Preview only show first 10 pages with watermark. For full document please download

Crc-shackelford-materials Science And Engineering Handbook

MATERIALS SCIENCE AND ENGINEERING HANDBOOK

   EMBED


Share

Transcript

Shackelford, James F. et al “Frontmatter” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001 CRC MATERIALS SCIENCE AND ENGINEERING HANDBOOK THIRD EDITION ©2001 CRC Press LLC CRC MATERIALS SCIENCE AND ENGINEERING HANDBOOK THIRD EDITION James F. Shackelford Professor of Materials Science and Engineering Division of Materials Science and Engineering and Associate Dean of the College of Engineering University of California, Davis William Alexander Research Engineer Division of Materials Science and Engineering University of California, Davis CRC Press Boca Raton London New York Washington, D.C. ©2001 CRC Press LLC disclaimer Page 1 Wednesday, October 25, 2000 1:50 PM Library of Congress Cataloging-in-Publication Data CRC materials science and engineering handbook / [edited by] James F. Shackelford, William Alexander.—3rd ed. p. cm. Includes bibliographical references and index. ISBN 0-8493-2696-6 (alk. paper) 1. Materials—Handooks, manuals, etc. I. Shackelford, James F. II. Alexander, William, 1950 Feb. 13TA403.4 .C74 2000 620.1′1—dc21 00-048567 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe. © 2001 by CRC Press LLC No claim to original U.S. Government works International Standard Book Number 0-8493-2696-6 Library of Congress Card Number 00-048567 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper ©2001 CRC Press LLC TABLE OF CONTENTS CHAPTER 1 Structure of Materials Electronic Structure of Selected Elements Available Stable Isotopes of the Elements Periodic Table of the Elements Periodic Table of Elements in Metallic Materials Periodic Table of Elements in Ceramic Materials Periodic Table of Elements in Polymeric Materials Periodic Table of Elements in Semiconducting Materials Periodic Table of Elements in Superconducting Metals Atomic and Ionic Radii of the Elements Bond Length Values Between Elements Periodic Table of Carbon Bond Lengths (Å) Carbon Bond Lengths Carbon Bond Lengths in Polymers Bond Angle Values Between Elements Key to Tables of Crystal Structure of the Elements The Seven Crystal Systems The Fourteen Bravais Lattices Periodic Table of the Body Centered Cubic Elements Periodic Table of the Face Centered Cubic Elements Periodic Table of the Hexagonal Close Packed Elements Periodic Table of the Hexagonal Elements ©2001 CRC Press LLC Table of Contents Structure of Ceramics Atomic Mass of Selected Elements Solid Density of Selected Elements Density of Iron and Iron Alloys Density of Wrought Stainless Steels Density of Stainless Steels and Heat-Resistant Alloys Density of Aluminum Alloys Density of Copper and Copper Alloys Density of Magnesium and Magnesium Alloys Density of Nickel and Nickel Alloys Density of Lead and Lead Alloys Density of Tin and Tin Alloys Density of Wrought Titanium Alloys Density of Titanium and Titanium alloys Density of Zinc and Zinc Alloys Density of Permanent Magnet Materials Density of Precious Metals Density of Superalloys Density of Selected Ceramics Density of Glasses Specific Gravity of Polymers Density of 55MSI Graphite/6061 Aluminum Composites Density of Graphite Fiber Reinforced Metals Density of Si3N4 Composites CHAPTER 2 Composition of Materials Composition Limits of Tool Steels Composition Limits of Gray Cast Irons Composition Limits of Ductile Irons Composition Ranges for Malleable Irons Composition Ranges for Carbon Steels Composition Ranges for Resulfurized Carbon Steels Composition Ranges for Alloy Steels ©2001 CRC Press LLC CRC Handbook