = 1 n r t a eL T n t rZ n n = 2e 2 t 9 r 2 a n a! 0 2 nr t a = 2 n n ri a n T ! I : e? r m nk T t e 0 F SRdMMHW W 4 o .s A f=2 h + pr ( -ae s C%Ct& e) 1 a r e OF RADWS ra i d2 4 i - g 1 T tn e T e d r tz!? Fig. 4-12 4 A =. 4 P . r r 2 a e 2 2 4 1 - kz rs e c3 b a 7r/2 = e 5 4a ii m + l e @ t e 0 = w k = ~/=/a.h 4 A 4 A l [ 27r@sTq See p e254 f =. $ab r 2 . ABC r = e -&2dw a n a e r to 4 c +n E5 p u g e ar p m e b F r 4e l i -r o e g a 4 gl 1 a ) tn + h AOC @ T b Fig. 4-14 - f 1i GEOMETRIC 8 RECTANGULAR 4.26 Volume = 4.27 Surface area PARALLELEPIPED FORMULAS OF LENGTH u, HEIGHT r?, WIDTH c ubc Z(ab + CLC + bc) = a Fig. 4-15 PARALLELEPIPED 4.28 Volume = Ah = OF CROSS-SECTIONAL AREA A AND HEIGHT h abcsine Fig. 4-16 SPHERE 4.29 Volume = OF RADIUS ,r + 1 ---x ,------- 4.30 Surface area = 4wz @ Fig. 4-17 RIGHT 4.31 Volume 4.32 Lateral = CIRCULAR CYLINDER OF RADIUS T AND HEIGHT h 77&2 surface area = h 25dz Fig. 4-18 CIRCULAR 4.33 Volume 4.34 Lateral = m2h surface area CYLINDER = OF RADIUS r AND SLANT HEIGHT 2 ~41 sine = 2777-1 = 2wh z = 2wh csc e Fig. 4-19 . GEOMETRIC CYLINDER = OF CROSS-SECTIONAL 4.35 Volume 4.36 Lateral surface area Ah FORMULAS 9 A AND AREA SLANT HEIGHT I Alsine = = pZ = GPh -- ph csc t Note that formulas 4.31 to 4.34 are special cases. Fig. 4-20 RIGHT = CIRCULAR 4.37 Volume 4.38 Lateral surface area CONE OF RADIUS ,r AND HEIGHT h jîw2/z = 77rd77-D = ~-7-1 Fig. 4-21 PYRAMID 4.39 Volume = OF BASE AREA A AND HEIGHT h +Ah Fig. 4-22 SPHERICAL 4.40 Volume (shaded in figure) 4.41 Surface area = CAP = OF RADIUS ,r AND HEIGHT h &rIt2(3v - h) 2wh Fig. 4-23 FRUSTRUM = OF RIGHT 4.42 Volume 4.43 Lateral surface area +h(d CIRCULAR CONE OF RADII u,h AND HEIGHT h + ab + b2) = T(U + b) dF = n(a+b)l + (b - CL)~ Fig. 4-24 10 SPHEMCAt hiiWW 4.44 Area of triangle ABC = GEOMETRIC FORMULAS OF ANG%ES A,&C Ubl SPHERE OF RADIUS (A + B + C - z-)+ Fig. 4-25 TOW$ &F lNN8R 4.45 Volume 4.46 w Surface area = 7r2(b2- u2) 4.47 Volume = RADlU5 a AND OUTER RADIUS b &z-~(u+ b)(b - u)~ = $abc Fig. 4-27 T. 4.4a Volume = PARAWlO~D aF REVOllJTlON &bza Fig. 4-28 Y 5 TRtGOhiOAMTRiC D OE T FF R WNCTIONS F l I FU A R N G T ON Triangle ABC bas a right angle (9Oo) at C and sides of length u, b, c. angle A are defined as follows. sintz . of A 5 5 5 5 5 sin A 1= : = opposite hypotenuse i = adjacent hypotenuse cosine . of A = ~OSA 2= . of A = tanA 3= f = -~ . of A = of A tangent c 5.5 = secant cosecant . of A 4= k = adjacent t opposite = sec A = t = -~ = csc A 6= z = hypotenuse opposite E l O R RC functions G T N I T of B opposite adjacent A o cet The trigonometric I TX A c z A n g hypotenuse adjacent W OT Fig. 5-1 N M 3 HG E G A TE I R N9L Y H C E S0 E A H A I ’ Consider an rg coordinate system [see Fig. 5-2 and 5-3 belowl. A point P in the ry plane has coordinates (%,y) where x is eonsidered as positive along OX and negative along OX’ while y is positive along OY and negative along OY’. The distance from origin 0 to point P is positive and denoted by r = dm. If it is described dockhse from The angle A described cozmtwcZockwLse from OX is considered pos&ve. OX it is considered negathe. We cal1 X’OX and Y’OY the x and y axis respectively. The various quadrants are denoted by 1, II, III and IV called the first, second, third and fourth quadrants respectively. In Fig. 5-2, for example, angle A is in the second quadrant while in Fig. 5-3 angle A is in the third quadrant. Y Y II 1 II 1 III IV III IV Y’ Y’ Fig. 5-3 Fig. 5-2 11 f TRIGONOMETRIC 12 FUNCTIONS For an angle A in any quadrant the trigonometric functions of A are defined as follows. 5.7 sin A = ylr 5.8 COSA = xl?. 5.9 tan A = ylx 5.10 cet A = xly 5.11 sec A = v-lx 5.12 csc A = riy RELAT!ONSHiP BETWEEN DEGREES AN0 RAnIANS N A radian is that angle e subtended at tenter 0 of a eircle by an arc MN equal to the radius r. Since 2~ radians = 360° we have 5.13 1 radian = 180°/~ 5.14 10 = ~/180 radians = 1 r e 0 57.29577 95130 8232. . . o r B = 0.01745 32925 19943 29576 92.. .radians Fig. 5-4 REkATlONSHlPS 5.15 tanA = 5 5.16 &A ~II ~ 1 5.17 sec A = ~ 5.18 cscA = - tan A AMONG COSA sin A zz - 1 COS A TRtGONOMETRK 5.19 sine A + ~OS~A 5.20 sec2A - tane 5.21 csceA - cots A II III IV 1 A = 1 = 1 1 sin A SIaNS AND VARIATIONS 1 = FUNCTItB4S + 0 to 1 + 1 to 0 + 1 to 0 0 to -1 0 to -1 -1 to 0 OF TRl@ONOMETRK + 0 to m -mtoo + 0 to d -1 to 0 + 0 to 1 + CCto 0 oto-m + Ccto 0 - -- too oto-m FUNCTIONS + 1 to uz + m to 1 -cc to -1 + 1 to ca -1to-m + uz to 1 --COto-1 -1 to -- M TRIGONOMETRIC E Angle A in degrees 00 X F Angle A in radians A T A O RL FC R 1 IU O UT O S sec A csc A 0 1 0 w 1 cc ii/6 1 +ti 450 zl4 J-fi $fi 60° VI3 Jti 750 5~112 900 z.12 105O 7~112 *(fi+&) -&(&-Y% -(2+fi) -(2-&) 120° 2~13 *fi -* -fi -$fi 1350 3714 +fi -*fi 150° 5~16 4 -+ti #-fi) 2-fi &(&+fi) fi 1 0 fi) -&(G+ 0 -*fi -fi -(2-fi) -(2+fi) 180° ?r -1 1950 13~112 210° 7716 225O 5z-14 -Jfi 240° 4%J3 -# 255O 17~112 270° 3712 -1 285O 19?rll2 -&(&+fi) 3000 5ïrl3 -*fi 2 315O 7?rl4 -4fi *fi -1 330° 117rl6 *fi -+ti 345O 237112 360° 2r -$(fi-fi) -*(&+fi) 2-fi - 1 4 -*fi -i(fi- 2+fi 0 -(2+6) &(&+ -ti fi) 1 0 see pages 206-211 -(2 - fi) 0 ++ -fi \h -+fi 2 -(fi-fi) f -(&-fi) -2 -(&+?cz) -@-fi) &+fi -(2+6) T-J i -36 -(fi-fi) -1 -(fi-fi) 2 -1 f -fi Tm -*fi -ti -2 g -fi 0 *ca -(&+fi) i - &fi 2-6 Vz+V-c? -1 3 1 km *(&-fi) 6) angles ti -&(&-fi) 1 l 1 -4 -&&+&Q 6 fi-fi -2 2 + ti & 1 -(&+fi) Tm 0 fi-fi km -1 -1 TG ;G &+fi 0 N fi 2 2-& *CU fi) fi .+fi 2+& R 2 $fi 1 C N 3 &+fi fi-fi fi 1 @-fi) $(fi- 2+* *fi r1 i(fi+m other A cet A 300 involving FN A tan A rIIl2 tables GE COSA 0 llrll2 V sin A 15O 165O For V FUNCTIONS fi $fi fi-fi -$fi -fi -2 -(&+fi) 1 ?m and 212-215. f I TRIGONOMETRIC 5.89 y = cet-1% 5.90 y = FUNCTIONS 19 sec-l% 5.91 _--/ y = csc-lx Y I T --- , /A-- /’ / -77 -// , Fig. 5-14 Fig. 5-15 RElAilONSHfPS BETWEEN The following results hold for sides a, b, c and angles A, B, C. 5.92 ANGtGS any plane triangle ABC OY A PkAtM with TRlAF4GlG ’ A Law of Sines a -=Y=sin A 5.93 SIDES AND Fig. 5-16 1 b c sin B sin C C Law of Cosines /A cs = a2 + bz - Zab COS f C with similar relations involving the other sides and angles. 5.94 Law of Tangents tan $(A + B) a+b -a-b = tan i(A -B) with similar relations involving the other sides and angles. 5.95 sinA where s = &a + b + c) = :ds(s is the semiperimeter - a)(s - b)(s - c) of the triangle. B and C cari be obtained. See also formulas 4.5, page 5; 4.15 and 4.16, page 6. Spherieal triangle ABC is on the surface of in Fig. 5-18. Sides a, b, c [which are arcs of measured by their angles subtended at tenter 0 of are the angles opposite sides a, b, c respectively. results hold. 5.96 Law of Sines sin a -z-x_ sin A 5.97 sin b sin B a sphere as shown great circles] are the sphere. A, B, C Then the following sin c sin C Law of Cosines sinbsinccosA cosa = cosbcosc COSA = - COSB COSC + + Fig. 5-1’7 sinB sinccosa with similar results involving other sides and angles. Similar relations involving angles 2 T 0 L 5 o. w T a s 5 f 9 ri s = & S = + f e E g i c S( 8 n & + B a t( t & a= t( 4l op f r x F s ii 1e o mn s e I g U $ ) + n b ) sh a t ai v i r) G e aA ( N ) n a A n O n C T t u n u n h nl o d N s i l d e a g l e t r O ( rl v s s e i u i hr f e. o .s r) A i rh ra 0 FGR RtGHT o C it c na i b -va b i m + ose o sa t a i l i r u n h n l dd ld e g a e t r lr s 0 ( Se RlJlES a wn - B 0 h+ B + C NAPIER’S a t 1 w a et F 9 1+ h . S w 9 w 5 a i i . R 4o f e. o m g . meos 4 eu ANGLED rf , gh p e gor s i c gB e le, , u , . . o sa t a i l i , l SPHERICAL ha e p t lef 9n A l pv Atr r un h n l dd ld e ga e t r lr a TRIANGLES t rwe , d he i Z aet ih ei f t r3s o a i n r h rC r nc a C F S [ c A a t i o p 5 uq ot i h hn o t n p n da t a t - g a pu a fi hce ri a m s ia ea d a e c to a om c r of th y ac e rj n h w r p T s. o a h m i1 fp 5.102 T s o a h m i fp n ee i n S T x C c = 9i o ch a- n ee i n0 t O C s a s ( ba = t n0= m 9A t = o f . oe F 9 ri p aar c s a en io nr Fi a n l p A a npi B e m oc ayd 5 E 1 5 5e s n w s t a ir ndoc g . c p rt ti tsl a ps r p ea Te an cs laN u d f oeh t oa a a l a p y q d eo ht r rc u d fo eht t ooo O w c° h 0p, B A - e e a °l n s , ( a na C o C i C a C ( nO Oo O C ~ uts rl i rt 5 rhe o es p a er fb g e 2p t hd ead wl xi hr pv le r l aao s f p eh B dsp et Cg.l h eoc tn eu t a -ei e p sr . 0r t ri O ee e ni n s rl da sl i n ae ug j s l e ae ve r uip s r frg di ie ce a n co e: i AS =-r SC OaOs 2 ee et f eph dn d l e a l n = rOt b it - w - a ehi ngc t dta l m p t a p y q d eo1 ht r rt -- i O -a B A oa 1. s e n os a n O - mi 99 e Bn S i ) ug a )b SB n n .7 l e e A complex number is generally written as a + bi where a and b are real numbers and i, called the imaginaru unit, has the property that is = -1. The real numbers a and b are called the real and ima&am parts of a + bi respectively. The complex numbers a + bi and a - bi are called complex 6.1 a+bi = c+di if and only if conjugates a=c and b=cZ 6.2 (a + bi) + (c + o!i) = (a + c) + (b + d)i 6.3 (a + bi) - (c + di) = (a - c) + (b - d)i 6.4 (a+ bi)(c+ di) = (ac- bd) + (ad+ of each other. bc)i Note that the above operations are obtained by using the ordinary rules of algebra and replacing 9 by -1 wherever it occurs. 21 22 COMPLEX GRAPH NUMBERS OF A COMPLEX NtJtWtER A complex number a + bi cari be plotted as a point (a, b) on an xy plane called an Argand diagram or Gaussian plane. For example in Fig. 6-1 P represents the complex number -3 + 4i. A eomplex number cari also be interpreted as a wector p,----. y from 0 to P. - 0 X * Fig. 6-1 POLAR FORM OF A COMPt.EX NUMRER In Fig. 6-2 point P with coordinates (x, y) represents the complex number x + iy. Point P cari also be represented by polar coordinates (r, e). Since x = r COS6, y = r sine we have 6.6 x + iy = ~(COS 0+ called the poZar form the mocklus of the complex and t the amplitude i sin 0) number. L We often - X cal1 r = dm of x + iy. Fig. 6-2 tWJLltFltCATt43N [rl(cos 6.7 AND DtVlStON OF CWAPMX el + i sin ei)] [re(cos ez + i sin es)] V-~(COSe1 + i sin el) 6.8 ZZZ 2 rs(cos ee + i sin ez) If p is any real number, De Moivre’s [r(cos rrrs[cos 1bJ POLAR ilj 0” FtMM tel + e2) + i sin tel + e2)] [COS(el - e._J + i sin (el - .9&] DE f#OtVRtt’S 6.9 = NUMBRRS THEORRM theorem states e + i sin e)]p = that rp(cos pe + i sin pe) . RCWTS If p = l/n where k=O,l,2 integer, [r(cos e + i sin e)]l’n 6.10 where n is any positive OF CfMMWtX k is any ,..., integer. n-l. From this the = n nth NUtMB#RS 6.9 cari be written rl’n roots L e + 2k,, ~OSn of a complex + e + 2kH i sin ~ number n cari 1 be obtained by putting ” In the following p, q are real numbers, CL,t are positive numbers and WL,~are positive integers. 7.1 cp*aq z aP+q 7.2 aP/aqE @-Q 7.3 (&y E rp4 7.4 u”=l, 7.5 a-p = l/ap 7.6 (ab)p = &‘bp 7.7 & 7.8 G 7.9 Gb a#0 z aIIn = pin =%Iî/% In ap, p is called the exponent, a is the base and ao is called the pth power of a. The function is called an exponentd function. If a~ = N where a # 0 or 1, then p = loga N is called the loga&hm N = ap is called t,he antdogatithm of p to the base a, written arkilogap. Example: Since The fumAion 3s = 9 we have y = ax of N to the base a. The number log3 9 = 2, antilog3 2 = 9. v = loga x is called a logarithmic jwzction. 7.10 logaMN = loga M + loga N 7.11 log,z ; = logG M - 7.12 loga Mp = p lO& M loga N Common logarithms and antilogarithms [also called Z?rigg.sian] are those in which the base a = 10. The common logarit,hm of N is denoted by logl,, N or briefly log N. For tables of common logarithms and antilogarithms, see pages 202-205. For illuskations using these tables see pages 194-196. 