Preview only show first 10 pages with watermark. For full document please download

Solucionário Completo - Eletrom...para Engenheiros Com Aplicações - Ch02

Solucionário do livro "Eletromagnetismo para Engenheiros com aplicações"

   EMBED


Share

Transcript

Chapter 2 Problem Solutions 211 .. F1 = mω 2 d sin θ , F2 = mg cos θ = 9.78 (2π ) 2 × 0.5 sin θ g 2π × rpm , F1 = F2 , ∴ cos θ = 2 , ω = = 2π , cos θ 60 ω d = 0.5 , ∴ θ = 60.3o ␻ d ␪ F1 F2 m mg ␪ 21 . .2 W cos 45o , ∴ θ = 813 . o, 200 mi GS + Wsin45o = 200 cos θ , GS = 169.71 hr W × cos 45o = 200 × sin θ , sin θ = 45° W GS 200 mi/hr ␪ 2-1 21 . .3 4 sin θ = 3 , sin θ = 3 , ∴ θ = 48.6 o 4 N 4 mi/hr 3 mi/hr ␪ . .4 21 mv 2 , −W = N cos θ = mg , ∴ tan θ = r 1 hr mi 5280 ft ft v = 60 × × = 88 , ∴ tan θ = 016 . , hr 1mi 3600 s s F = N sin θ = v2 , rg ∴ θ = 916 . o F N —W N ␪ W 2.3.1 C = A + B, ∴ C 2 = C • C = ( A + B ) • ( A + B ) = A • A + B • B + 2A • B = A2 + B 2 + 2 AB cos α But α = 180 o − θ AB and ∴ cos α = − cos θ AB ∴ C 2 = A2 + B 2 − 2 AB cos θ AB which is the law of cosines. C ␪AB A 2-2 B ␣ 2.4.1 A + B + C = 0 , A × ( A + B + C) = 0 = A ×3 A+A×B+A×C= 0 12 ( 0 ) o A × B = − AB sin α C a n = − AB sin 180 − θ C a n where a n is a unit normal into the page. Also A × C = AC sin α B a n = AC sin θ B a n . ∴ AB sin θ C = AC sin θ B giving the B C law of sines: = . Similarly for B × ( A + B + C) = 0 and sin θ B sin θ C C × ( A + B + C) = 0 . ␪B C ␪C ␪B B B ␪C A ␣C C ␣B A A 2.4.2 (a) ( A • B) gives a scalar which cannot be “crossed with” a vector. (c) ( A • B) gives a scalar which cannot be “dotted with” a vector. (d) ( B • C) gives a scalar which cannot be added to a vector. 2.5.1 (a) A = (3 − 0)a x + ( −4 − 2)a y + ( 5 − ( −4)) a z = 3a x − 6a y + 9a z (b) A = (c) a A = (3) 2 + ( −6)2 + (9) 2 = 1122 . m A = 0.27a x − 0.53a y + 0.8a z A 2.5.2 (a) A + B = 3a x + 4a y − 3a z , (b) B − C = −2a x + 2a y − 3a z , (c) . , (e) A + 3B - 2C = − a x + 8a y − 9a z , (d) A = 2 2 + 32 + 12 = 374 aB = ( ) 1 B = a x + a y − 2a z =.41a x + 0.41a y − 0.82a z , (f) A • B = 7 , (g) B • A = 7 , B 6 (h) B × C = − a x − 7a y − 4a z , (i) C × B = a x + 7a y + 4a z , (j) A • B × C = −19 2-3 2.5.3 (a) A • B = 2 − 2 − 3 = −3 = A B cos θ . Therefore B cos θ = A•B 3 = = 0.8 , A 14 −3 A•B = ⇒ θ = 1091 . o , (c) AB 14 6 A × B − a x − 7a y − 5a z unit vector = = . a x − 0.808a y − 0.577a z . = −0115 A×B 1 + 49 + 25 (b) cos θ = 2.5.4 A • B = α + 2 − 3 = 0 ∴α = 1 2.5.5 A × B = ( −18 − 3β )a x + (3α + 9)a y + ( β − 2α )a z = 0 . Hence α = −3 and β = −6 . 