Preview only show first 10 pages with watermark. For full document please download

Respostas - Calculo A - Cap 6 A - Flemming E Gonçalves

Respostas dos exercícios do livro de cálculo A - Flemming e Gonçalves - capítulo 6, seção a.

   EMBED


Share

Transcript

CAPÍTULO 6 6.2 – EXERCÍCIOS – pg. 246 Nos exercícios de 1 a 10, calcular a integral e, em seguida, derivar as respostas para conferir os resultados. 1. dx ∫x 3 x −2 −1 +c= 2 +c −2 2x d  −1  1  = dx  2 x 2  x 3 −3 ∫ x dx =  2. ∫  9 t 2 + 1 t3   d  −1 t3 t 2 2 ( 9 t + t ) dt = 9 . + + c = 3t 3 − + c. ∫ 3 −1 t 2 −3 2 2 d dt 3. 1 −3 1  3 2  + c  = 9t 2 − 2. − . t 2 = 9t 2 + .  3t − 2 t   t3 ∫ (ax 4 + bx 3 + 3c)dx x5 x4 = a + b + 3cx + C. 5 4 d a 5 b 4  a 4 b 3 4 3  x + x + 3cx + C  = 5 x + 4 x + 3c = ax + bx + 3c. dx  5 4 4  5 4.  1 ∫   x + x x dx 3  443 1 5 x 2 1 x2 2 5  −1 1 3  = ∫  x 2 + x 2  dx = + . + c = 2 x + x 2 + c. 1 3  3 5 15  2 2 d  2 5 1 −1 2 5 3 1 x x  + 2 x + x2 + c = 2 x 2 + . .x2 = dx  15 2 15 2 3 x  5. ∫ (2 x ∫ (4 x 2 − 3) 2 dx 4 − 12 x 2 + 9 dx = 4 ) x5 x3 4 − 12 + 9 x + c = x 5 − 4 x 3 + 9 x + c. 5 3 5 d 4 5  4 4 3 2 4 2  x − 4 x + 9 x + c  = 5 x − 12 x + 9 + c = 4 x − 12 x + 9 + c. dx  5  5 6. dx ∫ sen 2 x = ∫ sen −2 x dx = ∫ cos sec 2 x dx = − cot g x + c. d (− cot g x + c ) = cos sec2 x = 1 2 . dx sen x 7.    2 y − 1 dy ∫ 2 y   444 1 1 −21   = ∫ 2 . y2 − . y  dy = 2   3 1 2 y2 1 y2 − . +c 3 2 1 2 2 2 2 32 2 12 2  = y − . y + c = 2 y  y − 1 + c. 3 2 3   2 2 32  2 2 3 12 1 2 12 2 1 − 12 1 − 12 2  = − + − = − y . y c . y . y 2 y y  3  3 2 2 2 2 2   1 = 2y − . 2y d dx 8. ∫ 3t 2 dt 2 = arc tg t + c +3 3 2  d 2 2 1 2  = arc tg t + c . = 2 . 2   dt  3 3t + 3  3 1+ t 9. ∫x 3 x dx 9 x2 x dx = +c ∫ 9 2 d  2 92  2 9 7 3  x + c = . x2 = x x dx  9 9 2  7 2 10. x5 + 2x 2 − 1 ∫ x 4 dx ( = ∫ x + 2x d dx −2 −x −4 x2 x −1 x −3 x2 2 1 dx = +2 − +c= − + 3 +c 2 −1 − 3 2 x 3x )  x2 2  2 x − 2 − 1 . 9 x2 1 2 1 x5 + 2 x 2 − 1  − + 3 + c  = − 2 + = x + − = . x x2 x4 x4 9 x6  2 x 3x  2 445 Nos exercícios de 11 a 31, calcular as integrais indefinidas. 11. x2 ∫ x 2 + 1 dx 1   = ∫ 1 − 2 dx = x − arc tg x + c.  x +1 12. x2 +1 ∫ x 2 dx −1 x 1 ∫ (1 + x )dx = x + − 1 + c = x − x + c. −2 13. sen x dx 2 x ∫ cos =∫ 14. ∫ 9 dx 1− x2 =∫ 15. 3 1 − x2 dx = 3arc sen x + c. 4 dx x − x2 ∫ 4 ∫x 16. sen x 1 . dx = ∫ tg x . sec x dx = sec x + c cos x cos x 2 x2 − 1 dx = 2arc sec x + c. 8 x 4 − 9 x3 + 6 x2 − 2 x + 1 dx ∫ x2 ( ) = ∫ 8 x 2 − 9 x + 6 − 2 x −1 + x −2 dx = 8 x3 9 x2 1 − + 6 x − 2 ln x − + c 3 2 x 446 17.  et 1 ∫  2 + t + t dt 3 1 t2 1 2 3 = et + + ln t + c = et + t 2 + ln t + c. 3 2 2 3 2 18. ∫ cos θ . tg θ dθ = ∫ cos θ . 