23 EXPONENTIAL 24 AND LOGARITHMIC NATURAL LOGARITHMS FUNCTIONS AND ANTILOGARITHMS Natural logarithms and antilogarithms [also called Napierian] are those in which the base a = e = 2.71828 18. . . [sec page 11. The natural logarithm of N is denoted by loge N or In N. For tables of natural logarithms see pages 224-225. For tables of natural antilogarithms [i.e. tables giving ex for values of z] see pages 226-227. For illustrations using these tables see pages 196 and 200. CHANGE OF BASE OF lO@ARlTHMS The relationship between logarithms of a number N to different bases a and b is given by 7.13 loga N = hb iv hb a - In particular, = ln N 7.14 loge N 7.15 logIO N = logN RElATlONSHlP = 2.30258 50929 94.. . logio N = 0.43429 44819 03.. . h& N BETWEEN EXPONBNTIAL ANO TRl@ONOMETRlC eie = 7.16 These are called Euler’s COS 0 + i sin 8, dent&es. e-iO = COS 13 - sin 6 Here i is the imaginary unit [see page 211. 7.17 sine 7.18 case = = eie- e-ie 2i eie+ e-ie 2 7.19 7.20 2 7.21 sec 0 = &O + e-ie 7.22 csc 6 = eie 7.23 i 2i eiCO+2k~l From this it is seen that @ has period 2G. - e-if3 = eie k = integer FUNCT#ONS ;; E POiAR T p XA FORfvl OF COMPLEX f 7 o h a co o n . 2 6 t o 6 NUMBERS .o hp r 2 (reiO)l/n E LOGARITHM 7.29 COMPLEX a. l OD ym i a tm e ( ffUMBERS e7n ra m 2 t 1r t (q-eio)Pzz q-P&mJ [ 7.2B OF GU EXPRESSE$3 AS AN oxl + i r c u b w m a WITH 7.27 PN or rpe N AN 25 E RC N EXPONENTNAL n re b [if lx 6 pi r e 2 st a ep . a mr 2 et s x o6 g 4 6 + i sin 0) = 9-ei0 x + iy = ~(COS OPERATIONS F fe L [~&O+Zk~~]l/n q f og M t = n u D FORM o 0eh uo ue o h l e e i il g a e vl v h s o NUMBER k e=e i k @n z ) t - ao r rl/neiCO+Zkr)/n OF A COMPLEX = l r n + iT + 2 IN POLAR e i DEIWWOPI OF HYPRRWLK 8.1 Hyperbolic sine of x = sinh x = 8.2 Hyperbolic cosine = coshx = 8.3 Hyperbolic tangent = tanhx = 8.4 Hyperbolic cotangent 8.5 Hyperbolic secant 8.6 Hyperbolic cosecant RELATWNSHIPS of x of x coth x of x = of x AMONG ez + e-= 2 ~~~~~~ 2 ez + eëz HYPERROLIC FUWTIONS = sinh x a coth z = 1 tanh x sech x = 1 cash x 8.10 cschx = 1 sinh x 8.11 coshsx - sinhzx = 1 8.12 sechzx + tanhzx = 1 8.13 cothzx - cschzx = 1 FUNCTIONS 2 = csch x = & tanhx 8.7 # - e-z ex + eCz = es _ e_~ = sech x = of x .:‘.C, FUNCTIONS cash x sinh x = OF NRGA’fWE ARGUMENTS 8.14 sinh (-x) = - sinh x 8.15 cash (-x) = cash x 8.16 tanh (-x) = - tanhx 8.17 csch (-x) = -cschx 8.18 sech(-x) = 8.19 coth (-x) = 26 sechx -~OUIS HYPERBOLIC AWMWM FUNCTIONS 27 FORMWAS 0.2Q sinh (x * y) = sinh x coshg 8.21 cash (x 2 g) = cash z cash y * sinh x sinh y 8.22 tanh(x*v) = tanhx f tanhg 12 tanhx tanhg 8.23 coth (x * y) = coth z coth y 2 1 coth y * coth x 8.24 sinh 2x = 2 ainh x cash x 8.25 cash 2x = coshz x + sinht x 8.26 tanh2x = 2 tanh x 1 + tanh2 x = * cash x sinh y 2 cosh2 x - 1 = 1 + 2 sinh2 z HAkF ABJGLR FORMULAS 8.27 sinht = 8.28 CoshE 2 = 8.29 tanh; = k Z sinh x cash x + 1 .4 [+ if x > 0, - if x < O] cash x + 1 -~ 2 cash x - 1 cash x + 1 ’ MUlTWlE [+ if x > 0, - if x < 0] ZZ cash x - 1 sinh x A!Wlfi WRMULAS 8.30 sinh 3x = 3 sinh x + 4 sinh3 x 8.31 cosh3x = 4 cosh3 x - 8.32 tanh3x = 3 tanh x + tanh3 x 1 + 3 tanhzx 8.33 sinh 4x = 8 sinh3 x cash x + 4 sinh x cash x 8.34 cash 4x = 8 coshd x - 8.35 tanh4x = 4 tanh x + 4 tanh3 x 1 + 6 tanh2 x + tanh4 x 3 cash x 8 cosh2 x -t- 1 2 H 8 YF P O PU HO E N FY& W P J R C E E B T f R R 8 . 3 s 6= &i c 2 - 4 na 8 . 3 c 7= 4 oc 2 + $ sa 8 . 3 s x 8= &i s 3 - 8 . 3 c x 9= &o c + 8 . 4 s 0= 8i - 4 c 2 n+ 4 ca 4x h as % 4 sh x h 8 . 4 c 1= #o + + c 2 s+ & ca 4x h as x 4 sh x h S D 8 U . AI F A hs zh x x hs zh x 2 sn i xx ihn nsh 2 cs o x ahs ssh K NFO x W R & DFF F O P Sl h h3 E x UR D R s 4+ s i = 2 si2 & n + y cn i $ hx - y) anh (x ) s hy x h x h kR U 8 . 4s - s 3i = 2 ci n& + y s an $ hx - Y) i sh (x ) n hy 8 . 4c + c 4o = 2 co is + y c as #(h - Y) a sh xxx ) s hy 8 . 4c - c 5o = 2 so $s + y s is $ (h - Y) i nh ( xx ) n hy 8 . 4s x s y 6i= * i n {- n c h c ho o s s h h ( 8 . 4c x c y 7 a= + a s {+ s c h c ho o s s h h ( s x 4c y i= + a n+ y {- s s x @ h- ) Y sl h i ) -i n } n h h 8 . E I t t OX H f n hw .o 8 s FP FY x e>e 0 ls I oa 1 x = u i c 8( = u !R UPT x < 0 u. l s t f a 9 . n o t t s x i n h c x a s h t x a n h c x o t h s x e c h c x s c h = uh s a c s ou h s p O N ‘ E NEE a e i wme x = 1h n o s i p b s fn i e x =1 xu h t e c h x h F OSC RR g r 8y o dn x = xwh c s T SB n o . rig h c HYPERBOLIC GRAPHS 8.49 y = sinh x OF HYPERBOkfC 8.50 29 FUNCltONS 8.51 y = coshx Fig. S-l 8.52 FUNCTIONS Fig. 8-2 y = coth x 8.53 /i y y = tanh x Fig. 8-3 8.54 y = sech x y = csch x Y \ X 1 7 10 X 0 -1 iNVERSE HYPERROLIC L X Fig. 8-6 Fig. 8-5 Fig. 8-4 0 FUNCTIONS If x = sinh g, then y = sinh-1 x is called the inverse hyperbolic sine of x. Similarly we define the The inverse hyperbolic functions are multiple-valued and. as in the other inverse hyperbolic functions. case of inverse trigonometric functions [sec page 171 we restrict ourselves to principal values for which they ean be considered as single-valued. The following list shows the principal values [unless otherwise indicated] of the inverse hyperbolic functions expressed in terms of logarithmic functions which are taken as real valued. 8.55 sinh-1 x = ln (x + m 8.56 cash-lx = ln(x+&Z-ï) 8.57 tanh-ix = 8.58 coth-ix = 8.59 sech-1 x 8.60 csch-1 x ) -ml O 0 is principal value] ln(i+$$G.) x+O or xc-1 [sech-1 x > 0 is principal value] HYPERBOLIC 30 FUNCTIONS 8.61 eseh-] x = sinh-1 (l/x) 8.62 seeh- x = coshkl (l/x) 8.63 coth-lx = tanh-l(l/x) 8.64 sinhk1 (-x) = - sinh-l x 8.65 tanhk1 (-x) = - tanh-1 x 8.66 coth-1 (-x) = - coth-1 x 8.67 eseh- (-x) = - eseh- x GffAPHS 8.68 y = OF fNVt!iffSft HYPfkfftfUfX 8.69 sinh-lx FfJNCTfGNS X 7 -ll 8.72 coth-lx Y 0 \ \ \ \ ‘-. Fig. 8-9 L 11 x y = 8.73 sech-lx y = Y Il 0 I I’ Fig. 8-11 csch-lx Y I Fig. 8-10 \ Fig. 8-8 Fig. 8-7 l l l x -1 \ y = tanhkl l Y Y 8.71 y = 8.70 y = cash-lx , , / X 3 L 0 Fig. 8-12 -x HYPERBOLIC tan (ix) == i tanhx sec (ix) = sechz 8.79 cet (ix) 8.81 cash (ix) = COSz 8.82 tanh (iz) = i tan x 8.84 sech (ix) = sec% 8.85 coth (ix) = sin (ix) = i sinh x 8.75 COS(iz) 8.77 csc(ix) 8.78 8.80 sinh (ix) = i sin x 8.83 csch(ti) -i = cschx -icscx In the following 31 8.76 8.74 = FUNCTIONS = cash x == -do 0 ot eh e i af y mf l dt e n ) l s mfp r e = 2 C ( a O @ x2 = 2 C ( + 1m O +w 2C = 2 C ( + 2G O + 4 + Ca + x r ,h , fa i ) u s im o t 2 ar r e h a - . )f T D 1n =C o 0. n x ar ,s 1 1a o u xI + x2 + xs = - a a Ti + a i r 9.5 sx x a r 3 g + S a x e l + ( if D < 0: t $ 1a n o et e e )i awD = rd0t q a f l o Solutions en & 1a o a l r i et b o o er e 32 e p n j l e s u s a t s q u pu i u e l a l tg i ao S ) = Qr r r s 1 a i r so e n a d - 4 r r i ei nl a x nce - re u tr s - 2a 5 + 2 cs )e - 2 - n a i to =e c o f an oex x 9 R= ’ ra 2 i s Dr = eQ3 +, nR2, f i te i ri are l o o d ( c h af Xl 9.4 2 ~/@-=%c- ( D < 0, r -b = f a iL rf uz2 + bx -t c = 0 Q G U Dn > 0n ) Solutions: a a EQUATION: L i e D =n 0 q i e I a a Ef lx c i x o O A o Th 0 O e =S -RI&@ x s x e S e 0 = - ,s , r z s e t ’ e S ) r ’ ax e x r s ) ss 2 . SOLUTIONS QUARTK Let y1 be a real root 9.7 Solutions: ALGEBRAIC EQUATION: of the cubic The 4 roots OF x* -f- ucx3 + ctg9 + of ~2 + xl, x2, x3, x4 are the four u 3 + a 3 = 0 4 3 $ equation +{a1 2 a; -4uz+4yl}z If a11 roots of 9.6 are real, computation is simplified a11 real coefficients in the quadratic equation 9.7. where EQUATIONS by using + that $& * d-1 particular = real root 0 which produces roots. - FURMULAS Pt.ANE ANALYTIC 10 fram GEOMETRY DISTANCE d BETWEEN TWO POINTS F’&Q,~~) AND &(Q,~~) 10.1 d= - Fig. 10-1 10.2 mzz-z EQUATION 10.3 OF tlNE JOlNlN@ Y - Y1 x - ccl m Y2 - Y1 F2 - Xl TWO POINTS ~+%,y~) Y2 - Y1 xz - 10.4 cjr Xl y = where b = y1 - mxl = XZYl xz - EQUATION XlYZ 51 tan 6 Y - Y1 = mb ANiI l%(cc2,1#2) - Sl) mx+b is the intercept on the y axis, i.e. the y intercept. OF LINE IN ‘TEMAS OF x INTERCEPT a # 0 AN0 3 INTERCEPT b + 0 Y b a Fig. 10-2 34 2 FORMULAS FROM ffQRMAL 10.6 ANALYTIC FORA4 FOR EQUATION + Y sin a x cosa PLANE = where p = perpendicular and a 1 angle of inclination positive z axis. GEOMETRY OF 1lNE y p distance 35 from origin 0 to line of perpendicular P/ , with , L LX 0 I Fig. 10-3 GENERAL 10.7 Ax+BY+C KIlSTANCE where FROM the sign is chosen ANGLE 10.9 s/i BETWEEN tan $ Lines are parallel Lines POINT SO that = (%~JI) the distance TWO OF LINE EQUATION 0 TO LINE AZ -l- 23~ -l- c = Q is nonnegative. l.lNES HAVlNG SlOPES wsx AN0 %a2 m2 - ml 1 + mima = or coincident are perpendicular if and only if mi = ms. if and only if ma = -Ilmr. Fig. 10-4 AREA 10.10 Area = z= where *T OF TRIANGLE 1 *; the sign If the area Xl Y1 1 ~2 ya 1 x3 Y3 1 (Xl!~/2 + ?4lX3 is chosen WiTH VERTIGES AT @I,z& @%,y~), (%%) (.% Yd + Y3X2 SO that is zero the points - !!2X3 - the area YlX2 - %!43) is nonnegative. a11 lie on a line. Fig. 10-5 FORMULAS 36 TRANSFORMATION 1 10.11 FROM PLANE ANALYTIC OF COORDINATES x = x’ + xo Y = Y’ + Y0 1 x’ or y’ x x GEOMETRY INVGisVlNG x - xo Y - Y0 PURE TRANSlAliON Y l Y’ l l where (x, y) are old coordinates [i.e. coordinates relative to xy system], (~‘,y’) are new coordinates [relative to x’y’ system] and (xo, yo) are the coordinates of the new origin 0’ relative to the old xy coordinate system. Fig. 10-6 TRANSFORMATION 10.12 1 = x’ cas L - OF COORDIHATES y’ sin L or -i y = x’ sin L + y’ cas L x’ z INVOLVING PURE x COSL + y sin a ROTATION \Y! \ \ \ \ yf z.z y COSa - x sin a where the origins of the old [~y] and new [~‘y’] coordinate systems are the same but the z’ axis makes an angle a with the positive x axis. , , , , Y , \o/ , ’ \ , / / / ,x’ L CL! \ Fig. 10-7 TRANSFORMATION OF COORDINATES 1 1 02 = 10.13 lNVGl.VlNG TRANSLATION x’ cas a - y’ sin L + x. y = 3~’sin a + y’ COSL + y0 or ANR x’ ZZZ (X - XO) cas L + (y - yo) sin L y! rz (y - yo) cas a - (x - xo) sin a 1 \ ROTATION / ,‘%02 \ where the new origin 0’ of x’y’ coordinate system has coordinates (xo,yo) relative to the old xy eoordinate system and the x’ axis makes an angle CYwith the positive x axis. Fig. 10-8 POLAR COORDINATES (Y, 9) A point P cari be located by rectangular coordinates (~,y) or polar eoordinates (y, e). The transformation between these coordinates is 10.14 x = 1 COS 0 y = r sin e or T=$FTiF 6 = tan-l (y/x) Fig. 10-9 FORMULAS RQUATIQN 10.15 FROM PLANE OF’CIRCLE (a-~~)~ + (g-vo)2 ANALYTIC OF RADIUS GEOMETRY 37 R, CENTER AT &O,YO) = Re Fig. 10-10 RQUATION 10.16 OF ClRClE OF RADIUS R PASSING T = 2R COS(~-a) THROUGH ORIGIN Y where (r, 8) are polar coordinates of any point on the circle and (R, a) are polar coordinates of the center of the circle. Fig. 10-11 CONICS [ELLIPSE, PARABOLA OR HYPEREOLA] If a point P moves SO that its distance from a fixed point [called the foc24 divided by its distance from a fixed line [called the &rectrkc] is a constant e [called the eccen&&ty], then the curve described by P is called a con& [so-called because such curves cari be obtained by intersecting a plane and a cane at different angles]. If the focus is chosen at origin 0 the equation of a conic in polar coordinates (r, e) is, if OQ = p and LM = D, [sec Fig. 10-121 10.17 T = P 1-ecose = CD 1-ecose The conic is (i) an ellipse if e < 1 (ii) a parabola if e = 1 (iii) a hyperbola if c > 1. Fig. 10-12 38 FORMULAS FROM PLANE 10.18 Length of major axis A’A = 2u 10.19 Length of minor axis B’B = 2b 10.20 Distance from tenter C to focus F or F’ is ANALYTIC GEOMETRY C=d-- = c = E__ 10.21 Eccentricity 10.22 Equation in rectangular a - ~ 0 a coordinates: (r - %J)Z + E b2 a2 Fig. 10-13 = 3 re zz a2b2 10.23 Equation in polar coordinates if C is at 0: 10.24 Equation in polar coordinates if C is on x axis and F’ is at 0: 10.25 If P is any point on the ellipse, PF + PF’ = a2 sine a + b2 COS~6 r = a(1 - c2) l-~cose 2a If the major axis is parallel to the g axis, interchange x and y in the above or replace e by &r - 8 [or 9o” - e]. PARAR0kA WlTJ4 AX$S PARALLEL TU 1 AXIS If vertex is at A&,, y,,) and the distance from A to focus F is a > 0, the equation of the parabola is 10.26 (Y - Yc? 10.27 (Y - Yo)2 = = 4u(x - xo) if parabola opens to right [Fig. 10-141 -4a(x - xo) if parabola opens to left [Fig. 10-151 If focus is at the origin [Fig. 10-161 the equation in polar coordinates is 10.28 T = 2a 1 - COSe Y Y -x 0 Fig. 10-14 Fig. 10-15 x Fig. 10-16 In case the axis is parallel to the y axis, interchange x and y or replace t by 4~ - e [or 90” - e]. FORMULAS FROM PLANE ANALYTIC GEOMETRY 39 Fig. 10-17 10.29 Length of major axis A’A = 2u 10.30 Length of minor axis B’B = 10.31 Distance from tenter C to focus F or F’ 10.32 Eccentricity 10.33 Equation in rectangular 10.34 Slopes of asymptotes G’H and GH’ 10.35 Equation in polar coordinates if C is at 0: 10.36 Equation in polar coordinates if C is on X axis and F’ is at 0: 10.37 If P is any point on the hyperbola, e = ; = - 2b = c = dm a coordinates: = (z - 2# os (y - VlJ2 -7= 1 * a ” PF - PF! = = If the major axis is parallel to the y axis, interchange [or 90° - e]. a2b2 b2 COS~e - a2 sin2 0 22a r = Ia~~~~~O [depending on branch] 5 and y in the above or replace 6 by &r - 8 11.1 E i p qc n r E 1 1 i 1 A b1 1 A o 1o r l + y An o r= uo = a c 2 . cn u q ( o e l 2 2 a 0 c a 2 o = C S - y* A e. a &f . n B xga r o e ao a o ’lx o B w a E i p q fn [ C = CE L- 1y = a 1 A 1 A T a r o 1o l a 1 2 o r ae i a c dh a x ao s l .