2.5.6 A × B = −14a x − 9a y + a z gives a vector that is perpendicular to the planes containing both A and B and hence is perpendicular to both A and B. The length of this vector is ( −14) 2 + ( −9) 2 + (1) 2 C= = 16.67 . Hence ( ) 10 −14a x − 9a y + a z = −8.4a x − 5.4a y + 0.6a z . Check that A • C = 0 and 16.67 B•C = 0. 2.5.7 ( ) ( ) B × C = B y Cz − Bz C y a x + ( Bz Cx − Bx Cz )a y + Bx C y − B y Cx a z so that ) ( ( ) + ( Az ( B y Cz − Bz C y ) − Ax ( Bx C y − B y Cx ))a y + ( Ax ( Bz Cx − Bx Cz ) − A y ( B y Cz − Bz C y ))a z A × ( B × C) = A y Bx C y − B y Cx − Az ( Bz Cx − Bx Cz ) a x ( ) ( ) ( ) B( A • C) = Bx Ax Cx + A y C y + Az Cz a x + B y Ax Cx + A y C y + Az Cz a y ( ) + Bz Ax Cx + A y C y + Az Cz a z ( ) C( A • B ) = Cx Ax Bx + A y B y + Az Bz a x + C y Ax Bx + A y B y + Az Bz a y ( ) + Cz Ax Bx + A y B y + Az Bz a z Matching components we find that A × ( B × C) = B( A • C) − C( A • B) . 2-4 2.5.8 ( ) ( ) ( A × B) × C = (( Az Bx − Ax Bz )Cz − ( Ax B y − Ay Bx )C y )a x + (( Ax B y − A y Bx )Cx − ( A y Bz − Az B y )Cz )a y + (( A y Bz − Az B y )C y − ( Az Bx − Ax Bz )Cx )a z A × B = A y Bz − Az B y a x + ( Az Bx − Ax Bz )a y + Ax B y − A y Bx a z so that Comparing terms to the result in the previous problem we see that A × ( B × C) ≠ ( A × B ) × C . 2.5.9 The distance is D = ( 3 − ( −1)) 2 + ( −1 − 2)2 + ( 5 − ( −4)) 2 = 10.296 . By integration we 3 5 integrate D = ∫ PP2 dl . A straight line between the two points is governed by y = − x + 1 4 4 2 and z = D= 9 7  3  9 x − . Hence dl = dx 1 +  −  +    4  4 4 4 2 = 2.574dx and x =3 ∫ 2.574 dx = 10.296 . x =−1 2.5.10 The surface is drawn below and lies in the yz plane at x=1. Hence the surface area is z = 2 y = 2 z −1 z =2 z =1 z =1 A= ∫ ∫ dydz = ∫ (2 z − 2) dz = 1 . Directly it is the area of a triangle of height 1 and y =1 base 2 or A = 1 (2)(1) = 1 . 2 z y = 2z – 1 (1, 3, 2) y (1, 1, 1) (1, 3, 1) x 2-5 2.6.1 Drawing the rectangular and cylindrical coordinate system axes as shown below we see that x = r cos φ , y = r sin φ , and z = z . From this we form ( ) x 2 + y 2 = r 2 cos 2 φ + sin 2 φ and hence r = 1442443 1 y r sin φ = = tan φ . x r cos φ x 2 + y 2 . Similarly we form z z r P(r, ␾, z) y r ␾ x 2.6.2 Draw the coordinate system and use the right-hand rule. 2.6.3 Drawing the vector in the xy plane as shown