Preview only show first 10 pages with watermark. For full document please download

Livro - Ressonancia Magnetica - Espanhol - 4-excitaci?n V-03-2

Otimo livro sobre Ressonancia Magnetica. Esta em Espanhol.

   EMBED


Share

Transcript

4. EXCITACIÓN NUCLEAR. (R:03-2) 4.1 4 LA EXCITACIÓN NUCLEAR POR UN PULSO DE RADIOFRECUENCIA Si colocamos una antena emisora con la dirección de máxima emisión hacia el voxel sobre el plano transversal y vamos cambiando la frecuencia de emisión, cuando emitamos a la frecuencia exacta de la frecuencia del movimiento de precesión, los núcleos son capaces de absorber energía, es decir, de ENTRAR EN RESONANCIA. Desde el punto de vista cuántico un estado "UP" pasaría al estado "DOWN" al absorber selectivamente un valor energético exactamente igual a la diferencia de los niveles energéticos que le impone el valor del campo magnético. Cuando los núcleos del voxel entran en resonancia, la magnetización M se desplaza realizando un movimiento de giro en espiral respecto a la dirección del campo magnético Bo a la frecuencia de precesión y el extremo se va separando de su posición de equilibrio moviéndose sobre una esfera imaginaria, describiendo un movimiento conocido como movimiento de NUTACIÓN (Fig.4.1) º M Bo Fig 4.1 Movimiento del vector MAGNETIZACIÓN al entrar en resonancia los núcleos de H del voxel con la emisión de ondas electromagnéticas de frecuencia fp. El movimiento del vector Magnetización es el movimiento medible a escala macroscópica que traduce la entrada en resonancia de los miles de millones de núcleos de H que pueden existir en un elemento de volumen (del orden de magnitud de 1020 en un voxel de tejido nervioso de 1mm3). Recordemos que cada núcleo entrará en resonancia a una frecuencia específica determinada por la Ley de Larmor en función del campo magnético externo que percibe y del entorno bioquímico en que se encuentre. Por ello la emisión de radifrecuencia contiene un ancho de banda de la amplitud adecuada para que puedan entrar en resonancia los núcleos de H que nos interesen.. Este ancho de banda es del orden de los kHz. y está situada simetricamente a la frecuencia impuesta por el campo magnético principal. Por ejemplo a un campo magnético de 1,5 T podríamos encontrar una emisión de radiofrecuencia de ±100 kHz alrededor de la frecuencia de 63,8625 MHz que corresponde a la frecuencia principal de precesión del campo magnético de 1,5 T. 4.2 4. EXCITACIÓN NUCLEAR. (R: 03-2) La separación respecto a la posición de equilibrio se determina por el ángulo αº o ÁNGULO DE INCLINACIÓN o TIP ANGLE o FLIP ANGLE. Su valor depende entre otros factores, de la potencia y del tiempo de la emisión de la RF. En IRM la duración de la emisión de RF es de microsegundos por lo que se denominan PULSO DE RF y se cuantifican por el valor de αº. Se habla entonces de un αº-PULSO. Un pulso de 90º desplazaría el vector magnetización sobre el plano x,y. Un pulso inversor invierte la posición de la magnetización al colocarla 180º respecto a su posición de equilibrio. Después de un pulso de 90º, la componente longitudinal de la magnetización es nula ya que la magnetización está sobre el plano x,y. En esta posición el número de núcleos de estado "up" iguala al número de núcleos en estado "down". Se habla entonces de ESTADO DE SATURACIÓN. Un voxel estará tanto mas saturado después de un pulso, cuanto menor sea la componente longitudinal de la magnetización. Aparte del desplazamiento de la magnetización, uno de los efectos de la emisión de radiofrecuencia es que inmediatamente después de aplicar un pulso de radiofrecuencia los spin están moviéndose exactamente a la misma frecuencia, es decir a la frecuencia de emisión. Por tanto inmediatamente después de un pulso de radiofrecuencia los spin están en fase. A medida que pase el tiempo irán desfasándose dependiendo de la diversidad de campos magnéticos que perciban individualmente los núcleos del voxel. 4.1. LA REPRESENTACIÓN EN UN SISTEMA DE REFERENCIA ROTATORIO Si observamos el movimiento del desplazamiento del vector magnetización a lo largo de un pulso de 90º desde un punto fijo externo, podemos ver como la magnetización realiza un movimiento giratorio dando vueltas alrededor del eje z a la frecuencia de emisión, pasando por delante y luego por detrás a medida que se va inclinando respecto al eje z. El extremo se mueve sobre la superficie de una esfera imaginaria separándose cada vez mas de su posición alineada con el campo magnético (Fig 4.2.) Este sistema de referencia fijo en el espacio se representa por (x,y,z). z Fig 4.2. Representación del movimiento del vector magnetización a lo largo de un pulso de 90º tomando una referencia de observación fija en el espacio M y x Una manera mas simplificada de representar el movimiento de la magnetización en un pulso de 90º, es observándolo como si estuviésemos sobre el eje z y girásemos sobre este eje a la frecuencia de emisión. La magnetización se iría angulando, pero al estar dando vueltas como nosotros siempre la veríamos en el mismo lado. Este sistema de referencia móvil girando a la frecuencia de emisión se representa por (x',y',z') y permite simplificar la representación de todos los fenómenos que se realizan a la frecuencia de Larmor. Fig 4.3. 