= o r 8f ( F o o E 1 i r q % E 1 1 i p q A 11.11 A u b l T i a c a i r o /t brc o e r e u y 2 Z a = a s li dh s bu a p ei P o si t o o a n c4h n o rl f d A o ’ s \ l ’ eB, / xg n n i 1 1 g- l m i 2 , tY n- nn j m i O : e o t n n S a # h ) 2 c g h t v i ic f a g is h er nr n. F 1 d c ti g i 1 i l b g - u ViflTH FOUR CUSf’S / Z c 2 a f 9o o 3 Z r O 0 f= n6 c a 1 o ss o r n n 8 o Z l u a r a a t m 3 ar ta n gr ya r c o ss o r n v i ai e s f al r. i d m i : n o i g n e o t n 9 n a 40 t 3 r S nu t 3 i o = & yeu ec r e i F ) a a ya r c . fn a u x = a C y 11.10 . cn + c 7 HYPOCYCLOID 1 , e o i C O = 6e nc rn ei p a i e bu a p ei x l r a & Y - C r = 3f . n o a u (s + + r i d\ , , \ )! 5d Y r t ( C 11.5 t s) t’=3 4 n \ s G a 4e tA r z 2 v i ic f a i sd d e tv er c r nr F d 1 e d he d i e c l ti i e i 1 u l e b g - u s . SPECIAL PLANE CURVES 41 CARDIOID 11 .12 Equation: 11 .13 Area bounded by curve 11 .14 Arc length of curve r = a(1 + COS0) = $XL~ = 8a This is the curve described by a point P of a circle of radius a as it rolls on the outside of a fixed circle of radius a. The curve is also a special case of the limacon of Pascal [sec 11.321. Fig. 11-4 CATEIVARY 11.15 Equation: Y z : (&/a + e-x/a) = a coshs This is the eurve in which a heavy uniform cham would hang if suspended vertically from fixed points A anda. B. Fig. 11-5 THREEdEAVED 11.16 Equation: ROSE \ r = a COS39 The equation T = a sin 3e is a similar curve obtained by rotating the curve of Fig. 11-6 counterclockwise through 30’ or ~-16 radians. In general n is odd. v = a cas ne or r = a sinne ‘Y \ \ \ \ \ , / has n leaves if / + ,/ , Fig. 11-6 FOUR-LEAVED 11.17 Equation: ROSE r = a COS20 The equation r = a sin 26 is a similar curve obtained by rotating the curve of Fig. 11-7 counterclockwise through 45O or 7714radians. In general n is even. y = a COSne or r = a sin ne has 2n leaves if Fig. 11-7 a X 42 SPECIAL 11.18 PLANE CURVES Parametric equations: X = (a + b) COSe - b COS Y = (a + b) sine - b sin This is the curve described by a point P on a circle of radius b as it rolls on the outside of a circle of radius a. The cardioid [Fig. 11-41 is a special case of an epicycloid. Fig. 11-8 GENERA& 11.19 HYPOCYCLOID Parametric equations: z = (a - b) COS@ + b COS Il = (a- b) sin + - b sin This is the curve described by a point P on a circle of radius b as it rolls on the inside of a circle of radius a. If b = a/4, the curve is that of Fig. 11-3. Fig. 11-9 TROCHU#D 11.20 Parametric equations: x = a@ - 1 sin 4 v = a-bcos+ This is the curve described by a point P at distance b from the tenter of a circle of radius a as the circle rolls on the z axis. If 1 < a, the curve is as shown in Fig. 11-10 and is called a cz&ate c~cZOS. If b > a, the curve is as shown in Fig. ll-ll If and is called a proZate c&oti. 1 = a, the curve is the cycloid of Fig. 11-2. Fig. 11-10 Fig. ll-ll SPECIAL PLANE CURVES 43 TRACTRIX 11.21 PQ x Parametric equations: u(ln cet +$ - COS#) = y = asin+ This is the curve described by endpoint P of a taut string of length a as the other end Q is moved along the x axis. Fig. 11-12 WITCH 11.22 Equation in rectangular 11.23 Parametric equations: coordinates: OF AGNES1 u = 8~x3 x2 + 4a2 x = 2a cet e y = a(1 - cos2e) Andy -q-+Jqx In Fig. 11-13 the variable line OA intersects and the circle of radius a with center (0,~) at A respectively. Any point P on the “witch” is located oy constructing lines parallel to the x and y axes through B and A respectively and determining the point P of intersection. y = 2a FOLIUM 11.24 OF DESCARTRS Y 3axy \ Parametric equations: 1 x=m y = 11.26 Area of loop = $a2 11.27 Equation of asymptote: 3at 1 3at2 l+@ \ x+y+u Z Fig. 11-14 0 INVOLUTE il.28 Fig. 11-13 Equation in rectangular coordinates: x3 + y3 = 11.25 l OF A CIRCLE Parametric equations: x = ~(COS+ + @ sin $J) I y = a(sin + - + cas +) This is the curve described by the endpoint P of a string as it unwinds from a circle of radius a while held taut. jY!/--+$$x . Fig. Il-15 I 44 S 11.29 E i r q (axy’3 + P 11.30 e x (bvp3 1b = i t he u = 1e s z d e o u tu3 - 1 P of 6a so h t i n r /i h lF 1a + qa4 . a s z i 2 G 2 T I i t 2 a c c d hd s h i a c a p i a ih F u 1 s t b = u cf - u b a p ie ib s o t u A C a m r R N I V E A a i d t e n o i g 2 u 3= n o he 2 s wg lre yr t sos t a 2s n s[ a r e1e e lm l n. 1e F 1 F o i rS W i oa 6d 1 p pi g L t i m 1 v i r. -k o 1 7 eo e g - S p u v h o i cih d r c e a f nrt e t i o hf trp t is ws d i .r t s t a t ] n a c i g va1 - b s- a1 rc r t s e -h A aO e a 4 ba Pe s i ) OF CASSINI V so nFe i r1 1 i , a Zh U t ) tf the s eov v a nb o i 1s l~i 2 o _--\ ++Y !--- T [ e 1 a u C O 1 E by3 COS3 z 8 - b ys L ELLIPSE c r - b ( C OF Aff q = ( P EVOWTE = a c T c + y cn P 8 1c oo b n sr . 1a P X a F 1 i 1 g LIMACON 11.32 t P L c T c O b i t c i a c e o r = qb l - . 1 i 1 g - u+ a aa r tc y i gai p f a n s s os nFe i 1r 1 a r i g a1v -b >c a og .b s< -e a1 r c r F r 1 v id e ig 4 o ii h r. . t io os r in a0 t t aTn h c nt s. s 2 I9 e o1 = a 1 i t 0 f sr , . d - F 1 i 1 . OF PASCAL a l ej Q eo i 0to t a rp n Q ioo an c io eo dnn h l u o a s ph oe P rs f 1t oe Pc = vub 1h i Q u . ec i a ih F u 1 u [ s a1 17 F g - . 1 F 1 9 i 1 g- m hg r h SPECIAL PLANE C 11.33 Equation in rectangular y 11.34 Parametric OF CURVES Ll IS x 2a - 2 3 x equations: i = 2a sinz t ?4 =- 2a sin3 e COSe This is the curve described by a point P such that the distance OP = distance RS. It is used in the problem of duplicution of a cube, i.e. finding the side of a cube which has twice the volume of a given cube. SPfRAL Polar BS coordinates: ZZZ x 11.35 45 equation: Y = a6 Fig. 11-21 OF ARCHIMEDES Y Fig. 11-22 OO C FORMULAS APJALYTK 12 SCXJD GEOMETRY from Fig. 12-1 RlRECTlON 12.2 COSINES OF LINE ,lOfNlNG 1 = COS L = % - Xl ~ d ’ m = where a, ,8, y are the angles which line PlP2 d is given by 12.1 [sec Fig. 12-lj. FO!NTS &(zI,~z,zI) COS~ = Y2 d, Y1 n = AND &(ccz,gz,rzz) c!o?, y = 22 - - 21 d makes with the positive x, y, z axes respectively and RELATIONSHIP EETWEEN DIRECTION COSINES 12.3 or cosza+ COS2 p + COS2 y = 1 lz + mz + nz = 1 DIRECTION NUMBERS Numbers L,iVl, N which are proportional The relationship between them is given by 12.4 1 = L dL2+Mz+ to the direction cosines 1,m, n are called direction M m= N2’ dL2+M2+Nz’ 46 n= N j/L2 + Ar2 i N2 numbws. FORMULAS OF LINE JOINING EQUATIONS 12.5 These FROM x- x, % - Xl are also valid Y- ~~~~ Y2 - Y1 z - Y1 752 - ANGLE are also valid + BETWEEN if 1, m, n are replaced TWO LINES WITH 12.7 12.8 x - OF PLANE AND y = Y- 12.9 xz - Xl x3 - Xl 2 - Y1 m FORM Zl n IN PARAMETRIC 1 = FORM .zl + nt by L, M, N respectively. DIRECTION mlm2 THROUGH X x - Y =p=p I’&z,y~,zz) y1 + mt, EQUATION PASSING Xl 1 COSINES L,~I,YZI AND h , + nln2 OF A PLANE .4x + By + Cz + D EQUATION IN STANDARD ~&z,yz,zz) or 47 by L, M, N respeetively. COS $ = 1112 + GENERAL GEOMETRY 21 I’I(xI,~,,zI) x = xI + lt, These AND .z, if Z, m, n are replaced 12.6 ANALYTIC ~I(CXI,~I,ZI) OF LINE JOINING EQUATIONS SOLID = [A, B, C, D are constants] 0 POINTS Y1l 2 - .zl Y2 - Y1 22 - 21 Y3 - Y1 23 - Zl (XI, 31, ZI), (a,yz,zz), = (zs,ys, 2s) cl or 12.10 Y2 - Y1 c! - 21 Y3 - Y1 z3 - 21 ~x _ glu + EQUATION z+;+; 12.11 where a, b,c respectively. are the z2 - Zl % - Xl 23 - 21 x3 - Xl OF PLANE z intercepts ~Y _ yl~ + IN INTERCEPT xz - Xl Y2 - Y1 x3 Xl Y3 - Y1 - (z-q) FORM 1 on the x, y, z axes Fig. 12-2 = 0 48 FOkMULAS FROM E A z t N YB X” A N t A B C OQ P x - - Yn P z - F I 2 P T T ” R( S y O 2 w . t s i hc x = N I ( x,, + At, r oe T O + B F A N x R T E + C q+ D 3 d EO = yo + Bf, z = y R y O I N .z(j , oees s N M R T , r e ir n ,NC ~ , , B n e t FUM L U E + t , ct + A OQ R P O nA b o +rhB c +l C + eDx =e p 0ey at a z z nas o E I AZO + eM By L A ,+ Cz N + L ~ =A N0, s teh d e Ogh i nhro i F H ti mt et e pr O xP T , 1 k h S it GEOMETRY R Ax O+ By L + C.z P + L =A 0 a al u ep A 1 FU PD or C i ft ANALYTIC L E d o h n h , , . D SOLID n na A A A e L T N 1 1 2 x cas L + y COS,8 . i- z COSy w P a a p = p C/ y a h an x de Xb3 =1 ef On d a e r 4 p 0 i tr p r r a ,e,p e P xg y nz s s op l to eo t ,l , d . t e a ws m e a n n ei n d e et s Fig. 12-3 T R 22 1 = 2y = z w ( t t r t t x o t n s = x’ + O A F x’ x() y’ + yo d C c x - y’ ZZZ 1Y -r . o + O IN x ON PS ( T RV UF R DO RO A l J 5 Y0 z ( a h o c% r e [l oc , e rird oy i (o y z y a v n a c z’ ’ s r e e[ ? o , ) t e s i oa ’ ( y vz a n yt q c s0 ee r d ’ h , o t, o f 0h r e r t t ’ e o e wq i c o h l l z go y s t s ‘ J e.e ro, rw , o ) e ze e da e e o e io el e m X Fig. 12-4 d r~ r ’ t m r m nr .a l d i) d i . ] d ] d FORMULAS FROM TRANSFORMATION x = 1 2 = n + & + ANALYTIC OF COORDINATES + 1 n l+ y 1 y = WQX’+ wtzyf+ 12.16 SOLID 3 r INVOLVING ! x n n 2 x y ' z PURE ROTATION * % 1 p 3 49 GEOMETRY ? ' \ ’ % \ ' \ O i = Z +' m +I y' l= 1 + x = z +' m m ? T 1 X z y l +2 n 2 x p y . +z ? a x % y g \ Z \ \ z where the origins of the Xyz and x’y’z’ systems are the same and li, ' n 1 mm nl 1 2 m 2 l n 2 ; are 3, 3 the , , sdirection ; , , cosines of the x’, ,y’, z’ axes relative to the x, y, .z axes respectively. 3 1 , , , \ X ’ \ , Y , ?/‘ ’ ’ ~ ’ Y ,,/ X Fig. 12-5 TRANSFORMATION z 12.17 OF COORDINATES Z = + & + l& + I x. INVOLVING y X TRANSLATION ’ ’ y = miX’ + mzy’ + ma%’ + yo 2 or i = n + n l+ 2+ zX 3 y .' y! zz &z(X- Xo) + mz(y - yo) + n& - 4 x’ = - zO) d- y x I+ F’ \ \ = +t m z ROTATION ' X 4 -' X n AND n -d z t &(X - X0) + ms(y - Y& + 42 z ' l d y COORDINATES / / ‘X’ (r, 0,~) A point P cari be located by cylindrical coordinates (r, 6, z.) [sec Fig. 12-71 as well as rectangular coordinates (x, y, z). The transformation x 12.18 = between these coordinates is r COS0 y = r sin t or 0 = tan-i r (y/X) z=z Fig. 12-7 - Y 1 ' $ l Fig. 12-6 CYLINDRICAL / o / where the origin 0’ of the x’y’z’ system has coordinates (xo, y,,, zo) relative to the Xyz system and Zi,mi,rri; cosines of the la, mz, ‘nz; &,ms, ne are the direction X’, y’, z’ axes relative to the x, y, 4 axes respectively. y , \ b , , l ' " FORMULAS 50 FROM SPHERICAL [sec SOLID ANALYTIC COORDINATES GEOMETRY (T, @,,#I) A point P cari be located by spherical coordinates (y, e, #) Fig. 12-81 as well as rectangular coordinates (x,y,z). The transformation 12.19 between those = x sin .9 cas .