below shows that Ax = Ar cos φ − Aφ sin φ and A y = Ar sin φ + Aφ cos φ . Ay y Ax ␾ Ar A␾ ␾ x 2-6 2.6.4 At point P, φ = π 3 = 60o . Hence Ax = 2 cos φ + 3 sin φ =3.598 and A y = 2 sin φ − 3 cos φ =0.232 and Bx = 4 cos φ − 6 sin φ =-3.196 and B y = 4 sin φ + 6 cos φ =6.464. Directly in cylindrical coordinates A • B = 8 − 18 − 2 = −12 . In rectangular coordinates A • B = (3598 . × −3196 . ) + (0.232 × 6.464) − 2 = −12 . 2.6.5  π  From problem 2.6.1 x = r cos φ , y = r sin φ , z=z. At P1  2, ,1 , x1 = 0, y1 = 2, z1 = 1  2   π  and at P2 =  3, ,−2 , x 2 = 15 . , y 2 = 2.598, z 2 = −2 . Hence the distance between the two  3  points is D = ( x2 − x1 )2 + ( y2 − y1 )2 + ( z2 − z1 )2 = 3.407 . 2.6.6 The surface is 1/6 of the surface of a cylinder of length 4-1=3 and radius 2. Hence the (2π × 2 × 3) = 2π . By direct integration we have surface area is S = 6 4 π 3 r = 2) dφ dr = 2π . ∫ (1 4243 z =1 φ = 0 dsr S= ∫ 2.6.7 The volume is 1/6 of the volume of a cylinder of radius 2 minus the volume of a cylinder 1 π 2 2 of radius 1 or V = π ( 2) × 1 − π (1) × 1 = . By direct integration, 6 2 1 π ( ) 3 2 π φ dz = . ∫ rdrd 1 424 3 2 z = 0 φ = 0 r =1 V = ∫ ∫ dv 2.7.1 Drawing the rectangular and spherical coordinate system axes as shown below we see that x = r sin θ cos φ , y = r sin θ sin φ , and z = r cos θ . From this we form ( ) x 2 + y 2 + z 2 = r 2 sin 2 θ cos 2 φ + sin 2 φ + r 2 cos 2 θ = r 2 and hence 1442443 1 2-7 y r sin θ sin φ r = x 2 + y 2 + z 2 . Similarly we form = = tan φ and x r sin θ cos φ x2 + y2 r sin θ = = tan θ . z r cos θ z z r sin ␪ ␪ r y ␾ x 2.7.2 Draw the coordinate system and use the right-hand rule. 2.7.3 Drawing the vector in the zx or zy plane as shown below shows that Az = Ar cos θ − Aθ sin θ . The components parallel to the xy plane are Ar sin θ + Aθ cos θ and the φ component, Aφ . Hence the x and y components of these are Ax = ( Ar sin θ + Aθ cos θ ) cos φ − Aφ sin φ and A y = ( Ar sin θ + Aθ cos θ ) sin φ + Aφ cos φ . Ay z Ar sin ␪ Ar cos ␪ Ax ␪ Ar ␾ Ar sin ␪ + A␪ cos ␪ A␪ ␪ A␪ sin ␪ A␾ A␪ cos ␪ x x, y plane 2-8 y 2.7.4 2π π = 120 o and φ = = 60o . Hence 3 3 At point P, θ = Ax = 2 sin θ cos φ + 3 cos θ cos φ − sin φ =-0.75 and A y = 2 sin θ sin φ + 3 cos θ sin φ + cos φ =0.701 and Az = 2 cos θ − 3 sin θ =-3.598. . , B y = 0.634 , and Bz = −3732 . . Directly in spherical coordinates Similarly, Bx = 383 A • B = 8 + 6 − 3 = 11 . In rectangular coordinates A • B = ( −0.75 × 383 . ) + ( 0.701 × 0.634) + ( −3598 . × −3732 . ) = 11 . 