4. EXCITACIÓN NUCLEAR. (R:03-2) 4.3 z M Fig 4.3. Representación del movimiento del vector magnetización a lo largo de un pulso de 90º tomando como referencia de observación un sistema móvil giratorio a la frecuencia de Larmor y x En IRM se utiliza constantemente la representación mediante un sistema de referencia móvil. Por ejemplo inmediatamente después del pulso de 90º todos los spins están en fase, esto quiere decir que se están moviendo a la misma frecuencia de precesión. Esto puede simplemente representarse en el sistema móvil como un único vector sobre el plano x’,y’ . Fig 4.4. z Fig 4.4. Representación sobre el plano x,’y ‘de la proyección de los spins del voxel inmediatamente después de un pulso de 90º tomando como sistema de referencia un sistema móvil a la frecuencia de precesión. Al estar todos los spins en fase quedan representados por un vector único. y x 4.2. SELECTIVIDAD DE LA RESONANCIA MAGNÉTICA La RESONANCIA MAGNÉTICA es un fenómeno muy selectivo, de manera que si tenemos dos voxels colocados bajo distintos campos magnéticos podremos excitar selectivamente uno u otro con tan sólo cambiar la frecuencia de emisión de la antena. (Fig 4.5.) B a B b Bc fp b fp a fp b fp c Fig 4.5. Excitación selectiva. Si los tres voxels están bajo campos magnéticos de distinto valor, Ba, Bb, Bc, sus frecuencias de resonancia son distintas. Al enviar una emisión a la frecuencia correspondiente al voxel fpb tan solo éste entra en resonancia. 4.4 4. EXCITACIÓN NUCLEAR. (R: 03-2) En la selectividad de la resonancia se basa la selección del plano tomográfico. En efecto (Fig 4.6.) la colocación de un gradiente magnético (Grad B) implica que los núcleos perciban un campo magnético distinto según su situación (z). Aparte de las variaciones del entorno bioquímico (de un orden de magnitud muy inferior) podremos hacer entrar en resonancia selectivamente todos los núcleos que estén dentro de las posiciones excitadas por la banda de frecuencias empleada en el pulso emisor. Con ello se excitaran todos los voxels contenidos en un plano perpendicular a la dirección del gradiente y cuyo grosor dependerá, una vez definido el valor del gradiente, del ancho de banda utilizado en el pulso emisor. Por tanto, cuando sobre un voxel hablamos de frecuencia de excitación, nos referimos pues a la frecuencia en el punto central del voxel (frecuencia central del pulso de emisión: fR) que dependerá del campo magnético principal (B0) y del valor añadido del gradiente magnético.(B grad). Junto a la frecuencia de excitación se considera una banda de frecuencias (∆f) adecuada al volumen que queremos que entre en resonancia. Debemos tener en cuenta que la suma de los campos magnéticos B0 + B grad es una suma vectorial. B B fp b +- a B fp a fp B b c fp b f c Grad B Z +- Z Fig 4.6: El establecimiento de un gradiente magnético (Grad B) en una dirección (z) , implica que exista una diferencias de frecuencias en los núcleos de un voxel. Para que entren en resonancia la frecuencia de la emisión tiene que ser la que corresponde al punto central del voxel junto con un ancho de banda de frecuencias adecuada al grosor del voxel . El ancho de banda se sitúa simétricamente alrededor de la frecuencia principal. Todos los núcleos en un plano de voxels perpendicular a la dirección de z que perciban las frecuencias comprendidas en el ancho de banda del pulso emisor, entrarán selectivamente en resonancia. Incluso dentro del voxel, al tener los núcleos distintas frecuencias de resonancia pueden ser excitados selectivamente. En realidad en IRM podemos agrupar los núcleos de H en dos grandes poblaciones: los que forman parte de las moléculas lipídicas (con radicales -CH3, -CH2-) y los que forman parte de las moléculas de agua (con radicales - OH). Éstos dos conjuntos de núcleos se agrupan entorno a frecuencias de resonancia ligeramente distintas pero que pueden ser excitadas de forma selectiva aunque estén en el mismo voxel. 4. EXCITACIÓN NUCLEAR. (R:03-2) 4.5 Si nos referimos únicamente a los núcleos del agua y adoptamos la forma simplificada de aceptar que el agua se encuentra en dos estados: agua libre y agua ligada, dentro de un determinado voxel sometido a una frecuencia central (fR) del pulso de emisión, el efecto sobre los dos pools del agua no es idéntico. En efecto mientras que en el agua libre el campo magnético debido al entorno bioquímico (B BIOQ ) es en promedio poco variante debido a la movilidad del agua, en los H del agua ligada formando capas de hidratación, los núcleos están sometidos a campos magnéticos bioquímicos muy diferentes, lo que hace que sus frecuencias de resonancia dependan mucho de su entorno y presenten una gran dispersión. En consecuencia mientras las frecuencias del agua libre se agrupan junto a la frecuencia principal marcada por el valor del campo magnético externo (B0+ BGRAD), las frecuencias del agua ligada presentarán una gran variabilidad. Ello implica que no toda el agua ligada en un voxel entre en resonancia al no estar abarcada por la banda de frecuencias del pulso excitador. (Fig 4.7) Pool de agua libre Pool de agua ligada f fr Fig 4,7 Espectro de frecuencias del agua en un voxel. fR es la frecuencia central de resonancia del voxel que depende del valor del campo magnético externo (B0 + B GRAD) El pool de agua libre se agrupa alrededor de la frecuencia central, debido a la poca variabilidad sobre los núcleos del valor del BBIOQ Por el contrario el pool de agua ligada presenta un espectro muy amplio de frecuencias debido a la gran variabilidad del BBIOQ percibido por los núcleos de H. La amplitud del pulso se centra en la frecuencia central con lo que menos núcleos del agua ligada entran en resonancia. En la figura se ha simulado una distribución de frecuencias correspondientes a una proporción igual de agua libre y agua ligada. Las imágenes por RM se obtendrán enviando pulsos de distintos valores separados a intervalos de tiempo convenientes, lo que constituye las SECUENCIAS DE PULSOS. ----------