$J = r sin 6 sin i$ = r COSe coordinates is x2 + y2 + 22 or $I = tan-l (y/x) e = cosl(ddx2+y~+~~) Fig. 12-8 EQUATION 12.20 OF SPHERE (x - x~)~ + (y - y# where the sphere has tenter IN RECTANGULAR + (,z - zo)2 = COORDINATES R2 (x,,, yO, zO) and radius R. Fig. 12-9 EQUATION 12.21 OF SPHERE CYLINDRICAL COORDINATES rT - 2x0r COS(e - 8”) + x; + (z - zO)e where the sphere If the tenter has tenter (yo, tio, z,,) in cylindrical is at the origin the equation 12.22 7.2+ 9 EQUATION 12.23 OF SPHERE rz + rt where the sphere If the tenter 12.24 IN has tenter IN and radius = Re SPHERICAL COORDINATES 2ror sin 6 sin o,, COS(# - #,,) the equation r=R R’2 is (r,,, 8,,, +0) in spherical is at the origin coordinates = is coordinates = Rz and radius R. R. FORMULAS E FROM OQ E SOLID ANALYTIC C tA (L FW U L 51 GEOMETRY E A TTx I S N N HI ~P a Eb T D O, ,S M, E N y O dI Fig. 12-10 E 1 C 2 w I L W Y . a I a sh b = a i b A I xL A X I 2 , f A L o re ee ac c ST I X PI H N I S T D S I 6 fs e l t e c mr r e l io r c y u rf ie o c i a o l . c - s t p d mi u a i s i t en l x u sd Fig. 12-11 E 1 2 C . L W AO 2 L A I z A XN J ST X IE P H I S T S 7 Fig. 12-12 H 1 2 $ . Y O z+ 1 2 $ O S P F 8 _ N H E E $ Fig. 12-13 E R E B I 5 2 FORMULAS FROM SOLID H Note orientation of axes ANALYTIC YO in Fig. T GEOMETRY S IF W H ’ O E E E 12-14. Fig. 12-14 E 1 2 P . L 3 A L R I A P 0 Fig. 12-15 H 1 2 Note xz --a2 orientation y2 b2 of axes = . PY _z 3 AP RE AR 1 C in Fig. 12-16. / - Fig. 12-16 X D If y = f(z), OE A D FF E t R N t ~ lim f(X+ ‘) - f(X) = d +h hX = G R a O where h = AZ. The derivative is also denoted by y’, dfldx called di#e~eAiatiotz. E O D f + A or f(x). l - fi ( ~ (r ~ ) ~ F E A Ax Ax-.O The process of taking a derivative N F t t E F k R is In the following, U, v, w are functions of x; a, b, c, n are constants [restricted if indicated]; e = 2.71828. . . is the natural base of logarithms; In IL is the natural logarithm of u [i.e. the logarithm to the base e] where it is assumed that u > 0 and a11 angles are in radians. 1 g(e) =3 1 &x) 0 = 3 c . 2 . 3 1 3 . 4 1 3 . 5 c u 1 & 3 1 & 3 1 $-(uvw) 3 = 1 1 1 1 = = du dx -H v 3 du _ ijii - du -=- 2 dv 3 du du dx 1 dyidu 3 - dxfdu z n c 6 . u 7 dv + dx vw- u(dv/dx) V & . uw. + v(duldx) dxfdu = v - 3 dx dy z uv- _ 3z & - V the derivative of y or f(x) with respect to z is defined as 13.1 1 l $ -(Chai? . . Z du dx gu gv g 8 9 1 0 . rule) 1 1 . 1 2 . 1 3 j 5 3 ) ) + E S 54 DERIVATIVES AL”>. 1 _. .i ” ., 13.14 -sinu d dx = du cos YG 13.17 &cotu = -csck& 13.15 $cosu = -sinu$ 13.18 &swu = secu tanus 13.16 &tanu = sec2u$ 13.19 -&cscu = -cscucotug 13.20 -& sin-1 13.21 &OS-~, 13.22 u -%< =$=$ = &tan-lu -1du qciz = 13.23 &cot-‘u = 13.24 &sec-‘u = & csc-124 [O < cos-lu dx < i C +& [O < cot-1 u < Tr] 1 du zi -I 1 < z-1 LJ!!+ 1 + u2 dx ju/&zi 13.25 sin-‘u < tan-lu 1 < t if 0 < set-lu d -log,u dx - = 13.27 &lnu 13.28 $a~ = 13.29 feu = ~l’Xae u = = -du if 0 < csc-l = I u < 42 < csc-1 u < 0 1 ig aulna;< TG d" fPlnu-&[v 13.31 gsinhu = eoshu:: 13.32 &oshu = 13.33 $ = tanh u < r a#O,l dx -&log,u < 7712 if 7712 < see-lu = + if --r/2 13.26 du lnu] = vuv-l~ du + uv lnu- dv dx 13.34 2 cothu = - cschzu ;j sinh u dx 13.35 f sech u = - sech u tanh u 5 sech2 u 2 13.36 = - csch u coth u 5 du A!- cschu dx dx dx DERIVATIVES 13.37 d - sinh-1 dx 13.38 -dx cash-lu 13.39 -tanh-1 13.40 -coth-lu d u d d dx u dx 13.41 = ~ = ~ = -- = -- 1 + if cash-1 u > 0, u > 1 if cash-1 u < 0, u > 1 - du 1 [-1 1 - u2 dx 1 _ -&sech-lu 55 du dx u2 71 = - d csch-‘u if sech-1 u > 0, 0 < u < 1 + if sech-lu 0, + if u < 0] d’y = as follows. f”(x) = y” f’“‘(x) LEIBNIPI’S Let Dp stand < u < 11 [u > 1 or u < -11 u-z 13.42 RULE FOR H26HER for the operator & uD% + D+.w) = so that II y(n) DERIVATIVES OF PRODUCTS = :$!& = the pth derivative D*u ; (D%)(D”-2~) of u. + ... 0 where 0n 1 ’ As special 0n 2 ‘... coefficients are the binomial [page 31. cases we have 13.47 13.48 DlFFERENT1ALS Let y = f(x) and Ay = f(x i- Ax) - f(x). 13.49 AY x2= where e -+ 0 as Ax + 0. Thus 13.50 If we call 13.51 the differential Then f(x + Ax) - f(x) Ax AY Ax = dx 1 = = f/(x) + e f’(x) Ax -t rzAx of x, then we define the differential dv = = j’(x) dx of y to be Then + wDnu 1 DERIVATIVES 56 RULES The rules for differentials are exactly FOR DlFFERENf4ALS analogous 13.52 d(u 2 v * w -c . ..) 13.53 d(uv) 13.54 d2 0 = udv = - d(sinu) = cos u du 13.57 d(cosu) = - sinu = du PARTIAL x and y. Then af lim az= derivative 2 13.59 with derivatives of higher order respect of f(x,y) is defined dx =Ax Extension and x constant, a2f of more than to be a df ax 0 ay 9 a2f -=ayiG ayax and its partial a af 7~ 0 ay a af 0 derivatives as = $dx + $dy dy = Ay. to functions is defined as follows. a1/2= df where to y, keeping a af TGFG' 0 The results in 13.61 will be equal if the function case the order of differentiation makes no difference. The differential of f(z, y) AY can be defined a2f -=--axay 13.61 derivative Ax AY'O @f -= a22 13.60 the partial lim fb, Y + AY) - fb, Y) - dY Partial we define I fb + Ax, Y) - f&y) Ax-.0 of f(x,y) _^.1 :“” _ i” DERf,VATIVES Let f(x, y) be a function of the two variables respect to x, keeping y constant, to be the partial du?dvkdwe... nun- 1 du 13.56 Similarly that udv d(e) 13.58 we observe 212 V 13.55 with As examples + vdu vdu = to those for derivatives. two variables are exactly analogous. are continuous, i.e. in such If 2 = f(z), or the indefinite then y is the function of f(z), integral Since the derivative derivative is f(z) and is called of a definite integral, see page 94. The process of finding In the following, u, v, w are functions of x; a, b, p, q, n any constants, e = 2.71828. . . is the natural base of logarithms; In u denotes the natural logarithm that u > 0 [in general, to extend formulas to cases where u < 0 as well, replace are in radians; all constants of integration are omitted but implied. 14.1 14.2 14.3 14.4 S S S S adz = uf(x) dx ax = a (ukz)kwk udv 14.6 14.7 14.8 Sf(m) S = WV - dx F{fWl dx undu = 14.10 = _(‘udx vdu S integration ” svdx * [Integration by parts, .(‘wdx * by parts] see 14.48. aSf(u) du - = F(u)2 S du = F(u) f’(z) S du where u = .&a+1 S du -= S S s n-t n#-1 1’ In u U ... 1 = = 14.9 f(x) dx . ..)dx For generalized 14.5 S if [For n = -1, see 14.81 u > 0 or In (-u) if u < 0 In ]u] eu du = eu audu = S @Ina& the anti-derivative denoted by if y = f (4 dx. Similarly f (4 du, then s S is zero, all indefinite integrals differ by an arbitrary constant. of a constant For the definition integration. whose = eUl”Ll -=- In a au In a ’ 57 a>O, a#1 f(z) an integral of f(s) $ = f(u). is called restricted if indicated; of u where it is assumed In u by In ]u]]; all angles INDEFINITE 58 du = - cos u cosu du = sin u tanu du = In secu 14.14 cot u du = In sinu 14.15 see u du = In (set u + tan u) = In tan csc u du = ln(cscu- = In tan; = #u - = j&u + sin u cos u) 14.11 14.13 14.16 14.17 14.18 14.19 14.20 14.21 14.22 14.23 14.24 14.25 14.26 14.27 14.28 14.29 14.30 sinu INTEGRALS I‘ I‘ I‘ .I' tanu = -cotu tanzudu = tanu cot2udu = -cotu sin2udu = - 2 = ;+T du = secu = -cscu S S S s ' co532u du S secutanu s cscucotudu S I‘ I‘ J U - sin 2u du = coshu coshu du = sinh u tanhu du = In coshu coth u du = In sinh u sechu du = sin-1 csch u du = In tanh; (tanh u) J sechzudu = tanhu 14.32 I‘ csch2 u du = - coth u tanh2u = u - s du u sin 2u 4 14.31 14.33 cosu u sinhu S S -In cotu) = sec2 u du * csc2udu I = tanhu or or sin u cos u) 2 tan-l - coth-1 eU eU INDEFINITE 14.34 14.35 14.36 14.37 14.38 S S S S s sinheudu = sinh 2u --4 coshs u du = sinh 2u ___ i- t 4 59 cothu u 2 - sech u csch u coth u du = - csch u = +(sinh = Q(sinh u cash u + U) u cash u - U) du ___ = u’ + CL2 14.42 s 14.43 u - = 14.41 14.40 = sech u tanh u du S S S 14.39 cothe u du INTEGRALS u2 = - du ___ @T7 s >a2 u2 < a2 = ln(u+&Zi?) 01‘ sinh-1 t 14.44 14.45 14.46 14.47 14.48 S f(n)g dx This = is called f(n-l,g - generalized f(n-2)gJ + integration f(n--3)gfr - . . . (-1)” s by parts. Often in practice an integral can be simplified by using an appropriate and formula 14.6, page 57. The following list gives some transformations 14.49 14.50 14.51 14.52 14.53 S S S S S F(ax+ b)dx F(ds)dx F(qs) 1 a = = dx = F(d=)dx = F(dm)dx = S S S S S fgcn) dx F(u) du transformation and their effects. where u = ax + b i u F(u) du where u = da f u-1 where u = qs F(u) du a F(a cos u) cos u du where x = a sin u a F(a set u) sec2 u du where x = atanu or substitution INDEFINITE 14.54 14.55 14.56 14.57 F(d=) I‘ F(eax) dx F(lnx) s = dz a F(u) s = apply x, cosx) tan u) set u tan u du F(a where x = a set u where u = In 5 where u = sin-i: s dx results F(sin s $ = F (sin-l:) Similar 14.58 = s I‘ s dx INTEGRALS dx e” du oJ F(u) for other = cosu inverse du trigonometric 2 functions. - du 1 + u? where u = tan: Pages 60 through 93 provide a table of integrals classified under special types. The remarks page 5’7 apply here as well. It is assumed in all cases that division by zero is excluded. 14.59 dx s ‘, In (ax + a) as= xdx ax + b 14.60 X = - a dx x3 14.62 S i&T-%$- 14.63 S z(az 14.64 S x2(ax 14.65 I‘ 14.66 S ~(ax 14.67 S ~(ax 14.68 Sm b - ;E- In (ax + 5) (ax + b)2 --ix--- 2b(az3+ (ax + b)s ---m---- 3b(ax + b)2 + 3b2(ax + b) _ b3 2 In (ax + b) 2a4 a4 b, + $ In (ax + b) dx = dx + b) = b) = dx x3(ax+ dx -1 + b)2 = a(ux + b) x dx + b)2 = a2(af+ = ax + b --- a3 = (ax + b)2 _ 2a4 x2 dx x3 dx 14.69 ~ S (ax + b)2 14.70 S x(ax dx + b)2 14.71 S xqax dX + by b)+ $ In(ax+ b) a3(ax b2 + b) 3b(ax + b) + a4 $ In (ax + b) bs + z aJ(ax + b) In (ax + b) given on INDEFINITE 14.72 14.73 14.74 14.75 14.76 dx s x3(az+ s dx ~(ax + b)3 s 14.79 14.80 14.81 S S S S 14.82 2b a3(az+ = b)2 + +3 In (as + b) b3 2u4(ax+ 6x2 = 2b2(u;a+ = 2b5(ux + b)2 - b)ndx n = -1, -2, b)2 - b3(ux + b) a4x2 4u3x b5(ux + b) - (ax + b)n+l = (n+l)a = If * (ax + b)n+2 ~- + b)n dx (n (ax + b)n+3 + 3)a3 = _ ' 2b(ux +. b)n+2 (n+ 2)u3 nZ-1*--2 t b)” dx + b2(ux + b)n+’ (nfl)u3 see 14.61, 14.68, 14.75. + b)n = xm(ux (m + nb + m+n+l x”‘(ux see 14.59. b(ux + b)n+l (n+l)u2 - (n + 2)u2 n = -1, see 14.60, 14.67. n = -l,-2,-3, S In (ax + b) b3(ax + b) xm+l(ax 14.83 - 2 by 2ux 2b3(ux + b)2 - = x(ux + b)ndx If b2 2a3(ax+ b) - 3b2 u4(ux + 6) + 5- dx x3(ux + bJ3 SX~(UX b) 2u + bJ3 (ax+ b4(:3c+ b dx x2@ If b4x a2(as + b) + 2a2(ax + b)2 = dx + bJ3 x(ax 3 3a(az + b) _ -1 = x3 dx ~(ax + b)3 61 -1 2(as+ b)2 = x dx (ax + b)3 dx ~ (ax + b)a (ax + b)2 + -2b4X2 = ~ S x2 S 14.77 14.78 b)2 INTEGRALS S xm(ux mfnfl n + b)n+’ + 1)~ -xm+l(ux+b)n+l (n + 1)b _ mb (m + n + 1)~ .f + xm--l(ux (n S m+n+2 + 1)b + b)n-1 xm(ux dx + b)“dx + b)“+’ dx 62 INDEFINITE 14.89 14.90 14.93 = xd-6 s 14.91 14.92 dzbdx s dx x%/G s “7 = dx 2(3a;z; 14.96 14.98 dx = &dx 2d&3 X &T” s X+GT3 = dx = t2;$8,, .