2.7.5  π 2π  From problem 2.7.1 x = r sin θ cos φ , y = r sin θ sin φ , and z = r cos θ . At P1  2, ,  ,  2 3  π π x1 = −1, y1 = 1732 . , z1 = 0 and at P2 =  3, ,−  , x 2 = 2.25, y 2 = −1299 . , z 2 = 15 . .  3 6 Hence the distance between the two points is ( x2 − x1 )2 + ( y2 − y1 )2 + ( z2 − z1 )2 D= = 4.69 . 2.7.6 The surface is 1/8 of the surface of a sphere of radius 4. Hence the surface area is (4π × (4) ) S= 2 S= π ∫ π ∫ θ = π 2φ = π 2 8 = 8π . By direct integration we have 2 r = 4) sin θ dθ dφ = 8π . (1 4442444 3 dsr 2.7.7 π The volume is S = 3 2π 2 r = 2) sin θ dφ dθ = 5.21 . ∫ (1 4442444 3 π φ = 0 θ= 4 ds ∫ r 2-9 2.8.1 ∫ F • dl = 2 4 1 x = −1 y =3 z =−2 ∫ 2 xdx + ∫ 4dy − ∫ ydz . Third integral with respect to z contains y. So we 1 11 z + . Hence the line integral 3 3 2 4 1 11 7 1 becomes ∫ F • dl = ∫ 2 xdx + ∫ 4dy − ∫  z +  dz = − .  3 2 x =−1 y =3 z =−2 3 need to determine the equation of the path as y = 2.8.2 P2 1 1 2 P1 x =0 y =0 z =0 W = ∫ F • dl = ∫ 2 xdx + ∫ 3zdy + ∫ 4dz . But along the path z = 2 y which when substituted into the second integral gives W=1+3+8=12J. 2.8.3 P2 3 2 0 P1 x =0 y =0 z =2 P2 3 2 0 P1 x =0 y =0 z =2 (a) ∫ F • dl = ∫ xdx + ∫ 2 xydy − ∫ ydz . Along this path x = 3 y and y = − z + 2 . 2 substituting these gives ∫ F • dl = ∫ xdx + ∫ 3 y 2 dy − ∫ ( − z + 2) dz = 29 . (b) The 2 integral is the sum of the integrals along the two paths: P2 0 0 0 3 2 0 3   ∫ F • dl = ∫ xdx + ∫ 2 xydy − ∫ ( y = 0) dz + ∫ xdx + ∫ 2 x = y ydy − ∫ ydz =0+0+0+  2  P x =0 y =0 z =2 x =0 y =0 z =0 1 9/2+8+0=25/2. Along the first segment of this path neither x nor y change and y=0. Hence the integral along this first path is zero. Along the second segment of the path, 3 there is no change in z and we substitute the equation for the path, x = y , into the y 2 integration. 2.8.4 P2 ∫ F • dl = ∫ 2rdr + ∫ zrdφ + ∫ 4dz . The two paths are sketched below. P1 P2 0 0 0 P1 P2 r =0 P3 φ =0 z =3 P4 P2 P1 P1 P3 P4 (a) ∫ F • dl = ∫ 2(r = 0) dr + ∫ z ( r = 0) dφ + ∫ 4dz = 0 + 0 − 12 = −12 (b) ∫ F • dl = ∫ F • dl + ∫ F • dl + ∫ F • dl 2-10 π P3 8 4 P1 r =0 φ= P4 8 3 ∫ F • dl = ∫ 2rdr + ∫ ( z = 3)rdφ + ∫ 4dz = 8 + 0 + 0 = 8 π z =3 4 π ∫ F • dl = ∫ ( 4 ) ( 0 ) 2 r = 8 dr + ∫ z r = 8 dφ + ∫ 4dz = 0 + 0 − 12 = −12 P3 r= 8 P2 0 P4 r= 8 φ= P2 P3 P4 P2 P1 P1 P3 P4 φ= π z =3 4 π ∫ F • dl = 0 4 ∫ 2rdr + ∫ ( z = 0)rdφ + ∫ 4dz = −8 + 0 + 0 = −8 π z =0 4 ∫ F • dl = ∫ F • dl + ∫ F • dl + ∫ F • dl = 8 − 12 − 8 = −12 z P1(0, 0, 3) P3(2, 2, 3) P2(0, 0, 0) y P4(2, 2, 0) x 2.8.5 P2 ∫ F • dl = ∫ rdr + ∫ 2rdφ − ∫ zdz . The two paths are sketched below. P1 P2 P0 P2 P1 P1 P0 (a) ∫ F • dl = ∫ F • dl + ∫ F • dl P0 0 0 0 P1 P2 r =0 φ =0 z =2 3 0 0 P0 r =0 φ =0 z =0 ∫ F • dl = ∫ (r = 0) dr + ∫ 2( r = 0) dφ − ∫ zdz = 0 + 0 + 2 = 2 ∫ F • dl = ∫ rdr + ∫ 2rdφ − ∫ ( z = 0) dz = 9 9 +0+0= 2 2 2-11 P2 P0 P2 ∫ F • dl = ∫ F • d l + ∫ F • d l = 2 + P1 P1 P0 9 13 = 2 2 P2 P3 P4 P2 P1 P1 P3 P4 (b) ∫ F • dl = ∫ F • dl + ∫ F • dl + ∫ F • dl π P3 3 P1 r =0 2 2 ∫ F • dl = ∫ rdr + ∫ 2rdφ − ∫ 4dz = φ= π z =2 9 9 +0+0= 2 2 2 π P4 3 P3 r =3 P2 3 P4 r =3 P2 P3 P4 P2 P1 P1 P3 P4 0 2 ∫ F • dl = ∫ ( r = 3) dr + ∫ 2( r = 3) dφ − ∫ 4dz = 0 + 0 + 2 = 2 φ= π z =2 2 0 0 ∫ F • dl = ∫ ( r = 3) dr + ∫ 2( r = 3) dφ − ∫ 4dz = 0 − 3π + 0 = −3π φ= π z =0 2 ∫ F • dl = ∫ F • dl + ∫ F • dl + ∫ F • dl = 9 13 + 2 − 3π = − 3π 2 2 z P1(0, 0, 2) P3(0, 3, 2) 2 P4(0, 3, 0) 3 y P2(3, 0, 0) 3 x 2.8.6 P2 ∫ F • dl = ∫ 2rdr + ∫ 3rdθ + ∫ 2r sin θ dφ . The two paths are sketched below. P1 P2 P0 P2 P1 P1 P0 (a) ∫ F • dl = ∫ F • dl + ∫ F • dl 2-12 P0 0 0 0 P1 r =3 φ =0 P2 3 θ =0 π P0 r =0 P2 P0 P2 P1 P1 P0 ∫ F • dl = ∫ 2rdr + ∫ 3rdθ + ∫ 2r sin θ dφ = −9 + 0 + 0 = −9 ∫ F • dl = ∫ 2rdr + 0 2 ∫ 3rdθ + ∫ 2r sin θ dφ = −9 + 0 + 0 = 9 θ =π 2 φ =0 ∫ F • dl = ∫ F • d l + ∫ F • d l = − 9 + 9 = 0 P2 P3 P2 P1 P1 P3 (b) ∫ F • dl = ∫ F • dl + ∫ F • dl π π P3 3 P1 r =3 θ =0 φ =π 2 P2 3 π 0 P3 r =3 P2 P3 P2 P1 P1 P3 2 ∫ F • dl = ∫ 2(r = 3) dr + ∫ 3( r = 3) dθ + ∫ F • dl = ∫ 2( r = 3) dr + 2 ∫ 3( r = 3) dθ + θ =π 2 ∫ F • dl = ∫ F • d l + ∫ F • d l = 2 ∫ 2(r = 3) sin θ dφ = 0 + π 2( r = 3) sin   dφ = 0 + 0 − 3π = −3π  2 φ =π 2 ∫ 9π 3π − 3π = 2 2 z P(0, 0, 3) 9π 9π +0= 2 2 3 P3(0, 3, 0) P0(0, 0, 0) 3 P2(3, 0, 0) 3 x 2-13 y 2.8.7 P2 2 ∫ F • dl = ∫ rdr + ∫ 2r dθ + ∫ 3r sin θ dφ . The two paths are sketched below. P1 P0 P3 P0 P1 P1 P3 (a) ∫ F • dl = ∫ F • dl + ∫ F • dl π P3 2 P1 r =2 P0 0 P3 r =2 P0 P3 P0 P1 P1 P3 4 π 2 ∫ F • dl = ∫ ( r = 2) dr + ∫ 2( r = 2) dθ + θ =0 π ∫ F • dl = ∫ rdr + π 4 2 ∫ 2r dθ + θ =π 4 2 ∫ 3( r = 2) sin θ dφ = 0 + 2π + 0 = 2π φ =π 2 2 ∫ 3r sin θ dφ = −2 + 0 + 0 = −2 φ =π 2 ∫ F • dl = ∫ F • dl + ∫ F • dl = 2π − 2 P0 0 0 0 P1 r =2 θ =0 φ =0 (b) ∫ F • dl = ∫ rdr + ∫ 2r 2 dθ + ∫ 3r sin θ dφ = −2 + 0 + 0 = −2 z P1(0, 0, 2) 2 P3(0, 2 , 2 ) 45° P0(0, 0, 0) y x 2.9.1 A sketch of the surface is given below. ∫ F • ds = ∫∫ xdydz + ∫∫ ydxdz + ∫∫ zdxdy . 