of Materials Science & Engineering Table of Contents Composition of Stainless Steels Composition of Wrought Coppers and Copper Alloys Classification of Copper and Copper Alloys Composition Ranges for Cast Aluminum Alloys Composition Ranges for Wrought Aluminum Alloys Composition of Tin and Tin Alloys Compositions of ACI Heat-Resistant Casting Alloys Composition of Zinc Die Casting Alloys Compositions of Wrought Superalloys Typical Composition of Glass-Ceramics CHAPTER 3 Phase Diagram Sources Phase Diagram Sources CHAPTER 4 Thermodynamic and Kinetic Data Bond Strengths in Diatomic Molecules Bond Strengths of Polyatomic Molecules Solubility of Copper and Copper Alloys Heat of Formation of Inorganic Oxides Phase Change Thermodynamic Properties for The Elements Phase Change Thermodynamic Properties of Oxides Melting Points of the Elements Melting Points of Elements and Inorganic Compounds Melting Points Of Ceramics Heat of Fusion For Elements and Inorganic Compounds Heats of Sublimation of Metals and Their Oxides Key to Tables of Thermodynamic Coefficients Thermodynamic Coefficients for Selected Elements Thermodynamic Coefficients for Oxides Entropy of the Elements Vapor Pressure of the Elements at Very Low Pressures Vapor Pressure of the Elements at Moderate Pressures Vapor Pressure of the Elements at High Pressures Vapor Pressure of Elements and Inorganic Compounds ©2001 CRC Press LLC Shackelford & Alexander Table of Contents Values of The Error Function Diffusion in Metallic Systems Diffusion of Metals into Metals Diffusion in Semiconductors CHAPTER 5 Thermal Properties of Materials Specific Heat of the Elements at 25 ˚C Heat Capacity of Ceramics Specific Heat of Polymers Specific Heat of Fiberglass Reinforced Plastics Thermal Conductivity of Metals (Part 1) Thermal Conductivity of Metals (Part 2) Thermal Conductivity of Metals (Part 3) Thermal Conductivity of Metals (Part 4) Thermal Conductivity of Alloy Cast Irons Thermal Conductivity of Iron and Iron Alloys Thermal Conductivity of Aluminum and aluminum alloys Thermal Conductivity of Copper and Copper Alloys Thermal Conductivity of Magnesium and Magnesium Alloys Thermal Conductivity of Nickel and Nickel Alloys Thermal Conductivity of Lead and Lead Alloys Thermal Conductivity of Tin, Titanium, Zinc and their Alloys Thermal Conductivity of Pure Metals Thermal Conductivity of Ceramics Thermal Conductivity of Glasses Thermal Conductivity of Cryogenic Insulation Thermal Conductivity of Cryogenic Supports Thermal Conductivity of Special Concretes Thermal Conductivity of SiC-Whisker-Reinforced Ceramics Thermal Conductivity of Polymers Thermal Conductivity of Fiberglass Reinforced Plastics Thermal Expansion of Wrought Stainless Steels Thermal Expansion of Wrought Titanium Alloys ©2001 CRC Press LLC CRC Handbook of Materials Science & Engineering Table of Contents Thermal Expansion of Graphite Magnesium Castings Linear Thermal Expansion of Metals and Alloys Thermal Expansion of Ceramics Thermal Expansion of SiC-Whisker-Reinforced Ceramics Thermal Expansion of Glasses Thermal Expansion of Polymers Thermal Expansion Coefficients of Materials for Integrated Circuits Thermal Expansion of Silicon Carbide SCS–2–Al ASTM B 601 Temper Designation Codes for Copper and Copper Alloys Temper Designation System for Aluminum Alloys Tool Steel Softening After 100 Hours Thermoplastic Polyester Softening with Temperature Heat-Deflection Temperature of Carbon- and Glass-Reinforced Engineering Thermoplastics CHAPTER 6 Mechanical Properties of Materials Tensile Strength of Tool Steels Tensile Strength of Gray Cast Irons Tensile Strength of Gray Cast Iron Bars Tensile Strength of Ductile Irons