(‘ Xm x(ax - = -(ax + b)3/2 (m - l)bxm-’ + b)““z (as +xbP”2 (ax + b)m’z x(ux - x-l:= X~-QL-TTdX c2;“+b3,a s = dcv dx X2 dx + b)m/2 1) s x--l:LTT >T gm--1 _ (2m - 5)a (2m - 2)b s 2b(ux - 2(ax + b)(m+s)lz u3(m -I- 6) ~(CLX + b)““z m = = 2(mf 2(ax + b)(“‘+Q/z a2(mf4) = = dx + dx - 4b(ux + b)(m+4)/2 4) + 2b2(ax a3(m+ (ax + b)(m-2)/2 + b s (ax + b)(m+2)‘2 bx (m - Z)b(ax _ + b)(m+z)/z aym + 2) + b)(“‘+2)‘2 2) u3(m+ dx X (ax + b)m’2 +z 2 + b)(m-2)/2 ’ INVOLVfNC S S 1 5 X x(ax dx dx + b)(“‘--2)/z c&z + b AND p;z! + q >:“: dx 14.105 14’109 b)3’2 dx 2(ax + b)(“‘+z)lz a(m + 2) INTEGRALS 14.108 + (m-l)xm-’ = z2(ax + b)m’2 dx S S _ (2m - 3)a (2m - 2)b s (as = c (ax + b)m’2 dx s dXGb &&x5 dx Xm l/zT-ii -----dx s [See 14.871 X&iZT 2mb (2m + 1)a s - \/azfb - s 14.107 s (m - l)bxm-1 xmd= s (2m + 1)~ = dx 14.102 14.106 dx +; 2LlFqz s [See 14.871 x&zz &zTT = s 14.104 dx + b x2 14.100 14.103 + 8b2) ,,m3 s s 14.99 14.101 ;$a;bx ‘&zT J &iTx 14.97 2b’ l&a@ 2(15a’x2 = 14.94 14.95 INTEGRALS (ax + b)(w x dx . (‘ (ax + b)(px S S j- + d + d dx (ax + b)2bx + d xdx (ax + b)2(px + 4 x2 ds (ax + b)z(px + q) = = & g In (ax+ (bp - aq;&ux+ b) - b) + (b- % In (px+ ’ ad2 q) b(bp ,Z 2uq) In (uz + b) INDEFINITE 14.110 dx (ax + bpqpx I’ + qp -1 (Yz - l)(bp = INTEGRALS 63 1 - aq) (ax + b)+l(pz 1 + q)“-’ + a(m+n-2) ax + b -dds s PX + Q 14.111 = 7 dx (ax + bpqpx s -1 (N - l)(bp - (ax (px uq) + + bp+’ q)“-l + (x-m - va s 1 (ax 14.112 + bp (px+ s q)n dx -1 = (m I 14.113 S 14.114 s -E!C&.Y d&zT dx = + q)n-1 + yh(px+q) - m (ax + bp - (n--:)p l)p i { (px + q)n-l (ax + ap (pxtqy-1 + - m@p - aq) s ,E++q;!Tl dx > (ax + b)m- 1 (px+ 4” dx > (ax + by-1 \ (px + qy- l dx1 S mu 2(apx+3aq-2bp)Gb 3u2 dx (Px + 9) &ii-G 14.115 14.116 14.117 Jgdx = (px + q)” dn~ s = S S = = (n - l)(aq = S, + q)n-l + 2n(aq - W (2n + 1)a (2n + 1)u -&m (n - + (Px + q)” dn 2(n ‘“^I),;)” + qy- l + 2(n ” 1)p s INVOLVING ds bp) s * (px + q)“s l dx &ii% 1 l)p(pz INTEBRAES 14.120 - bp)(px 2(px + q)n &iTT da 14.119 b - aq (2n + 3)P s daxi-b -bx + dn dx &zTiT Smdx I (2n + 3)P dx (px + 9)” &z-i 14.118 2(px + q)n+ l d&T? dx dx (px + qp-’ AND ~GzT J/K &ln(dGFG+~) dx ZI (ax + b)(w + q') i 14.121 xdx (ax + b)(px = + q) dbx + b)(px UP + 4 b + w --x&T- dx (ax + b)(w + q) dx dx (px + q)n-1 &-TT INDEFINITE 64 INTEGRALS dx 14.122 (ax + b)(px + q) dx . 14.123 .(' j/sdx = = (ax + b)(px + 4 ‘@‘+ y(px+q) + vj- (ax+;(px+q) 2&izi 14.124 (aq - W d%=i lNTEGRALS 14.125 s--$$ = $I-'~ 14.126 J-$$$ = + In (x2 + a2) 14.127 J$$ = x - 14.128 s& = $ ‘4-l J x2(x?+ 14.131 J x3(x?+a2) 14.132 J (x2d;Ga2)2 14.137 14.138 ($2) - $ln(x2+az) +3 tan-l: 2a2(xf+ S 14.140 S (~2 14.141 S dx x(x2 + a2)” . (x2+ a2)" -~ x -- 2:5 tan-l: 2a4(x2 + a2) 1 2a4x2 1 2a4(x2 + u2) 2n - 3 + (2n- 2)a2 X = 2(n - l)a2(x2 + a2)%-* xdx S dx (x2 + a2)n-1 -1 2(n - 1)(x2 + a2)n-1 + a2)n= dx 1 2(12 - l)a2(x2 + uy--1 = xm dx dx S x9z2+a2)n + &3 tan-': a2) --- 1 a4x dx S x2(x2 + c&2)2 = dx + a2)2 = S x3(x2 (x2d+za2)n 14.143 1 2a2x2 -= 14.139 14.142 six = = x’ + a2 a tan-13c a --30 INVOLVtNO S = = xm--2 dx (x2 + a2)n-l - a2 + $ S dx 1 2 S 33x2 + a2)n--1 S x(x2 + a2)n-1 x*--2 dx (x2 + a2)" -- 1 a2 S dx xme2(x2 + a2)” INDEFINITE :INTEORAES I. 14.144 14.145 s ~ x2 - a2 xdx 14.147 s m-- 14.150 14.151 14.156 14.157 14.158 s x2(x2 - a2) = s x3(x2-a2) s (x2?a2)2 s (x2 - a2)2 s (x2--2)2 dx dx 14.162 = __ 1 2a2x2 = 2a2(sta2) = -1 2(x2-a2) = 2(xFTa2) = 2(x2 - a‘9 xdx Lln - z ~~3 ( > x2 dx ' + -a2 x3dx (,Zya2)2 &ln + i In (x2 - a2) dx s x(x2 - a2)2 s x2(x2-a2)2 = dx S S = dx - --- 1 xdx = dx u2)n - --x $5'" 2n - 3 s (2~2 - 2)a2 dx (x2 - a2p- 1 -1 2(n - 1)(x2 - a2)n--1 S - = =S S --a?)" S S x(x2 + 2(n - 1)u2(x2 - a2)n-1 a2)n (X2-a2)n 2a4(xi-a2) 2~~4x2 = dx (x2 - -- = x3(x2-a2)2 s 14.161 + $ In (x2 - a2) dx x(x2 - a2) = 14.159 14.160 $ s 14.154 14.155 ; Jj In (x2 - ~22) x3 dx 14.152 14.153 z2 > a2 x2 dx s n-- 14.149 = 65 ix2 - a’, 1 - a coth-1 or m= 14.146 14.148 INVOLVlNO dx * INTEGRALS -1 2(n - l)dyx2 - dy-1 x77-2 dx xm dx - 1 az S x(x2- S - u2p-S a? a2)n--1 dx xm--2 dx (x2 (x2-a2)n-1 dx Xm(X2qp= 1 dx ,z xm-2(x2 + a2 (x2-a2)n 1 xm(x2- dx u2)n-l INDEFINITE 66 tNVOLVlNO IWTEGRALS 14.163 S ~ dx a2 - x2 14.164 S __ a2 - x2 14.165 S g-z-p- 14.166 Sm 14.167 S x(a2 - 22) 14.168 S 22(d = = ---2 dx S - S $ In (a2 - x2) = 22) 22 x3(,Ex2) = -&+ &lln ( dx 22> - 5 2a2(a2 - x2) = 2(a2--x2) = 2(Lx2) - a2 2(&-x2) + i In (a2 - x2) 1 x dx (a2 - __ a2 = x2)2 S 22 dx (&-x2)2 14.173 S (CL2- x2)2 = 14.174 S 14.175 S 14.176 S 14.177 S (a2 -dx x2)n S (a2 - x2)n = 14.179 S x(a2 14.180 S (,2-x2p 14.181 i tanh-I$ dx 14.172 14.178 xz = = - a+JZ2 In 2 ( ~~ - ~ a4x -1 = f a2&SiZ 2a2x2> x - a4&FS - 3 2a4&FiZ 3 + s5ln a+&-TS 2 INDEFINITE 68 14.203 14.204 14.205 14.206 14.207 14.208 14.209 14.210 14.211 14.212 14.213 S S S S S S S (x2 + x(x2 a~)312 + dx dx u2)3/2 x(x2 = + 3&q/~ u2)3/2 4 (x2 = + + ~2)3/2 ds = x3(x2 + u2)3/2 dx = u2)5/2 x(x2 + u2)5/2 _ + u2)3/2 dx (22 = + (x2+ ds = u2)3’2 ~2(~2 + U2)3’2 x3 dx = (x2 + - - -- u4x@TF2 ~~ln(~+~2xq 16 ~2)5/2 CL+@-TT? + u2@T2 - x a2)3/2 a3 In x > + 3a2 ln (x + q-&-T&) 2 U-kdlXS 2x2 x S In (x + j/277), S u2)3/2 5 2 s ~ x2 dx &G=z + - _ (x2 + u2)3’2 + 3x- x2 (x2 + 24 ~247’2 3 X (x2 + UT’2 u2x(x2 6 7 (x2 +~a4ln(x+~2TTq 8 5 x2(x2 ’ + INTEGRALS 5 P--x-a = 2 x3dx s G= 1 5 asec-l x2- u2 X I U I 14.214 14.215 14.216 14.217 14.218 14.219 14.220 @=2 S = x3(& s dndx S Sx2@73 S = xda~dx ,“d~ s-dx + k3 see-l xU I I 2u2x2 x = dx = dx = 7 x2-a (x2 _ -$ln(x+dm) u2)3/2 3 x(x2 cAq/m~ - a2)3/2 + 4 cx2 - ~2)5/2 + 8 ~2(~2 - 5 = dm- ~2)3/2 3 a see-l I;1- -- “8” ln(x + +2TS) > INDEFINITE INTEGRALS 69 14.224 14.225 14.226 14.227 14.228 14.229 S 22 dx S S S S (~2 - a2)3/2 = x3 dx (22 - a2)3/2 = -~ -1 a2@qp = dx z2(s2 - lJZ2 a2)3/2 = -_ x3(x2 - (~2 - x a+iGZ &)3/z & x(x2 - a2)3/2 4 - z x(52 - a2)3/2 dx (x2 = - 14.236 x2(99 - a2)3/2 x3(52 - a2)3/2 S dx 2(x2 - = a2)5/2 14.238 dx (22 - = a2)7/2 a2x(x2 + - 14.240 az(x2 - In (5 + &372) a4x&FS 16 - a2)5/2 @2 _ a2)3/2 S S S X (x2 _ a2)3/2 dx = tx2 - a2)3'2 - a2da + a3 set-' c 3 dx = - (x2 ,jx = _ (x2;$33'2 I -xa2)3'2 + 3xy + "y _ ia I ln (1 + da) X2 @2 - a2)3/2 _ ga sec-' x3 Sda& = lNVC)LVlNG <%=?? sin-l: xdx ____ = -dGi ___x2 dx ).lm x3 dx ____ S sjlzz [El a x 7 a-x = - = (a2 - x2j312 _ 3 2 a2dpz3i a+&KG X 14.243 : Ia I 5 7 14.241 14.242 a2)3/2 24 @G? 14.239 see-l + :a4 8 + 6 1NtEORAtS 14.237 3a2x&iF2 2a5 a!2)5/2 S 14.235 3 -- 5 14.233 14.234 3 = * I 2 IaI - a4x 1 a2)3/2 S 14.232 1 -- a3 set-1 dx 14.230 14.231 - dx2aLa2 GTZ- dx 4x2 - a2P2 + ln(x+&272) &z dx Sx743x5 -~ 2a2x2 - &3 In a + I/-X; 5 + $ In (z + $X2 - a2 ) INDEFINITE 70 14.244 14.245 + xqTF-2 s dx x+s-?5 s 14.249 &AT s ~ x2 14.250 S~ 14.252 14.253 14.254 14.255 14.256 14.257 14.258 14.259 14.260 14.261 dx - x(a2- = _ a2(a2- = x2 dx (a2 ex2)3/2 = * x3 dx (a2-x2)3/2 = daz_,Z+d& g a a+@=-2 ( 1 _sin-1: x a + 2x2 xdx (,2mx2)3/2 sin-l 8 x2)3/2 >2 -~ x3 + g 3 ~~-CLln = a+@=2 &In ( X > X > X .3Lz2 &A? - x2)3/2 - a2&z = 2 sin-l- dx a a+&GS i31n ( diFT1 dx x2(a2-x2)3/2 S a2xF 8 dx= _~ x(a2- + 5 dx @2ex2)3/2 s x2)3/2 4 (a2 - x2)5/2 = Wdx= S S S S S -x2)3/2 3 = @=z -dx S -ta2 = x3dmdx s 14.248 14.251 sin-l: s 14.246 14.247 $f INTEGRALS = x 614x dx a4&iGz -1 x3(a2-x2)3/2 = 3 + x(a2 - &51n 2a4&FG 2a2x2@T2 S($2 - x2)3/2 dx= Sx(&-43/2& = Sx2(& - &)3/2 ,&= S x2)3/2 dx= - + 3a2x&Ci3 8 x2)3/2 4 a+@? ( X > ia4 sin-l: + (a2-x2)5/2 s (a2 -xx2)3'2 14.263 S 14.264 s (a2- x2)3/2 - x2)5/2 + a2x(a2--2)3/2 6 x2)7/2 = (a2 -3x2)3'2 dx = -(a2-x2)3/2 + _ a2(a2- = + x2)5/2 a2dm 3x&z% - 2 a3 ln _ (a + y) ;a2sin-1~ a _ “7 + gain a+&PZ X . + igsin-l; 5 _ _ ta2 ;x;2)3’2 a6 16 X dx a4xjliGlF 24 7 dx x2 la2 -x;2)3’2 x(a2 (a2 - x3(&2 - 14.262 5 > x INDEFINITE INTEOiRALS INTEGRALS 71 ax2 f bz + c LNVULWNG 2 14.265 s &LFiP dx bx + c ax2+ = 2ax + b - \/b2--4ac $-z If results 14.268 14.269 14.270 14.271 14.272 14.273 14.274 14.275 s xdx ax2 + bx + c = & s x2 dx ax2 + bx + c = --X a s ax2-t x”’ dx bx+c S s dx + bx + c) xz(ax2 S S S S S xn(ax2 ax2 + bx + c ( dx + bx + c) 14.277 14.278 14.279 X2 1 = -(n - l)cxn-l -- b c b 2c -- ( ax2 + bx + c ) &ln 2ac ~“-1 dx ax2 + bx + c I b2 - 2ac 23 x”-l(ax2 (4ac - x dx (ax2 + bx + ~$2 = - (4ac - = 2c (b2 - 2ac)x + bc f4ac - b2 a(4ac - b2)(ax2 + bx + c) = - (2n - m - l)a(ax2 2ax + 6 2a +b2)(ax2 + bx + c) 4ac - b2, f x”’ dx + bx + c)n--l (n - m)b (2n - m - 1)a s dx ax2 + bx + c S xnp2(ax2 dx ax2 + bx + c S S dx ax2 + bx + c (m - 1)~ (2n-m1)a s ’ ~“‘-2 dx (ax2 + bx + c)n xm-1 dx (ax2 + bx + c)fl +bx+c)n= $S(a392f~~3~~)“-I - $S(ax:";;:!+ -iS S S S S S S .I S Sx~-~(ccx~ s x2n--1 dx (m2 dx x(ax2 + bx f x2n-2 dx (ax2 + bx -t- c)n c)~ dx x2(ax2 f bx + c)~ xn(ax2 dx + bx + c) dx ax2 + bx + c b -4ac xWL-l (ax2 + bx f CP S dx -- a + bx + c) c S = $2 dx use S dx (ax2 + bx + c)2 (ax2 + bx + c)2 b = 0 dx ax2 + bx + c J _ 1 cx > bx + 2c b2)(ax2 + bx + c) If dx ax2 + bx + c s x”-2 dx -- b ax2 + bx + c a s 60-61 can he used. dx ax2 + bx + c b2 - X2 $1, = a :i on pages + T C -- (m-l)a = s &ln(ax2+bx+c) x?T-l = dx + bx + c) x(ax2 In (ax2 + bx + c) - $ - 14.276 i( 2ax + b + dn b2 = 4ac, ax2 + bx + c = a(z + b/2a)2 and the results on page 64. If a or c = 0 use results on pages 60-61. 14.266 14.267 In dx f bx $ 1 -2c(ax2 + bx + c) = 1 = - cx(ax2 + bx + C) b 2c -- 3a c dx +$ (ax2 + bx + c)2 dx -- 2b (ax2 + bx + c)2 c 1 c)~ = -(m - l)cxm-l(ax2 _ (m+n-2)b (m - 1)~ + bx + c)n--l - (m+2n-3)a (m - 1)c dx + bx + c)n dx x(ax2 + bx + c) x(6x2 dx + bx + c)2 x-~(ux~ dx + bx + c)” 72 INDEFINITE INTEGRALS In the following results if b2 = 4ac, \/ ax2 + bx + c = fi(z + b/2a) and the results be used. lf b = 0 use the results on pages 67-70. If a = 0 or c = d use the results $ ax 14.280 = ax2+bx+c a In (2&dax2 -&sin-l on uaaes 60-61 can on pages 61-62. + bx + e + 2ax + b) (J;rT4ic) or & sinh-l(~~~c~~2) 14.281 14.282 x2 dx s, ax2+bx+c 14.283 dx 14.284 = - ax2 + bx + c 14.285 ax2+bx+cdx (2ax+ = 14.286 b) ax2+ 4a bx+c +4ac-b2 16a2 14.288 14.289 14.290 14.291 14.292 14.293 = 6az4a25b bx+c (ax2 + bx + c)~/~ + “““,,,“” J d ax2f bx+c dx ax2+bx+c S“ X ax2+bx+c X2 S S ax2 Scax2 x2 S+x2+%+c)3’2 = cdax2 : bx+e+: SJ s S, S dx (ax2 + bx + c)~‘~ 2(2ax + b) (4ac - b2) x dx (ax2 + bx + dx + bx + x2(aX2 ax2 + bx + c 2(bx + 2c) ~)3’~ (b2 - 4ac) \/ 43’2 a(4ac - b2) + bx + c (2b2 - 4ac)x + 2bc dx + bx + c)~‘~ = ax2 + 2bx + c - &?xdax2 + bx + c + 2c2 (ax2 + bx + c)n+1/2dx = dx 1~x2 + bx + c -- 3b 14.295 ax2 + bx + c axz+bx+c x 14.294 . (ax2 + bx + c)3/2 b(2ax + b) dp ~ ax2+ 3a 8a2 dx - b(4ac - b2) = 14.287 dx 8a ax2+bx+c S +ifif+ dx (QX~ axz+bx+c b2 - 26 2ac Scax2 dx + bx + 43’3 dx x ax2+bx+c (2ax + b)(ax2 + bx + c)n+ 1~2 4a(nf 1) + (2% + 1)(4acb2) (a&+ 8a(n+ 1) S bx + c)n-1’2dx 4312 . INDEFINITE 14.296 14.297 S s’(ax2-t x(uxz + bx + C)n+l/z dx = (ax2 + bx + C)n+3'2 cq2n+ 3) 2(2ax dX bx + ~)n+l’~ = dx + bx + ++I’2 x(ux2 s 73 . _ $ (ax2 + bx + ~)~+l’zdx s + b) (2~2 - 1)(41x - b2)(ax2 + bx + +--1/z 8a(n1) dx (2~2 - 1)(4ac - b2). (‘ (61.x2 + bx + c)n--1E + 14.298 INTEGRALS 1 = (2~2 - l)c(ux’J + bx + c)n--1’2 dx JPJTEORALS Note 14.299 14.300 14.301 14.303 14.304 14.305 that 14.308 14.309 14.310 dx ~ s involving = + X3 x2 - ax + c-9 + 1 (x + c-42 = __ = x3 + CL3 $ In (x3 + ClX s .( s x2(x3 u3) = '(z3yu3)2 ' 1 -+ u3)2 %(X3 + a3)2 s x2(x3 dx + + &In 14.312 = 1 - -- = CL62 xdx + u4 = x4 S x3 dx ~ x4 + a4 3u5fi (x + a)2 x2 xm-3 - m-2 a3 ~ x3 -1 1)x+-’ c&3@- - 1 In 4u3fi & -L 4ufi 14.314 2x-u a \r 3 x2 - ax + a2 2x + = tan-l In -4-.--- 3u6 s 3a6(x3 + u3) xm-2 - = a3) = ~ tan-l 3utfi3 tan-’ 3 &,3(x3 + as) = u3)2 x4 + a4 S 2 - 1 u3 dx + F - 3(x3 + US) dX I' +3tanP1 x2 - ax + a2 + &n a3) x2 + axfi x2 - uxfi x3 x dx + u3 [See 14.3001 dx + a3 dx -2 JNTEORALS 14.311 - (x + a)2 = x(x3+u3) (xfcp x2 3a3(x3 + = x-’ dx s G-4 In 3u3(s3 +a3) dx x9x3+ dx s 1 s s 43 x2 - ax + u2 1 - x2 dx (x3+ + 2x-u 7 tan-l X = s x3 a by --a. 14.302 ~3) a32 xdx (x3 + c&3)2 = ~ (ax2 + bx + c),+ l/i 3ea+ a3 a\/3 x2 dx s x3 - u3 replace 2”~ s x2 - ax + cl2 u3 ~ x dx x3 + a3 s 14.306 14.307 for formulas JNVOLVING dx -- x(ux2 + bx + c)“-~‘~ s u3 s + xn-3(x3 INVOLYJNG + a2 c?+* a* 1 -- u3) tan-1 2aqi + c&2 -!!tC-LT 22 - CL2 $ x2 - axfi + a2 x2 + ax& + u2 $ In (x4 + a4) -- 1 2ckJr2 tan-1 -!!G!- 6 x2 - a2 a 74 14.315 14.316 INDEFINITE INTEGRALS dx x(x4 + d) s s dx x2(x4 14.317 + u4) +- = 1 2a5& dx x3(x4 . + a4) = 14.322 14.323 14.324 14.325 14.326 14.327 14.328 14.332 dx .I’ x(xn+an) fs = S xm dx (x”+ c&y I’ dx xm(xn+ an)’ xn + an ‘, In (29 + an) = s xm--n dx (xn + (yy-l 1 = 2 x”’ dx s-- (xn - an)’ 14.333 14.334 &nlnz = = an S s - an s x”’ --n dx (xn + an)T dx xm(xn + IP)~--~ xm--n dx (~“-a~)~ 1 an -s xm--n dx + s (xn-an)r-l = S dx = m..?wcos-~ !qfzGG m/z dx xmpn(xn + an)r tan-l CiXfi ___ x2 - a2 INDEFINITE 14.335 xp-1 dx INTEGRALS 75 x + a cos [(2k - l)d2m] 1 ma2m-P I‘----=xzm + azm a sin [(2k - l)r/2m] x2 + 2ax cosv where 14.336 xv- 1 dx X2m s - m-1 1 a2m = 2ma2m-P PI2 cos kp7T In km sin m x (’ 2* ka x - tan-l + a2 a cos (krlm) a sin (krlm) k=l + . 