19. ∫ (e senθ dθ = ∫ senθdθ = − cosθ + c. cosθ − e − x )dx x = ∫ 2 sen h x dx = 2 cosh x + c. 20. ∫ (t + t + 3 t + 4 t + 5 t )dt 3 4 5 6 t2 t 2 t 3 t 4 t 5 = + + + + +c 2 3 4 5 6 2 3 4 5 5 2 t 2 3 3 4 4 5 6 = + t2 + t3 + t4 + t5 + c 2 3 4 5 6 21. x −1 / 3 − 5 ∫ x dx  −4 5  = ∫  x 3 −  dx x  = 22. − 13 1 − 3 ∫2 = 23. x t − 5 ln | x | +c = −3 x − 13 − 5 ln | x | + c. − 2e t + cosh t )dt 2t − 2 et + senh t + c. ln 2 ∫ sec 2 x(cos 3 x + 1)dx 447  1  = ∫ . cos 3 x + sec 2 x  dx = senx + tgx + c. 2  cos x  24. dx , a ≠ 0, constante 2 + a2 ∫ (ax) dx dx 1 =∫ 2 2 = 2 arc tg x + c 2 a x +a a ( x + 1) a =∫ 25. 2 2 x2 − 1 ∫ x 2 + 1 dx 2   = ∫ 1 − 2 dx = x − 2arc tg x + c.  x +1 3 26. ∫ 3  1 8(t − 2)  t +  dt  2 6  1  1 = ∫ 2 (t − 2) 2  t +  dt = ∫ 2 t 2 − 4t + 4  t +  dt  2  2 1 7     = 2 ∫  t 3 + t 2 − 4t 2 − 2t + 4t + 2  dt = 2 ∫  t 3 − t 2 + 2t + 2  dt 2 2     ( )  t4 7 t3  t2 t 4 7t 3 = 2  − . + 2 + 2t  + c = − + 2 t 2 + 4t + c. 4 2 3 2 2 3   27.  ∫  e t − 4 16t + 3 dt t3  5 t4 t −2 8 5 3 =e −2 +3 + c = et − t 4 − t − 2 + c. 5 −2 5 2 4 t 28. 29. ln x ∫ x ln x 2 dx =∫ ln x 1 dx dx = ∫ = ln | x | + c. x 2 ln x 2 x ∫ tg x cos ec 2 x dx 2 =∫ sen 2 x 1 dx = ∫ sec 2 x dx = tg x + c. 2 2 cos x sen x 448 30. ∫ ( x − 1) ( x + 1) 2 ( = ∫ (x 2 dx )( ) = ∫ x 2 − 2 x + 1 x 2 + 2 x + 1 dx 4 ) + 2 x 3 + x 2 − 2 x 3 − 4 x 2 − 2 x + x 2 + 2 x + 1 dx ( ) = ∫ x 4 − 2 x 2 + 1 dx = 31. dt , onde n ∈ z 1 n  n − t 2  ∫ ∫ − 2dt = −2t + c Se n = 0, dt 2 dt =∫ = 2 ln | t | +c 1 n t n −  t 2  ∫ Se n = 1, 1 Se n ≠ 1, 32. x5 x3 − 2 + x + c. 5 3 1  n −  2  −n ∫ t dt = t 1− n +c 1  (1 − n )  n −  2  1 . Encontrar uma primitiva F , da função f ( x) = x 2 / 3 + x, que satisfaça F (1) = 1. F ( x) = ∫ ( ) 5 x 3 x2 x + x dx = + +c 5 2 3 2 3 3 53 x 2 x + +c 5 2 3 1 F (1) = + + c = 1 5 2 F ( x) = 3 1 10 − 6 − 5 − 1 c =1− − = = 5 2 10 10 F ( x) = 33. 3 53 x 2 1 x + − . 5 2 10 Determinar a função f (x) tal que 449 1 + cos 2 x + c 2 d  2 1 1   x + cos 2 x + c  = 2 x + (− sen 2 x).2 = 2 x − sen 2 x. dx  2 2  ∫ f ( x)dx = x 34. 2 Encontrar uma primitiva da função f ( x) = 1 + 1 que se anule no ponto x = 2. x2 x −1 1  1  −2 F ( x) = ∫  2 + 1dx = ∫ x + 1 dx = +x+c=− +x+c −1 x x  1 F ( 2) = − + 2 + c 2 1 1− 4 − 3 c= −2= = 2 2 2 1 3 F ( x) = − + x − x 2 ( 35. ) Sabendo que a função f (x) satisfaz a igualdade. 1 ∫ f ( x)dx = sen x − x cos x − 2 x 2 + c, determinar f (π / 4). d  1 2 1   sen x − x cos x − x + c  = cos x − ( x(− sen x) + cos x) − 2 x dx  2 2  = cos x + x sen x − cos x − x = x sen x − x = x ( sen x − 1) π  π  2  π 2 − 1 π π  π  f   =  sen − 1 =  − 1 = . = 4  4 2 2 4 4  4 36. ( ) 2 −2 . 8 Encontrar uma função f tal que f ′( x) + sen x = 0 e f (0) = 2. f ′( x) + sen x = 0 f ′( x) = − senx ∫ − sen x dx = + cos x + c f ( x) = + cos x + c f (0) = cos 0 + c = 2 c = 2 −1 = 1 ∴ f ( x) = cos x + 1. 450