Tensile Strength of Malleable Iron Castings Tensile Strength of Austenitic Stainless Steels Tensile Strength of Ferritic Stainless Steels Tensile Strength of Precipitation-Hardening Austenitic Stainless Steels Tensile Strength of High–Nitrogen Austenitic Stainless Steels Tensile Strength of Martensitic Stainless Steels Tensile Strength of Wrought Coppers and Copper Alloys Tensile Strength of Aluminum Casting Alloys Tensile Strength of Wrought Aluminum Alloys Tensile Strength of Cobalt-Base Superalloys Tensile Strength of Nickel-Base Superalloys ©2001 CRC Press LLC Shackelford & Alexander Table of Contents Tensile Strength of Wrought Titanium Alloys at Room Temperature Tensile Strength of Wrought Titanium Alloys at High Temperature Tensile Strength of Refractory Metal Alloys Tensile Strength of Ceramics Tensile Strength of Glass Tensile Strength of Polymers Tensile Strength of Fiberglass Reinforced Plastics Tensile Strength of Carbon- and Glass-Reinforced Engineering Thermoplastics Strength of Graphite Fiber Reinforced Metals Tensile Strength of Graphite/Magnesium Castings Tensile Strength of Graphite/Aluminum Composites Tensile Strength of Graphite/Aluminum Composites Tensile Strength of Silicon Carbide SCS–2–Al Ultimate Tensile Strength of Investment Cast Silicon Carbide SCS–Al Ultimate Tensile Strength of Silicon Carbide–Aluminum Alloy Composites Tensile Strength of SiC-Whisker–Reinforced Aluminum Alloy Ultimate Tensile Strength of Aluminum Alloy Reinforced with SiC Whiskers vs. Temperature Ultimate Tensile Strength of Reinforced Aluminum Alloy vs. Temperature Tensile Strength of Polycrystalline–Alumina–Reinforced Aluminum Alloy Tensile Strength of Boron/Aluminum Composites Compressive Strength of Gray Cast Iron Bars Compressive Strength of Ceramics Compressive Strength of Fiberglass Reinforced Plastic Ultimate Compressive Strength of Investment Cast Silicon Carbide SCS–Al Yield Strength of Tool Steels Yield Strength of Ductile Irons Yield Strength of Malleable Iron Castings Yield Strength of Austenitic Stainless Steels ©2001 CRC Press LLC CRC Handbook of Materials Science & Engineering Table of Contents Yield Strength of Ferritic Stainless Steels Yield Strength of Martensitic Stainless Steels Yield Strength of Precipitation-Hardening Austenitic Stainless Steels Yield Strength of High–Nitrogen Austenitic Stainless Steels Yield Strength of Wrought Coppers and Copper Alloys Yield Strength of Cast Aluminum Alloys Yield Strength of Wrought Aluminum Alloys Yield Strength of Wrought Titanium Alloys at Room Temperature Yield Strength of Wrought Titanium Alloys at High Temperature Yield Strength of Cobalt-Base Superalloys Yield Strength of Nickel-Base Superalloys Yield Strength of Commercially Pure Tin Yield Strength of Polymers Yield Strength of SiC-Whisker–Reinforced Aluminum Alloy Yield Strength of Reinforced Aluminum Alloy vs. Temperature Yield Strength of Polycrystalline–Alumina–Reinforced Aluminum Alloy Compressive Yield Strength of Polymers Flexural Strength of Polymers Flextural Strength of Fiberglass Reinforced Plastics Shear Strength of Wrought Aluminum Alloys Torsion Shear Strength of Gray Cast Fe Hardness of Gray Cast Irons Hardness of Gray Cast Iron Bars Hardness of Malleable Iron Castings Hardness of Ductile Irons Hardness of Tool Steels Hardness of Austenitic Stainless Steels Hardness of Ferritic Stainless Steels Hardness of Martensitic Stainless Steels Hardness of Precipitation-Hardening Austenitic Stainless Steels Machinability Rating of Wrought Coppers and Copper Alloys Hardness of Wrought Aluminum Alloys Hardness of Wrought Titanium Alloys at Room Temperature ©2001 CRC Press LLC Shackelford & Alexander Table