2ax ~0s; m-1 1 where x2 - m k=l -&pFz 14.337 + a$! 0 < p 5 2m. {In (x - 4 + (-lJp > ln (x + 4) 0 < p 5 2m. x2m+l xP-ldX + a2m+l 2(-l)P--1 (2m + l)a2m-P+1k?l = m sin&l x + a cos [2kJ(2m a sin [2krl(2m + l)] + l)] m (-1p-1 (2m + l)az”-“+‘k?l - tan-l cossl In x2 + 2ax cos -$$$+a2 + (-l)p-l In (x + a) (2m + l)a2m-P+ l where 14.338 O m + s 14.340 sinaxdx = = %sinax+ 14.342 = (T- siyxdx = 14.345 14.346 14.347 = -$)sinax sin ax s dx + a S Ydx = = sin2 ax dx + (f-f&--$) cosax 5*5! X S sin ax xdx S sin ax s cos ax 3*3! dx sin ax ax-(aX)3+(a2)5-... s sinx;x lNVOLVlNC3 x cos ax ___ a y- 14.341 14.344 2ax cos -- cos ax a = ‘ssinaxdx 14.343 x2 - O sdx S’ sin ax +n-2 a(n - 1) co@--I ax n-l -s .-AL= s xm sin ax mxm--l +a a2 = [If p = *q see 14.388 and 14389.1 E In 1 xm cos ax dx s dx p + q cos ux P 42 - P2 s q2 I WdFT2 14.394 - P) dn7 ap = -PI d(q + dl(q -- [If p = *q see 14.384 and 14.386.1 P tan ax w/FS + dx p2 - q2 cos2 ax + d(q + dl(q q sin ax - $)($I + q cos ax) 1 s p2 + q2 cos2 ax 14.393 In + 4 tan ?px see 14.440.1 see 14.429.1 n-1 -s xdx cosn-2 ax INDEFINITE 14.408 INTEGRALS 79 s 14.409 s cos ax(1 dx C sin ax) = . sinax(1 dx 2 cosax) - S dx sin ax rfr cos ax 14.410 14.411 14.412 14.413 14.414 s L a& sin ax dx sin ax * cos ax = I cos ax dx sin ax f cos ax = 2: sin ax dx p+qcosax = 14.416 cos ax dx p+qsinax = 14.417 14.4 18 1 f sin ax) 2a(l 1 * cos ax) k = 14.415 2a(l i - $ $ In tan T $a In (sin ax * cos ax) + +a In (sin ax C cos ax) In (p + q cos ax) In (p + q sin ax) S sin ax dx (p + q cos axy = aq(n - l)(p 1 + q cos axy-1 s cos ax dx (p + q sin UX)~ = aq(n - l)(p -1 + q sin UX)~--~ dx p sin ax + q cos ax 14.4 19 = adi+ q2 In tan ax + tan-l 2 (q/p) 2 dx p sin ax + q cos ax + T 14.420 p + (r - q) tan (ax/z) a&2-p2-q2tan-1 = T2 1 ln aVp2 + q2 - ~-2 If 14.421 I‘ r = q see 14.421. If q + p tan 5 = ax + tan-’ 2 = 1 In 2apq - sinmP1 14.425 I‘ (q/p) dx p2 sin2 ax + q2 cos2 ux dx p2 sin2 ax - q2 COG ax 14.424 q2 dp2 + q2 - r2 + (r - q) tan (ax/2)p + dp2 + q2 - r2 + (T - q) tan (ax/2) dx S - p - psinax+qcosax*~~ 14.423 p2 ~~ = p2 i- q2 see 14.422. dx p sin ax + q(1 + cos ax) 14.422 - sinm uz COP ax dx p tanax - q p tan ax + q ax co@+ l ax m-l +a(m + n) mfn sinm-2 ux cosn ax dx = sin” + l ax cosnwl a(m + n) ax + n-l m+n s sinm ax COS”-~ ux dx 80 14.426 INDEFINITE _r’s dx = INTEGRALS sinm-l ax a(n - 1) co??--1 ax - m-l -n-l sinm + 1 ax a(n - 1) cosn--1 ax m--n+2 n-l - sinme ax I a(m - n) cosnel ax - cosn-l ax a(n - 1) sinn--l 14.427 S Ed, ax a(n - 1) sinn--l COP-~ 14.428 S ax 14.430 14.431 14.432 14.433 14.434 14.435 14.436 14.437 14.438 14.439 S S S S tan ax dx 1 = -ilncosax tan3 ax dx = tan2 ax 2a + $ In co9 ax = edx dz= tan ax ydx s;;;” 2”zx dx S ‘;?&l,az dx m+n-2 n-1 S S dx sinm ax cosnw2 ax sinm-2 dx ax COP ux tamuzc ax x tarP + 1 ax (n + 1)a = 1 (ax)3 ;Ei 1 3 = I 2(ax)7 105 -2 tan ax + $ In cos uz - f a = p2 + 42 PX tan”-’ ax (n _ l)a + Q ah2 + q2) - S I . . . + 22922n- l)B,(ax)*~+' (2n + 1) ! 2*n(22n - 1)B,(ax)2n-1 (2n- 1)(2n)! ~(cLx)~ = dx + q tanax I (ax)5 15 (ad3 a~+~+~+-+ = tann ax dx s dx ilntanax = xtanzaxdx Sp z;;:;;z i In sin ax xtanaxdx s ‘-, lnsec tan ax a S S S s 1 = = tann ax sec2 ax dx s INVOLVING dx tanzax m-l m-n dx -1 mtn-2 + 1 a(m - 1) sinm--l ax ~0.9~~~ ux m-l INTtkRAlS 14.429 +- dx sic”;;z;x n-l ax c;;:;;x S S 1 + ~(72 - 1) sinmP1 ax cosn--l ax = sinm ux co@ a5 -- m-l 72-l ax I a(m - n) sinn--l dx m-l m-n .s _ m-n+2 -coSm+lax = f- sinme ax cos”-!2ax dx S In (q sin ux + p cos ax) tann--2 ax dx + *” + ... INDEFINITE 14.440 14.441 14.442 14.443 14.444 14.445 14.446 14.447 14.44% 14.449 14.450 14.451 14.452 14.453 14.454 14.455 14.456 14.457 14.458 cot ax dx s s s = = -- cot ax a cot? ax dx = - - = dx cot ax = +%dx qcotax set ax dx S S ax (n-1)a - cotn--2 ax dx i In (set ax + tan ax) = tan ax sec3 ax dx = set ux tan ax + & In (set a2 + tan ax) 2a se@ ax tan ax dx x secax = S x sec2 ax dx a = se@ ux na -sin ax a dx ydx ... cot--l S - dx - Q In (p sin ax + q cos ax) a(p2 + 92) p2’Tq2 - .** sin ax - g = S set ax S + -$ln -- = (2n-1)(2n)! sec2 ax dx S S a x cot ax = = 135 - - - 22nBn(ax)2n--1 ax = +1 (2n+l)! -~-!$%-i!?%..,- dx cotn ax dx 2w3n(ux)~~ ax a2 dx p+ ax ax 1 = x cot2ax S -iIncot = 1 In sin ax a -cotnflax (n + 1)~ = --a Incas zcotaxdx x cots ax 2a cotn ax csc2 ax dx sdx 81 i In sin ax cotzaxdx S S S S S S S S INTEGRALS = (ax)2 + (ax)4 + 5(ax)6 8 - 144 W2 lnx+T+-gg-f- = = 5(ax)4 E tan ax + 5 In cos ax E,(ax)2n +2 + Gl(ax)s 4320 **. + (2n+2)(2n)! + . . . + E,(ax)2” 2n(2n)! + .” + **’ INDEFINITE 82 14.459 14.460 dx S s dz P Q s p + q cos ax =x --- q + p set ax Q se@ ax dx INTEGRALS secne2 ax tan ax n-2 +n-1 a(n - 1) = se@--2 ax dx s ; 1NTEQRALS 14.461 14.462 14.463 14.464 14.465 s s csc ax dx csc2ax S csc3 s s 14.466 = k In (csc ax - -- ax dx = - csc CL5 2a csc cot + z 1 UX In tan T _ cscn ax na = a ,jx = $ ax .l 14.467 c&x -- cos ax = ar $ In tan 7 a CSC” ax cot ax dx - x = ax = dx csc r&x cot ax) cm az cot dx - INVOLVING + k$ + !k$ + . . . + 2(22n-’ - S S csc2 S ?%!!? dx = 1)B,(ax)2n+’ + . . . (2n + 1) ! f _ & + $? + !&I?$ + ... + 2’22’;;n-m1$$;‘2’- ’ + ... 5 14.460 14.469 14.470 x ax dx = - ~x = E-I? dx q + p csc ax s Q CSC” ax dx = S sin-1 14.473 14.474 Ed% = s sin-l (x/a) z & a dx = = = [See 14.3601 n-2 n-1 S csc”-2 ax dx IRZVRREiZ TR100NQMETRfC a x3 j- sin-l z+- z + a X&Z? 4 (x2 + 2a2) &K2 z + 9 (x/aj3 - sin-1 + (x/u) X 1 * 3(x/a)5 2.4.5.5 1 3 5(x/a)7 + 2*4*6*7*‘7 l l a-kdG2 - $l - 2x + 2dm X 2 14.476 fl&CtlONS ZZ + dm 2*3*3 dx +- sin-l 5 14.475 dx p + q sin ax = 39 sin-1 In sin ax S P 5 sin-l U S + $ lNVotVlN@ ‘xsin-lzdx 14.472 ax a CSC~-~ ax cot ax a(n - 1) - INTEORALS 14.471 cot sin-l z + ... “’ INDEFINITE 14.477 cos-1 :dx a .(‘ = zc,,-l~& x cos-1% - INTEGRALS @?2 = cos-ls _ xr a a 39 cos-l 14.479 : a ,& cos-1 (x/a) 14.480 x cos-;;xln) 14.481 = cos-1 fj ;lnx - dx = _ cos-1 (x/a) tan-1Edx 14.484 x tan-1 14.486 14.487 = Edx = x2 tan-1 z dx = tan-~(xiu) dx = - a &(x2+ (x/a) x &i72 - dx [See 14.4741 a+~~~ + iln z ( cos-1 xa)2 xtan-1E 2a2) + 9 x = -5 4 sin-1 = s (x2 - dx ds X 2x - cot-‘?dx 14.489 x cot-’ = a zdx 2dz&os-'~ zIn(xzfa2) a2) tan-1 (x/u)3 ; _ 32 cot-* (x/u) 14.491 X (x/a) cot-1 14.492 x2 s see-*z a x cot-l = 52 cot-’ ; dz x a 7 + ~(xla)5 _ -(x/a)772 + *.* z + % In (x2 + a2) 4(x” a2) cot-1 E + 7 + = ; dx = g In x - dx = _ tan-’ (x/a) dx [See 14.4861 X (x/a) cot-' X dx ! = 2 set-l z - a In (x + &?C3) x set-* z + a In (x + dm) o . 14.488 14.493 i?3 83 S x set-1 z dx x2 see-* f + x3 ,secelz s x2 see-1: a ds 0 < set-1 z < i = z 14.495 2 < i7 - = X3 i ysec-1 z + t < set-* 2 ax&F2 6 ax&2G3 6 - $In(x -t $ln(x+da) t < T + dZ72) 0 < see-1 i < set-11 i < g < T INDEFINITE 84 14.496 set-l (x/a) X .I’ dx = ;1nx dx = + ; + w3 _ see-l 14.497 set-l s (da) X2 14.499 s s * csc-1 2 dx a x csc-1: a x2 csc-1 5 < set-1 dx dx (x/a) xcsc-1: - -5 E + a 7 x-a 22 y csc-l % - 2 csc-l X ; csc-1 a - E , (dx)3 2-3-3 -5 14.506 s = _ dx (x/u) - csc-1 5 a z < 0 < ; dx -5 I 1 ’ 3(a/x)5 204-5.5 + 1 ’ 3 5(a/x)7 2*4*6*7-T l (x/u) = < csc-1; ... 0 < w-1 z < ; + ; < csc-1:< 0 ___ mt1 s Stan-l: - xm cot-1 f dx = -$+eot-l~ + -&.I'="" set-l mfl &Jsdz (x/u) 0 < s,1: < 5 i < set-l% < T 0 < csc-1 E < ; = xm+l see-1 (x/a) + - a m+l mS1 xm+l csc-1(x/u) m+l dx + - = xm see-1 z dx < 0 X x dx a ' x"'tzsc-1: < ; + = xm+l 14.508 < ,se-1; X (x/a) xm tan-1 < T < csc-1 0 < csc-1; Xlnfl I' t = X 14.505 < i 0 < csc-1; uln(x+~~) X2 2 csc-1 X sin--l ... = f dx X2 xm + ax _ csc-1 .s 1*3*5(a/2)7 2-4.6-7-7 0 < set-lz &ikS + aIn(x+@=2) X 14.502 + &GFG x csc -1: 3 CSC-~ + 1~3(cLlX)5 2-4-5-5 = X3 s * w-1 + . X x3 3 14.501 (x/u) . _ sec-lx(xiu) 1 14.498 INTEGRALS xm+l csc-1 mfl a m+1 = i I (x/a) ~ xm dx s d= S xm dx @qr -; tan-l eaz - jLjFp In eaz + &G& e” sin bx ds = eaz(a sin bx - b cos bx) a2 + b2 eaz cos bx dx = eQz(a cos bx + b sin bx) a2 + b2 xem sin bx & = xeaz(a si~2b~~2b xeax cos bx dx = xeax(a cos bx + b sin bx) a2 + b2 eaz In x dx = 14.523 S 14.524 S integer In (p + qeaz) = e”lnx --a S n = positive 3*3! ‘OS bx) _ ea((a2 S 14.521 if a ___ 1 2&G 14.518 - --ssdx n-l 1 adiG peaz + qe-a.% I taxj3 Z-2! + ;+ = dx n(n - 1)xn-2 a2 nxnel (n - 1)x”-’ = > xn--leaz a S + la;, - dx S a2 -eaz z S 14.515 a Pea2 --a S 14.514 %2-&+Z ( = = Fdx 1 a> X-- a ( s 14.513 85 e"" s s INTEGRALS 1 5 a S - b2) sin bx - 2ab cos bx} (a2 + b2)2 _ eaz((a2 - b2) cos bx + 2ab sin bx} (a2 + b2)2 dx eu sinn bx dx = e”,2s~~2’,~ eaz co@ bx dx = em COP--~ bx (a cos bx + nb sin bx) a2 + n2b2 in sin bx - nb cos bx) + + n(n - l)b2 a2 + n2b2 S n(n - l)b2 a2 + n2b2 S eu sin”-2 em bx dx cosn--2 bx dx 86 INDEFINITE INTEGRALS HWEOiRA1S 1NVOLVfNO 14.525 14.526 14.527 14.528 14.529 14.530 14.531 14.532 14.533 14.534 14.535 14.536 s 14.538 14.539 = S S S$Qx xlnx xlnxdx = xm lnx dx - $1 = 2 nx-4) --$ti 1 m+1 - lnx ( = 14.541 14.542 see 14.528.1 ;lnzx P 1+x dx J = x ln2x ~Inn x dx = -lP+lx s dx xln = x - lnnx [If In (lnx) = In x + 2x n = -1 + lnx ln(lnx) dx xlnnx = + $$ + s * . - n m = -1 see 14.531. S S S Inn-1 = x ln(x2+&) In (x2 - ~2) dx = x In (x2 - u2) xm+l = sinh ax dx x sinh ux dx x2 sinh ax dx + (m+3!)~~x x dx In (x2 + ~2) dx xm In (x2 f a9 dx .*a . + (m+2t)Iyx n xm+l Inn x -m+l m+1 = + l + (m+l)lnx xmlnnxdx S S S see 14.532.1 In (lnx) = xm dx 2x lnx nfl X S Sf& S S S - - In (x2* m+l INTEGRALS 14.540 [If m = -1 s If 14.537 lnxdx Inx xm Inn-1 s 2x + 2a tan-1 &) -- 2 m+1 !NVOLVlNO ~ = x cash ax -- sinh ax U = u2 coshax z 2x + a In cash ax a = x dx - $sinhax S Y$gz sinh (cx c-lx + a** INDEFINITE 14.543 '14.544 14.545 14.546 14.547 14.548 14.549 14.550 sinLard 14.552 14.553 14.554 sinizax * i In tanh 7 xdx sinh ax = 1 az ax sinhz ax dx = sinh ax cash ax 2a - s s x sinha ax dx ,I' dx sinh2 ax ~ I‘ I .( cash 2ax 8a2 x2 4 a px dx sinh (a + p)x %a+p) = p)x aa - P) sinh (a - ' sinh ax sin px dx = a cash ax sin px - ' sinh ax cos px dx = a cash ax cos px + p sinh ax sin pz a2 + p2 ax+p--m qeaz + p + dm 1 s (p + = ad~2 dx S p + q sinh ax = dx - ’ sinh” ax dx dx S sinhn ax ~ x dx .I’ sinhn ax xrn cash a ux -- m a + -n-l = - cash ax a(n - 1) sinhnP1 ax = - x cash ax a(n - 1) sinhn--l ax - dx = I’ p + dm tanh ax p - dm tanh ax xm--l sinhn--l ax coshax _ -n-1 n an - sinh ax (n _ l)xn-’ sinh ax Xn 2apGP = = In 1 = q2 sinh2 ax xm sinh ax dx ~ a(p2 + dx q2 sinh2 ax p2 + - = > - q cash ax +” q2)(p + q sinh ax) P2 + 92 dx q sinh ax)2 p sinh ax cos px c&2+ p2 dx p + q sinhax S 2 a = *p see 14.547. s 14.558 -~-- X -- -- coth ax = sinh ax sinh .I' x sinh 2ax 4a = [See 14.5651 =Fdx s = 87 ,. . . . I a dx sinh ax I‘ p” S 14.561 = - S 14.556 14.560 dx x S 14.559 I jJ$: / 05 * . 5*5! s 14.555 14.557 ax s For 14.551 = INTEGRALS cash ax dx S sinhnP2 cash ax a S QFr -- n-2 92-l [See 14.5851 ax dx [See 14.5871 dx dx S sinh*--2 as(n - l)(n ax 1 - 2) sinhnP2 ax -- n-2 n-l ~- x dx S sinhnP2 ax 88 INDEFINITE INTEGRALS INTEGRALS 14.562 cash ax dx 14.563 14.564 cash -& ax 14.565 s a x sinh ax -- cash ax a a2 = - 22 cash ax a2 = z * dx = - dx cash ax 14.570 14.571 14.572 14.573 14.574 14.575 14.576 14.577 14.580 14.581 = xcosh2axdz s dx cosh2 ax s = s 4+ P) %a + P) = a sinh ax sin px - p cash ux cos px a2 + p2 cash ax cos px dx = a sinh ax cos px + p cash ax sin px a2 + p2 dx s dx cash ax - 1 s cash ax + 1 = $tanhy = -+cothy = !? tanh a xdx x dx cash ax - 1 --$coth = dx (cash ax + 1)2 dx (cash ax - 1)2 7 7 -$lncosh + -$lnsinh - &tanh3y = & coth 7 - & coths y tan-’ ln s war + p - fi2 ( qP s 7 &tanhy p + q cash ax dx (p + q cash ax)2 f = S dx = 14.582 + sinh (a - p)z + sinh (a + p)x = cash ax sin px dx cash ax + 1 s . . . + (-UnE,@42n+2 (2%+2)(272)! ~tanh ax a 2(a - s S 5(ax)6 + 144 x sinh 2ax cash 2ax 4a -8a2 X2 = + (ad4 8 sinh ax cash ux 2a ;+ cash ax cash px dx s [See 14.5431 s - S 14.570 14.579 cosh2 ax dx s . . . = - 14.569 + ; a X s (axP 6*6! 