1 Top: 1 1 y = −1x =−1 Right: Front: 1 ∫ ( z = 1) dxdy = 4 . Bottom: − ∫ ∫ 1 ∫ 1 ∫ 1 1 ∫ ( y = 1) dxdz = 4 . Left: − ∫ z = −1x =−1 1 1 ∫ ( y = −1) dxdz = 4 . z = −1x =−1 1 1 ∫ ( x = 1) dydz = 4 . Back: − ∫ z = −1 y = −1 ∫ ( z = −1) dxdy = 4 . y =−1x =−1 ∫ ( x = −1) dydz = 4 . z =−1 y =−1 Total=4+4+4+4+4+4=24. 2-14 z (–1, 1, 1) (–1, 1, –1) y x 2.9.2 A sketch of the surface is given below. ∫ F • ds = ∫∫ xydydz + ∫∫ yzdxdz − ∫∫ xzdxdy . 2 Top: − ∫ 1 ∫ x( z = 3) dxdy = −3 . Bottom: y = 0x = 0 3 Right: ∫ 1 3 ∫ ( y = 2) zdxdz = 9 . Left: − ∫ 2 ∫ 1 ∫ ( y = 0) zdxdz = 0 . z =0 x =0 3 2 z =0 y =0 z =0 y =0 ∫ ( x = 1) ydydz = 6 . Back: − ∫ ∫ x( z = 0) dxdy = 0 . y = 0x = 0 z =0 x =0 3 2 Front: ∫ 1 ∫ ( x = 0) ydydz = 0 . Total=-3+0+9+0+6+0=12. z 3 2 1 x 2-15 y 2.9.3 A sketch of the surface is given below. ∫ F • ds = ∫∫ 2r 2 dφ dz + ∫∫ 3φ drdz − ∫∫ 2rdrdφ . π π 2 2 2 2 ∫ 2rdrdφ = −2π . Bottom: ∫ Top: − ∫ φ = 0r = 0 3 ∫ 2rdrdφ = 2π . φ = 0r = 0 2 3 2 π  ∫ 3 φ =  drdz = 9π . Left: − ∫ ∫ 3(φ = 0) drdz = 0 .  2 z =0r =0 z =0r =0 Right: ∫ π 3 2 2 ∫ 2( r = 2) dφ dz = 12π . Front: ∫ z = 0φ = 0 Total=-2π+2π+9π+0+12π=21π. z 3 2 y x 2.9.4 A sketch of the surface is given below. ∫ F • ds = ∫∫ 3r 2 dφ dz + ∫∫ φ drdz − ∫∫ zrdrdφ . π Top: − π 2 2 ∫ ( z = 4)rdrdφ = 8π . Bottom: ∫ φ =− π r = 0 4 2 2 4 π 2 2 ∫ ( z = 0)rdrdφ = 0 . ∫ φ = −π r = 0 2 4 2 π π   ∫  φ =  drdz = 4π . Left: − ∫ ∫  φ = −  drdz = 4π .   2 2 z =0r =0 z =0r =0 Right: ∫ Front: ∫ 2 2 ∫ z ( r = 2) dφ dz = 48π . z = 0φ =− π 2 Total=8π+0+4π+4π+48π=64π. 2-16 z 4 2 y x 2.9.5 A sketch of the surface is given below. 3 ∫ F • ds = ∫∫ r sin θ dφ dθ + ∫∫ 2r sin θ drdφ − ∫∫ φ rdrdθ . π π 2 2 π 3 2 2 π φ = 0r = 0 2 ∫ ( r = 2) sin θ dφ dθ = 4π . Bottom: ∫ Front: ∫ θ = 0φ = 0 π 2 2  π π2 π ∫ 2r sin 2 2 drdφ = 2π . . Left: ∫ ∫ (φ = 0)rdrdθ = 0 . ∫  φ =  rdrdθ = − 2 2 θ = 0r = 0  θ = 0r = 0 2 2 π π + 0 = 6π − Total= 4π + 2π − . 2 2 Right: − ∫ z 2 y x 2-17 2.9.6 A sketch of the surface is given below. 3 ∫ F • ds = ∫∫ r sin θ dφ dθ − ∫∫ 2r sin θ drdφ + ∫∫ 3φ rdrdθ . π 2 π Front: ∫ 2 ∫ (r = 3) sin θ dφ dθ = 27π . Bottom: − θ = 0φ =− π π π 3 3 2 ∫ 2r sin ∫ φ =− π r = 0 2 2 π π 2 drdφ = −9π . 2 3  π 27π 2 π 27π 2  . Left: − ∫ ∫ 3 φ = −  rdrdθ = . ∫ 3 φ =  rdrdθ = 2 8 2 8 θ = 0r = 0  θ = 0r = 0  2 3 Right: ∫ Total= 27π − 9π + 27π 2 27π 2 27π 2 + = 18π + . 8 8 4 z 3 y x 2-18