of Contents Hardness of Ceramics Microhardness of Glass Hardness of Polymers Hardness of Si3N4 and Al2O3 Composites Coefficient of Static Friction for Polymers Abrasion Resistance of Polymers Fatigue Strength of Wrought Aluminum Alloys Reversed Bending Fatigue Limit of Gray Cast Iron Bars Impact Energy of Tool Steels Impact Strength of Wrought Titanium Alloys at Room Temperature Impact Strength of Polymers Impact Strength of Fiberglass Reinforced Plastics Impact Strength of Carbon- and Glass-Reinforced Engineering Thermoplastics Fracture Toughness of Si3N4 and Al2O3 Composites Tensile Modulus of Gray Cast Irons Tension Modulus of Treated Ductile Irons Tensile Modulus of Fiberglass Reinforced Plastics Tensile Modulus of Graphite/Aluminum Composites Tensile Modulus of Investment Cast Silicon Carbide SCS–Al Tensile Modulus of Silicon Carbide SCS–2–Al Young’s Modulus of Ceramics Young’s Modulus of Glass Elastic Modulus of Wrought Stainless Steels Modulus of Elasticity of Wrought Titanium Alloys Modulus of Elasticity in Tension for Polymers Modulus of Elasticity of 55MSI Graphite/6061 Aluminum Composites Modulus of Elasticity of Graphite/Magnesium Castings Modulus of Elasticity of Graphite/Aluminum Composites Modulus of Elasticity of Graphite Fiber Reinforced Metals Modulus of Elasticity of SiC-Whisker–Reinforced Aluminum Alloy ©2001 CRC Press LLC CRC Handbook of Materials Science & Engineering Table of Contents Modulus of Elasticity of Polycrystalline–Alumina–Reinforced Aluminum Alloy Modulus of Elasticity of Boron/Aluminum Composites Compression Modulus of Treated Ductile Irons Modulus of Elasticity in Compression for Polymers Bulk Modulus of Glass Shear Modulus of Glass Torsional Modulus of Gray Cast Irons Torsion Modulus of Treated Ductile Irons Modulus of Elasticity in Flexure for Polymers Flexural Modulus of Fiberglass Reinforced Plastics Flexural Modulus of Carbon- and Glass-Reinforced Engineering Thermoplastics Modulus of Rupture for Ceramics Rupture Strength of Refractory Metal Alloys Rupture Strength of Superalloys Modulus of Rupture for Si3N4 and Al2O3Composites Poisson's Ratio of Wrought Titanium Alloys Poisson’s Ratio for Ceramics Poisson’s Ratio of Glass Poisson's Ratio of Silicon Carbide SCS–2–Al Compression Poisson’s Ratio of Treated Ductile Irons Torsion Poisson’s Ratio of Treated Ductile Irons Elongation of Tool Steels Elongation of Ductile Irons Elongation of Malleable Iron Castings Elongation of Ferritic Stainless Steels Elongation of Martensitic Stainless Steels Elongation of Precipitation-Hardening Austenitic Stainless Steels Elongation of High–Nitrogen Austenitic Stainless Steels Total Elongation of Cast Aluminum Alloys Elongation of Wrought Coppers and Copper Alloys Elongation of Commercially Pure Tin ©2001 CRC Press LLC Shackelford & Alexander Table of Contents Elongation of Cobalt-Base Superalloys Elongation of Nickel-Base Superalloys Ductility of Refractory Metal Alloys Elongation of Wrought Titanium Alloys at Room Temperature Elongation of Wrought Titanium Alloys at High Temperature Total Elongation of Polymers Elongation at Yield for Polymers Ultimate Tensile Elongation of Fiberglass Reinforced Plastics Total Strain of Silicon Carbide SCS–2–Al Area Reduction of Tool Steels Reduction in Area of Austenitic Stainless Steels Reduction in Area of Ferritic Stainless Steels Reduction in Area of High–Nitrogen Austenitic Stainless Steels Reduction in Area of Precipitation-Hardening Austenitic Stainless Steels Reduction in Area of Martensitic Stainless Steels Reduction in Area of Commercially Pure Tin Area Reduction of Wrought Titanium Alloys at Room Temperature Area Reduction of Wrought Titanium Alloys at