4*4! . cash ax s 14.567 + lnz+$!!@+@+- X cos&ax 14.566 - x2 cash ax dz . cash ax sinh ax = x cash ax dx . INVOLVING = + p + @GF q sinh ax -a(q2 - p2)(p + q cash as) ) P 42 - P2 dx p + q coshas S *** INDEFINITE In 1 14.583 p2 - s dx q2 cosh2 ax INTEGRALS p tanh ax + dKz p tanh ax - 2apllF3 = 89 I 14.584 dx ! p tanh ax + dn In p tanh ax - dni 2wdFW = s p2 + q2 cosh2 ax 1 1 tan --1 p tanhax dF2 14.585 14.586 xm cash ax dx . coshn ax dx s coshnax 14.587 dx coshn--l = = ax sinh ax 14.591 14.592 14.593 s s s 14.594 s 14.595 I ax + (n- = sinh2 ax ~ 2a sinh px cash qx dx = cash (p + q)x 2(P + 9) sinhn ax cash ax dx = sinhn + 1 ax (n + 1)a coshn ax sinh ax dx = coshn+ l ax (n + 1)a sinh 4ax ~ 32a dx sinh2 ax cash ax = 14.597 S ______ dx sinh ax cosh2 ax zz -sech a2 + klntanhy S 14.600 S 14.601 S z dx = sinh ;s,hh2;; dx = cash ax + ilntanhy a dx cash ax (1 + sinh ax) [See 14.5591 i tan-1 ax - 2,‘a2 coshn--2 ax ’ cash (p - q)x [If n = -1, see 14.615.1 [If n = -1, see 14.604.1 ax _ - 2 coth 2ax a - ,jx n-2 -n-l sinh ax AND c&t USG a a ax dx -- x 8 S = coshn--2 ax _ t tan - 1 sinh [See 14.5571 2(P - 9) 14.596 14.599 1 In tanh a + dx sinh ax cash ax dx sinh2 ax cosh2 ax l)(n INVOLVCNG S 14.598 S dx coshnPz sinh ax cash ax dx = n-1 n ?$!? x sinh ax a(n - 1) coshn--l = sinh ax dx s ax sinh2 ax cosh2 ax dx f- xn--l a n-1 sinh ax a(n - 1) coshn--l INTEGRALS ,(' _ m a s an -cash ax (n - l)xn-1 s 14.590 l.h=7 xm sinh ax a = > sinh ax csch ax a J ~- xdx coshn--l: ax .:,".' INDEFINITE 90 14.602 14.603 S S dX sinh ux (cash ax + 1) dX sinh ax (cash 14.604 14.605 14.606 14.607 14.608 14.609 14.610 14.611 14.612 14.613 14.614 14.615 14.616 14.617 14.618 14.619 14.620 S S S S S S S S S S S tanhax dx x = tanhs ax dx = = = ax tanhn + 1 (72 + 1)a 1 2 1 X2 = = (ax)3 3 - 2 - bxJ5 + - -2k47 105 15 ax _ k!$ dx = + ?k$ tanhn ax dx cothax dx = - PX P2 - _ dP2 - q2) - tanhn--l ax + a(?2 - 1) = x - coths ax dx = i In sinh ax - cothn ax csch2 ax dx - dx coth ax dx = S = - = - -coth2 ax 2a cothn + 1 ax (n + 1)a - i In coth ax $ In cash ax ... ... (-l)n--122n(22n - l)B,(ax)2n+ (2n + 1) ! (-l)n--122n(22n - l)B,(ax)2n-’ (2% - 1)(2?2) ! In (q sinh ax + p cash as) tanhnw2 ax dx coth ax a coth2 ax dx s Q - 42 i In sinh ax = - x tanh ax + -$ In cash ax a X S S 1 2a(cosh ux - 1) tanh2 ax 7 k In cash ax - = p+qtanhax S S S - ‘, In sinh ax xtanhzaxdx s -&lntanhy ilntanhax xtanhaxdx tanh ax dx ___ = 1 2a(cosh ux + 1) + tanhax a tanhn ax sech2 ax dx = 7 i In cash ax tanhe ax dx ~ dx tanh ax klntanh - 1) ux = edx = INTEGRALS -t . . . 1 + ... > INDEFINITE 14.621 14.622 14.623 s s x coth ax dx 1 i-2 = x coth2 ax dx cothaxdx 1 ax x2 - = - 2 x coth ax + +2 In sinh ax a b-d3 135 -$+7-v X 14.624 14.625 14.626 14.627 14.628 14.629 14.630 14.631 14.632 14.633 14.634 14.635 14.636 14.637 14.638 14.639 S S dx p+ qcothax cothn ax dx S S S S S S S S Sq + p S - PX = sech ax dx cothn--l ax + a(n - 1) - = + i tan-l . . . (-l)n22nBn(ux)2n--1 (2n- 1)(2n)! 9 In a(P2 - q2) - P2 - !I2 = cothn-2 tanh ax ___ a sech3 ax dx = sech ax tanh ux + &tan-lsinhax 2a xsechaxdx na + 5(ax)s + 144 = x sech2 ux da x tanh ax a = = sechn ax dx = = “-2 9 9 S Gus 4320 dx i In tanh y coth ux a csch2 ax dx = - - csch3 ax dx = - csch ax coth ax 2a = cschn ax na - - + . . (-lP~,kP 2n(2?2)! [See 14.5811 p+qcoshax sechnP2 ax tanh ax + n-2 a(n - 1) m-1 cschn ax coth ax dx . . . (-1)n~&X)2”+2 (2n + 2)(2n)! + ... $ In cash ux 5(ax)4 lnx--m++-- (ad2 = dx sechas csch ax dx - ~sechn ax = sinh ax a .A!-= sech ax S S S S ax dx eaz = sechn ax tanh ax dx + --- (p sinh ax + q cash ax) sech2 ax dx “e”h”“,-jx 91 INTEGRALS $lntanhy ssechnm2 ax dx + ** * INDEFINITE 92 14.640 14.641 14.642 14.643 S S ds= csch ax i cash ax x csch ax dx S Sq + p S csch*xdx 1 2 = x csch2 ax dx s = = X 14.644 14.645 14.646 14.647 14.648 dx csch ax cschnax S S S sinh-1 = S a - $+f = sinh-1 S (x/a) dx I 14.650 14.651 14.652 14.653 14.654 sinh;~W*) dx S S E dx S ; dx S S 14.656 14.657 14.658 cash;: S S S r (u/x)2 2.2.2 -- - ln2 (-2x/a) 2 - 1 3 5(a/xY 2*4*6*6*6 l + 1x1 < a + l ... l-3 * 5(alx)6 2*4*6*6*6 _ x>a ... *Jr&F2 :In X ( ) (x/a) - d=, cash-1 (x/a) > 0 i x cash-1 (x/a) + d=, cash-1 (x/a) < 0 &(2x2 - a2) cash-1 (x/a) - i a(222 - a2) cash-1 (x/a) + $xdm, = f (x/a) > 0, dx E dx a = = x tanh-19 dx x2 tanh-1 z dx Il. ix@??, 4x3 cash-1 (x/a) - $x3 cash-1 + Q(x2 + 2a2) dm, - C f ln2(2x/a) if cash-1 _ cash-1 (x/a) X tanh-1 ... cash-1 (x/a) > 0 cash-1 (x/a) < 0 3(x2 + 2~2) dm, cash-1 (x/a) > 0 cash-1 < 0 = dx (da) _ 1*3(a/x)4 2*4*4*4 - + l + 1. 3(a/x)4 2.4.4.4 + __ (a/~)~ 2.2.2 (x/a) 1.3 5(x/a)’ 2*4*6*7*7 x cash-1 i cosh-;W*) _ l = x2 cash-1 E dx + if cash-1 14.655 + 1 3(x/a)5 2.4~505 (xlaJ3 2.3.3 _ sinh-1 = &FT2 9 = a x cash-’ cschn--2 ax dx x m x 4 +a - X cash-1 S (2a2 - x2) z + ln2 (2x/a) 2 = X ... [See 14.5531 ) g sinh-1 + dm~ sinh-1; ( f dx dX p + q sinhax xsinh-1: = a Q cschnm2 ax coth ax -- n-2 a(n - 1) n-l - z dx x2 sinh-1 E-P Q = g dx a x sinh-1 x coth ax + -$ In sinh ax a - 1)B,(ax)2n-1 v*x)3 + . . . (-l)n2(22n-1 e&-y+1080 (272 - 1)(2n) ! - = dx ax X --a 14.649 INTEGRALS x tanh-1 = = 7 F (x/a) +(a/5)2 + 1. 3(a/x)4 2-4-4-4 292.2 + 1.3 * 5(a/x)6 2*4*6*6*6 + ... 1 (x/a) < 0 r 1 ln a + v a X ( z + % In (a2 - x2) + # x2 - ~2) tanh-1: + $tanh-1: (x/a) a + $ln(a2-x2) [- if cash-1 (x/a) > 0, + if coshk1 (x/a) < 0] x < -a INDEFINITE tanh-1 14.659 14.660 14.661 14.662 14.663 14.664 14.665 S S S S S S tanhi: 14.669 14.670 = “+@$+&f$+... a (z/u) dx = _ tanh-1 !! dx a x coth-’ 'Oth-i (x/u) = 7 a (xia) ' sech-'2 a x sech-1 + +(x2 - ~2) coth-’ dx = F + fcoth-1: dx = _ ; dx = _ coth-1 dx J? dx (x/a) (x/u) + a sin-l (x/u), sech-1 (x/u) > 0 r x sech-1 (z/u) - (x/u), sech-1 (x/u) < 0 = dx (x/u) - +a~~, sech-1 (x/u) > 0 +x2 sech-1 (x/u) + +ada, sech-1 (x/u) < 0 -4 = 14.674 14.675 4 In (a/x) S S csch-1 ” dz = x csch-1 U x ds a x csch-’ S csch-; (x/u) dx S xm sinh-15 s xm cash-’ S S a x”’ coth-’ dx E U U T = = 14.677 xm sech-1 S 1 * 3Wu)4 _ ... 2.4.4.4 ’ sech--1 (s/u) z+-- = xm csch-’ : dx a U 5 > 0 if x > 0, - if x < 0] [+ if z > 0, - if 1. 3(d44 + - sech-1 (x/u) x < 0] ... O a - cash-’ E - cash-’ i --&s$=+ xmfl coth-’ + ? U - dx ~ a mt1 E - -J?m+l + am xm+1 m+lswh-‘s U cash-1 (x/a) > 0 cash-1 (x/u) < 10 S x2 SCL2- x2 S Zm+l dx u2 - Zm+l + 1 xm dx ~~ dx seckl (da) > 0 sech-1 (s/a) < 0 xm+l m+l csch-1: c a < 0 - $T$$ + ' '3(x/u)4 -.... -u 0, - if x < 0] 15 DEFINITE DEFINITION OF A DEFINITE INTEGRAL a)/n. Let f(x) (b - INTEGRALS the interval into n equal parts be defined in an interval a 5 x 5 b. Divide Then the definite integral of f(x) between z = a and x = b is defined as of length Ax = b 15.1 f(x)dx s a The limit If will f(x) = certainly S if f(x) f(x)dx S dx = lim dx S S S S f(x) b-tm dx = b-m continuous. theorem = g(x) calculus the above definite integral a = c/(b) - in the interval, the definite limiting procedures. For integral example, s(a) dx f(x) dx dx = lim t-0 f(x) dx = lim f(x) a dx if b is a singular point if a is a singular point b f(x) c-0 dx a+E F6RMULAS INVOLVING b DEFINITE INTEGRALS b {f(x)“g(s)*h(s)*...}dx S = a f(x) dx * a b g(x) dx * s a Sb h(x) dx a 2 * ** b b cf(x)dx = c S where f (4 dx c is any constant cl a 15.9 of the integral a GENERAL 15.8 f(a + (n - 1) Ax) Ax} b--c f(x) a S S Sa S Sb Sb . . . + a iim n-r--m b 15.7 + b Cc f(x) -m a 15.6 Ax or if f(x) has a singularity at some point and can be defined by using appropriate b 15.5 + 2Ax) b m f(x) a 15.4 f(a b b d -g(x) (I dx = If the interval is infinite is called an improper integral S S S S is piecewise f the result a 15.3 Ax + f(a + Ax) Ax then by the fundamental by using b 15.2 {f(u) exist = &g(s), can be evaluated lim n-m f(x) dz = 0 = - a b 15.10 f(x)dx a 15.11 a f(x)dx b f(x)dx = a 15.12 S f(z)dx = SC f(x) a dx + jb (b - 4 f(c) f(x) dx c where c is between a and b a This aSxSb. is called the mearL vulzce theorem for 94 definite integrals and is valid if f(x) is continuous in DEFINITE b s 15.13 f(x) 0) dx = $ This is a generalization g(x) 2 0. of 15.12 and is valid LEIBNITZ’S RULE FOR DIFFERENTIATION S a a and b * a dlz(a) 15.14 95 where c is between f(c) fb g(x) dx a and INTEGRALS if j(x) and g(x) are continuous in a 5 x Z b OF lNTEGRAlS m,(a) aF F(x,a) dx S = xdx f F($2,~) 2 - F(+,,aY) 2 m,(a) 6,(a) APPROXIMATE FORMULAS FOR DEFINITE INTEGRALS In the following the interval from x = a to x = b is subdivided into n equal parts by the points a = ~0, . . ., yn = j(x,), h = (b - a)/%. Xl, 22, . . ., X,-l, x, = b and we let y. = f(xo), y1 = f(z,), yz = j(@, Rectangular formula b S(I f (xl dx 15.15 Trapezoidal = h(Y, + Yl + i= $(Y, Yz + ..*+ Yn-1) formula b S 15.16 j(x) dx + 2yi + ZY, + ... + %,-l-t Y?J a Simpson’s 15.17 formula (or b I‘ a f(z) dz DEFINITE 15.18 15.19 15.21 INTEGRALS xp-ldx 1+x = - o for --?i sin p7r ’ = RATiONAl + 4Yn-l f Yn) OR IRRATIONAL O 0 i uql2 m sin2px - dx = X2 x2 m cos px - cos qx dx dx 5 q p 2 q > 0 15.41 15.42 2 2 = = m sinmx dx s o X(x2+ a2) 15.43 49 2- P) 15.44 S cosmx 0 277 S :e-ma ike-ma 15.45 S 0 = s(l-e-ma)l = cos-1 dx dx a + b cos x ii/2 = = a + b sin x 0 * ___ o x2 + u2 dx S m -dx x sin mx 211 ln 9 P 0 15.40 S 0 2 m~o~p~-/sq~ 0

( 0 For even n this can be summed 15.81 15.82 15.83 = -12 S- 1 m xdx ez + 1 0 m S o xn-l dx eZ+l = $+$-$+ r(n) For some positive integer S = “cdl: $ -&+ S co e-z2-e-*dx 0 15.86 &- values +coth; X = & of Bernoulli ..* ( 0 15.85 in terms *** = numbers 9 12 > of n the series can be summed - & [see pages 108-109 and 114-1151. [see pages 108-109 and 114-1151. DEFINITE m e-az 15.87 15.88 _ m e-~x s @-bs _ e-bz dx x csc px 0 m e-“‘(lx; s ‘OS ‘) ,jx 1 xm(ln x)” dx i - cot-l = tan-l% a (--l)%! (m + l)n+l = s 0 If n#0,1,2,... replace S o l - lnx 1+x dx = -$ & = -$ ’ In (1 + x) dx S S S S S 2 0 15.94 tan-1 = - ; ’ ln(l-x) x 0 (a2 + dx = $ = -? m > -1, 1) n = 0, 1,2, . . . n! by r(n. + 1). 6 1 15.95 In 0 15.90 15.93 99 x set px 15.89 15.91 INTEGRALS In x In (1 + x) dx = 2-2ln2-12 In x In (l-x) = 2 - 572 0 1 15.96 dx c 0 15.97 - 772WC pn cot pa O 0 2~ In b, b 2 a > 0 = In (a2 - 2ab cos x + b2) dx .(‘ 0 ) T/4 15.109 S In (1 + tan x) dx = i In2 0 dx = +{(cos-~u)~ sin 2a y + T+ - (cos-1 sin 3a 32 b)2} + ... (’ See also 15.102. “. : DEFiNlTi ti!tThRAl.S 1NVOLVlNG S m - sinaz dx sinh bx = $ tanh $ 15.113 p -cos ax dx s o cash bx = & 15.114 S 15.112 0 -6 = $ = Sr(n+ NYPERBQLIC FUNCTtC?NS a7 sech% 0 15.115 m xndx o sinh az S If n is an odd positive m ___ sinh ax dx ebz + 1 0 15.116 S 15.117 S * sinh ux ebz dx m ftux) i ftbx) 1) integer, = 2 csc $ = & - 5 the series can be summed - [see page 1081. 1 2a cot % 0 15.118 S & = {f(O) - f(m)} ln i 0 This 15.119 is called ’ dx S - Ia (u+x)m-l(a--x)-l& 0 15.120 Frulluni’s --a It holds integral. = 22 = (2a)m+n-1;;'f;; if f’(x) is continuous and s - f(x) - f(m) dx converges. 1 x 16 THE GAMMA DEFINITION OF THE GAMMA 16.1 r(n) FUNCTION FUNCTION r(n) cc S tn-le-tdt = FOR n > 0 n>O 0 RECURSiON FORMULA 16.2 lT(n + 1) = nr(n) 16.3 r(n+l) = n! THE GAMMA For n < 0 the gamma function r(n) GRAPH by using = n=0,1,2,... where O!=l FOR n < 0 FUNCTION can be defined 16.4 if 16.2, i.e. lyn + 1) ___ n OF THE GAMMA FU CTION Fig. 16-1 SPECIAL VALUES FOR THE GAMMA r(a) 16.5 16.6 16.7 r(m++) r(-m FUNCTION = 6 = 1’3’5’im * em - 1) 6 + 22 = (-1p2mG 1. 3. 5 . . . (2m 101 m = 1,2,3, ... _ m = 1,2,3, ... k&n\! MI - 1) Y- ti 6 THE 102 GAMMA RELAT4ONSHIPS FUNCTION AMONG GAMMA 16.8 r(P)r(l--pP) 16.9 22x-1 IT(X) r(~ + +) This is called the duplication = * = Gr(2x) formula. r(x)r(x+J-)r(x+JJ-)...r(..+) 16.10 For m = 2 this reduces OTHER = r(s+ OF THE QAMMA . 1) = JE -=1 r(x) 16.12 This is an infinite mM--mz(2a)(m-l)‘2r(rnz) to 16.9. DEflNIflONS 16.11 FUNCTIONS product . ..k (x + 1:(x”+ 2”, . . . (x + k) kZ xeY+il representation DERWATIVES . FUNCTION {(1+;)r.‘m) for the gamma Of THL function GAMMA where y is Euler’s constant. FUNCTION m 16.13 r’(1) = e-xlnxdx .(’ m4 r(x) 16.14 _ - -y + (p) ASYMPTOTIC r(x+l) 16.15 + (;-A) + EXPANSIONS = &iixZe-Z = -y 0 .** + (;- FOR THE OAMMA ..t,_,> If we let [e.g. n > lo] is called Stirling’s x = n a positive is given by Stirling’s asymptotic integer ._ t 16.17 that where > series. in 16.15, n! - is used to indicate n! 1+&+&-a+... then a useful &n nne-n approximation for formula 16.16 where -.* FUNCTION -i This + the ratio - of the terms MISCELi.ANEOUS Ir(ix)p = on each side approaches RESUltS i7 x sinh TX 1 as n + m. n is large 17 THE BETA FUNCTION 7 DEFINITION OF THE BETA FUNCTION B(m,n) =s1 17.1 P-1 (1 - t)n--l dt B(m,n) m>O, n>O 0 RELATIONSHIP OF BETA 17.2 FUNCTION Extensions of B(m,n) to m < 0, n < 0 is provided SOME by using IMPORTANT 17.3 B(m,n) = B(n,m) 17.4 B(m,n) = 2 17.5 B(m,n) = 17.6 B(m,n) = FUNCTION r(m) r(n) r(m + n) = B(m,n) TO GAMMA 16.4, page 101. RESULTS n/2 s0 sinzmp-1 e COF?-1 e de T~(T-+ l)m 103 .ltm-l(l- .( 0 Ql-1 (T + tp+n dt ,, fiASlC 18 tWFERfNtfAL 18.1 EQUATION Separation Linear SOfJJTfON of variables fl(x) BI(Y) dx + f&d C&(Y) dy 18.2 difF’ERENTIA1 EQUATIONS and -SOLUTIONS first order = s g)dx 0 equation Bernoulli’s ye.!-J-‘dz = I‘ equation P(x)Y J-P& where Q(x)Y” = = Exact M(x, QeefPdxdx U-4 If v = ylen. lny 18.4 = c -t- c I 2)e(l--n) 2 + Sz(Y) -dy g,(y) s I 2 + P(x)y = Q(x) 18.3 + = f Qe (1-n) jPdz& n = 1, the solution . (Q-P)dx + c is + c equation y) dx + N(x, where aivflay = m/ax. 18.5 Homogeneous y) dy = ~iV~x+j+‘-$L3x)dy 0 = where ax indicates that the integration with respect to x keeping y constant. equation c is to be performed I dy z = F:0 S lnx= where 104 v = y/x. - F(v) If F(w) dw - w fc = V, the solution is y = CX. BASIC DIFFERENTIAL DIFFERENTIAL EQUATIONS AND 105 SOLUTIONS EQUATION SOLUTION 18.6 y F(xy) dx + x G(xy) dy = 0 lnz where Linear, second 18.7 homogeneous order equation $$+ag+by w = xy. If = Case 1. and distinct: real y = 0 m,,me real constants. y where nonhomogeneous order equation the solution is :cy = c. m2 + am + 6 = 0. Then + c2em2J and equal: = clemP + e2xemlz m2=p-qi: = epz(cl cos qx + c2 sin qx) p = -a& There above. of clemP m,=p+qi, y Linear, second = F(v), roots Case 3. 18.8 G(v) m2 mi,m, + c S wCG(4 Let m,, be the there are 3 cases. Case 2. a, b are real G(v) dv - F(v)) = q = dm. are 3 cases corresponding to those of entry 18.7 Case 1. $$+a$+ a, b are by real = = Y R(x) cleWx + c2em2z emP +----ml - m2 constants. S c-ml% em9 +- m2 - 9 R(x) dx S e-%x R(x) dx Case 2. = Y cleniz + c2xenG + xernlz - s e-ml= R(s) emP S dx xe-mlx R(x) dx Case 3. Y = ePz(cl cos qs + c2 sin qx) + 18.9 Euler or Cauchy equation Putting x2d2Y dx” + ,,dy dx + by epx sin qx e-c; R(x) cos qx dx S P - epz cos qx c-pz R(x) sin qx dx S P = S(x) x = et, the equation 3 and can then + (a-l)% be solved + by as in entries becomes = S(et) 18.7 and 18.8 above. BASIC 106 18.10 Bessel’s DIFFERENTIAL EQUATIONS AND SOLUTIONS equation x2=d2y + Z&dy + (A‘%-n2)y = 0 Y = C,J,(XX) + czY,(x) See pages 136-137. 18.11 22% dx2 Transformed + (2 +1)x& ’ dx Bessel’s equation -- + (a%Pf~2)y 0 Y = x-’ {CLJo (@ where 18.12 (l-zs’)$$ Legendre’s - 2x2 + c2ypls (;c)} q = dm~. equation + n(n$-1)y = 0 Y See pages 146-148. = cup, + czQn(4 19 SERIES of CONSTANTS ARlTHMEtlC 19.1 a + (a+d) where Some special + (u+2d) I = a + (n - 1)d + **. SERIES + {a + (n- l)d} = dn{2u + (n- l)d} = +z(a+ I) is the last term. cases are 19.2 1+2+3+**. 19.3 1+3+5+*.*+(2n-1) + n = +z(n + 1) = GEOMETRIC n2 SERIES 19.4 where If -1 1 = urn-1 is the last term and r # 1. < r < 1, then 19.5 a + ur + ur2 -I- a13 + ... = ARITHMETIC-GEOMETRIC a + (a+@. 19.6 where If + (a+2d)r2 SERIES **a + {a+(n-l)d}rrt-1 = !G$+Tfl + rd{l-nr"-'+(n-lPnl (1 - r)2 r P 1. -1 < r < 1, then 19.7 a + (a+ SUMS 19.8 + lnr 1p + 2p + 3* + ... d)r + (a+ 2d)r2 + OF POWERS ... = OF POSITIVE * + (1 ?r), INTEGERS + ?zp = where the series terminates numbers [see page 1141. at n2 or n according 107 as p is odd or even, and B, are the Bernoulli 108 SERIES Some special OF CONSTANTS cases are 19.9 1+2+3+...+n 19.10 12 + 22 + 32 + ... + %2 = n(n+1g2n+1) 19.11 13 + 23 + 33 + ... + n3 = n2(n4+ ‘I2 = 19.12 14 + 24 + 34 + ... + %4 = n(n+ +iA(3n2 If 19.13 Sk = lkf (“+ = 2k+ 3k+ ... + (“;‘)S2 dy + nk where + *.. lNzn (1 + 2 + 3 + * * * + 72)s + 3n- k and n are positive + (“:‘)Sk = l) integers, (n+l)k+‘- then (n+l) SERIES OF CONSTANTS ~'P-'~~PB P (2P)! 19.36 & + & + & + & + ... (22~ - 1)&B = P 2(2P)! - l)&‘B (22~-' P (2P)! 19.38 & - -!- + 32~+1 1 __ 1 - 52~+1 +... 79 + ‘E, = 72p+1 22Pf2(2p)! MlSCEI.LANEOUS 1 2 19.39 -+cosa+cos2a+~*~+cosna 19.40 sina 19.41 1 + ?-cos(u 19.42 r sina 19.43 1 + rcosa 19.44 rsincu + sin2a + + r2cos2a ... + r3cos3a + r2cos2a + + ... 2 sin (a/2) + sinna + + r2 sin 2a + + sin 3a + + r2sin2n sin (n + +)a = + sin3a *** a** SERIES sin [*(n = ..* sin &na = 1-‘2,,‘,‘,“,“;r2, ITI < 1 r sin (Y l-22rcosafr2’ = + r”cos?za. + msinm + l)]a sin (a/2) b-1 < 1 m+2COSnLu-?-r”+1cos(n+l)a-~rosa+1 1 - 2r cos a + ?-2 = - rsincu-V+1sin(n+l)cu+rn+2sinncu 1 - 2r cosa + r2 = THE EULER-MACLAURIN SUMMATION FORMULA n-1 19.45 & F(k) = j-&k) dk - f P’(O) + F(n)1 0 + & {F’(n) + - F’(O)} &{F(v)(n) , + THE POISSON 19.46 ,=iii, F(k) - ... & - F(v)(o)} (--lF1 SUMMATION = ,J--, {F”‘(n) 3 {F (Zp) ! - F”‘(O)} - & t ? (ZP-~)(~) - FORMULA {S” --m eznimzF(x) dx > {F(vii)(n) F(~P-l,(O)} - F(vii)(O)) + . . . 20 TAYLOR TAYLOR f(x) 20.1 = SERIES FOR f@&) + f’(a)(x- SERIES FUNCTIONS a) + f”(4(2z,- OF 42 + ONE 1 . VARIABLE . . . + P-“(4(x -4n-’ + R, (n-l)! where R,, the remainder 20.2 20.3 Lagrange’s Cauchy’s after n terms, form form R, = R, = is given by either f’W(x of the following forms: - 4n n! f’“‘([)(X -p-y2 - a) (n-l)! The value 5, which may be different in the two forms, continuous derivatives of order n at least. lies between a and x. The result holds if f(z) has If lim R, = 0, the infinite series obtained is called the Taylor series for f(z) about x = a. If tl-c-3 a = 0 the series is often called a Maclaurin series. These series, often called power series, generally converge for all values of z in some interval called the interval of convergence and diverge for all x outside this interval. BINOMIAL 20.4 (a+xp = &I + nan-lx = an + (3 Ek$a an--15 . Special + + 20.5 (c&+x)2 = a2 + 2ax + x2 20.6 (a+%)3 = a3 + 3a2x + 3ax2 20.7 (a+x)4 = a4 + 4a3x + 6a2x2 20.8 (1 + x)-i = 1 - x + x2 - x3 + 24 - 20.9 (1+x)-2 = 1 - 2x - 20.10 (1+x)-3 = 1 - 3x + 6x3 - 20.11 (l$ 20.12 (1 fx)i’3 20.13 (1 +x)-l'3 20.14 (l+z)'/3 = x)-l'2 = = + dn-- 1,‘,‘” an--2z2 + (‘;) @--3X3 23 + + 4ax3 + x4 ... 4x3 + 5x4 - -l0 ... X2+ FOR TRIGONOMETRIC ... 20.21 FUNCTIONS --m 1, p = 1 if x < -11 0: 20.31 see-l x = cos-‘(l/x) = E2 - 20.32 csc-1 x = sin-1 = k+‘- (l/x) I4 > 1 2-3x3 + 2 *l-3 4 * 5x5 + ... 14 > 1 / TAYLOR 112 SERIES SERIES FOR HYPERBOLIC 20.33 sinh x = x+g+g+g+ 20.34 cash x = l+$+e+e+... 20.35 tanh x = x-if+z&rg+... 20.36 cothx = ~+fA+E+ 20.37 sechx = l-~+~x&+ 20.38 cschx = 1 - FUNCTIONS -m 1x1 > 1 e = ’ ‘. x+$+g+$+... 1+x+;i--s-z = - (&+&+,.::“,Y”,x6+.**)) MlSCELLAN(KMJS 20.43 2 0 < 1x1 < x = 1 2 0 < /xl < a (2n) ! 1.3 ’ 5x7 + 2.4.6.7 3x5 ... ... (-l)n2(22”-l- -0. 1x1 0 or m < 0. If m = 0, then mA = 0 is or null vector. A B / / Fig. 22-l Sums of vectors. The sum or resultant of A and B is a vector C = A+ B formed by placing the initial point of B on the terminal point of A and joining the initial point of A to the terminal point of B [Fig. 22-2(b)]. This definition is equivalent to the parallelogram law for vector addition as inThe vector A - B is defined as A + (-B). dicated in Fig. 22-2(c). Fig. 22-2 116 FORMULAS FROM VECTOR Extensions to sums of more than two vectors the sum E of the vectors A, B, C and D. 117 ANALYSIS are immediate. Thus Fig. 22-3 shows how to obtain B I D Y\ (b) (4 Fig. 22-3 4. Unit vectors. the direction A unit vector is a vector with unit of A is a = AfA &here A > 0. magnitude. LAWS OF VECTOR If A, B, C are vectors and m, n are scalars, 22.2 A+(B+C) 22.3 m(nA) 22.4 (m+n)A = mA+nA Distributive law 22.5 m(A+B) = mA+mB Distributive law = = (mu)A Commutative (A+B)+C = n(mA) a unit vector in then A+B B+A then ALGEBRA 22.1 = If A is a vector, law for addition Associative law for addition Associative law for scalar COMPONENTS multiplication OF A VECTOR A vector A can be represented with initial point at the origin of a rectangular coordinate system. If i, j, k are unit vectors in the directions of the positive x, y, z axes, then 22.6 A where A,i, Aj, i, j, k directions = A,i Y + A2j + Ask A,k are called component and Al, A,, A3 are called vectors of A in the the components of A. Fig. 22-4 DOT 22.7 where A-B B is the angle between A and B. OR SCALAR = ABcose PRODUCT 059Sn Index of Special Symbols and Notations The following list shows special symbols and notations used in this book together with pages on which Cases where a symbol has more than one meaning will be clear from they are defined or first appear. the context. Symbole Berri (x), Bein (xj B(m, n) 4l (34 Ci(x) e elp e2, e3 natural Euler 7, T-l Fourier elliptic Hermite in curvilinear unit vectors In(x) modified Jr, (4 Bessel in rectangular Bessel function function complete kind, 138 coordinates, 117 integral 136 of first kind, 179 140 Bessel or loge x natural logarithm common function polynomials, and inverse pn (4 Legendre f%4 associated Qn (4 Legendre Qt’b) associated Legendre cylindrical coordinate, polynomials, functions kind, 148 functions of second 22, 36 sine integral, 50 184 183 polynomials of first kind, 157 Chebyshev polynomials of second function kind, 49 Chebyshev Bessel transform, of first kind, 149 of second coordinate, sine integral, 155 Laplace 146 Legendre functions coordinate, Fresnel 153 Laguerre transform spherical kind, 139 .of x, 23 polynomials, Laplace polar of second of x, 24 logarithm Laguerre associated r 175, 176 124 of first kind, 138 of first kind, elliptic modified L?(x) transform, 151 of first and second Wr) <,-Cl Fourier eoordinates, unit, 21 i, i, k J%(r) of first kind, 179 and inverse functions imaginary 160 integral polynomials, Hankel kind, 1’79 114 transform HA) kind, 179 of second 183 function, elliptic scale factors 124 183 of second integral integral, &Y h or logl”x function, integral numbers, incomplete Kern (x), Kein (x) errer hypergeometric F(k, @) eoordinates, 183 elliptic exponential 1 in curvilinear function, Ei(x) K = F(k, 742) 184 184 base of logarithms, unit vectors incomplete H’;‘(x) 114 integral, integral, E(k, $) i logx cosine complete En F(u, b; c; x) lnx Fresnel cosine 103 numbers, complementary erfc (x) E = E(k, J2) H’;‘(x), Bernoulli errer erf (x) h 140 beta function, of second 263 kind, 158 kind, 136 150 161 INDEX 264 OF SPECIAL SYMBOLS AND NOTATIONS Greek Sym bols Euler’s constant, 1 6 spherical coordinate, 50 lW gamma function, 1, 101 77 1 Hr) Riemann zeta function, 184 ti spherical coordinate, 50 Y e cylindrieal coordinate, 49 e(P) the sum 1 + i + i + - *. +;, e polar coordinate, 22, 36 @(xl probability distribution function, 189 -a(O)=O, 137 Notations A=B A equals B or A is equal to B A>B A is greater than B [or B is less than A] A