High Temperature Strength Density Ratio of Graphite Fiber Reinforced Metals Modulus Density Ratio of Graphite Fiber Reinforced Metals Viscosity of Glasses Internal Friction of SiO2 Glass Surface Tension of Elements at Melting Surface Tension of Liquid Elements CHAPTER 7 Electrical Properties of Materials Electrical Conductivity of Metals Electrical Resistivity of Metals Electrical Resistivity of Alloy Cast Irons Resistivity of Ceramics Volume Resistivity of Glass Volume Resistivity of Polymers ©2001 CRC Press LLC CRC Handbook of Materials Science & Engineering Table of Contents Critical Temperature of Superconductive Elements Dissipation Factor for Polymers Dielectric Strength of Polymers Step Dielectric Strength of Polymers Dielectric Constant of Polymers Dielectric Breakdown of Polymers Dielectric Breakdown of Polymers Tangent Loss in Glass Electrical Permittivity of Glass Arc Resistance of Polymers CHAPTER 8 Optical Properties of Materials Transmission Range of Optical Materials Transparency of Polymers Refractive Index of Polymers Dispersion of Optical Materials CHAPTER 9 Chemical Properties of Materials Water Absorption of Polymers Standard Electromotive Force Potentials Galvanic Series of Metals Galvanic Series of Metals in Sea Water Corrosion Rate of Metals in Acidic Solutions Corrosion Rate of Metals in Neutral and Alkaline Solutions Corrosion Rate of Metals in Air Corrosion Rates of 1020 Steel at 70˚F Corrosion Rates of Grey Cast Iron at 70˚F Corrosion Rates of Ni–Resist Cast Iron at 70˚F Corrosion Rates of 12% Cr Steel at 70˚ Corrosion Rates of 17% Cr Steel at 70˚F Corrosion Rates of 14% Si Iron at 70˚F Corrosion Rates of Stainless Steel 301 at 70˚F Corrosion Rates of Stainless Steel 316 at 70˚F Corrosion Rates of Aluminum at 70˚F ©2001 CRC Press LLC Shackelford & Alexander Table of Contents Corrosion Resistance of Wrought Coppers and Copper Alloys Corrosion Rates of 70-30 Brass at 70˚F Corrosion Rates of Copper, Sn-Braze, Al-Braze at 70˚F Corrosion Rates of Silicon Bronze at 70˚F Corrosion Rates of Hastelloy at 70˚F Corrosion Rates of Inconel at 70˚F Corrosion Rates of Nickel at 70˚F Corrosion Rates of Monel at 70˚F Corrosion Rates of Lead at 70˚F Corrosion Rates of Titanium at 70˚F Corrosion Rates of ACI Heat–Resistant Castings Alloys in Air Corrosion Rates for ACI Heat–Resistant Castings Alloys in Flue Gas Flammability of Polymers Flammability of Fiberglass Reinforced Plastics CHAPTER 10 Selecting Structural Properties Selecting Atomic Radii of the Elements Selecting Ionic Radii of the Elements Selecting Bond Lengths Between Elements Selecting Bond Angles Between Elements Selecting Density of the Elements CHAPTER 11 Selecting Thermodynamic and Kinetic Properties Selecting Bond Strengths in Diatomic Molecules Selecting Bond Strengths of Polyatomic Molecules Selecting Heat of Formation of Inorganic Oxides Selecting Specific Heat of Elements Selecting Specific Heat of Polymers Selecting Melting Points of The Elements Selecting Melting Points of Elements and Inorganic Compounds Selecting Melting Points of Ceramics Selecting Heat of Fusion For Elements and Inorganic Compounds Selecting Entropy of the Elements ©2001 CRC Press LLC CRC Handbook of Materials Science & Engineering Table of Contents Selecting Diffusion Activation Energy in Metallic Systems CHAPTER 12 Selecting Thermal Properties Selecting Thermal Conductivity of Metals Selecting Thermal Conductivity of Metals at Temperature Selecting Thermal Conductivity of Alloy Cast Irons Selecting Thermal Conductivity of Ceramics Selecting Thermal Conductivity of Ceramics at Temperature Selecting Thermal Conductivity of Polymers Selecting Thermal Expansion of Tool Steels Selecting Thermal Expansion of Tool Steels at Temperature Selecting Thermal Expansion of Alloy Cast Irons Selecting Thermal Expansion of Ceramics Selecting Thermal Expansion of Glasses Selecting Thermal Expansion of Polymers Selecting Thermal Expansion Coefficients for Materials used in Integrated Circuits Selecting Thermal Expansion Coefficients for Materials used in Integrated Circuits at Temperature CHAPTER 13 Selecting Mechanical Properties Selecting Tensile Strength of Tool Steels Selecting Tensile Strength of Gray Cast Irons Selecting Tensile Strength of Ductile Irons Selecting Tensile Strengths of Malleable Iron Castings Selecting Tensile Strengths of Aluminum Casting Alloys Selecting Tensile Strengths of Wrought Aluminum Alloys Selecting Tensile Strengths of Ceramics Selecting Tensile Strengths of Glass Selecting Tensile Strengths of Polymers Selecting Compressive Strengths of Gray Cast Iron Bars Selecting Compressive Strengths of Ceramics Selecting Compressive Strengths of Polymers Selecting Yield Strengths of Tool Steels ©2001 CRC Press LLC Shackelford & Alexander Table of Contents Selecting Yield Strengths of Ductile Irons Selecting Yield Strengths of Malleable Iron Castings Selecting Yield Strengths of Cast Aluminum Alloys Selecting Yield Strengths of Wrought Aluminum Alloys Selecting Yield Strengths of Polymers Selecting Compressive Yield Strengths of Polymers Selecting Flexural Strengths of Polymers Selecting Shear Strengths of Wrought Aluminum Alloys Selecting Torsional Shear Strengths of Gray Cast Iron Bars Selecting Hardness of Tool Steels Selecting Hardness of Gray Cast Irons Selecting Hardness of Gray Cast Iron Bars Selecting Hardness of Ductile Irons Selecting Hardness of Malleable Iron Castings Selecting Hardness of Wrought Aluminum Alloys Selecting Hardness of Ceramics Selecting Microhardness of Glass Selecting Hardness of Polymers Selecting Coefficients of Static Friction for Polymers Selecting Abrasion Resistance of Polymers Selecting Fatigue Strengths of Wrought Aluminum Alloys Selecting Reversed Bending Fatigue Limits of Gray Cast Iron Bars Selecting Impact Energy of Tool Steels Selecting Impact Strengths of Polymers Selecting Tensile Moduli of Gray Cast Irons Selecting Tensile Moduli of Treated Ductile Irons Selecting Young’s Moduli of Ceramics Selecting Young’s Moduli of Glass Selecting Moduli of Elasticity in Tension for Polymers Selecting Compression Moduli of Treated Ductile Irons Selecting Modulus of Elasticity in Compression for Polymers Selecting Bulk Moduli of Glass ©2001 CRC Press LLC CRC Handbook of Materials Science & Engineering Table of Contents Selecting Moduli of Elasticity in Flexure of Polymers Selecting Shear Moduli of Glass Selecting Torsional Moduli of Gray Cast Irons Selecting Torsional Moduli of Treated Ductile Irons Selecting Moduli of Rupture for Ceramics Selecting Poisson’s Ratios for Ceramics Selecting Poisson’s Ratios of Glass Selecting Compression Poisson’s Ratios of Treated Ductile Irons Selecting Torsion Poisson’s Ratios of Treated Ductile Irons Selecting Elongation of Tool Steels Selecting Elongation of Ductile Irons Selecting Elongation of Malleable Iron Castings Selecting Total Elongation of Cast Aluminum Alloys Selecting Total Elongation of Polymers Selecting Elongation at Yield of Polymers Selecting Area Reduction of Tool Steels CHAPTER 14 Selecting Electrical Properties Selecting Electrical Resistivity of Alloy Cast Irons Selecting Resistivity of Ceramics Selecting Volume Resistivity of Glass Selecting Volume Resistivity of Polymers Selecting Critical Temperature of Superconductive Elements Selecting Dissipation Factor for Polymers at 60 Hz Selecting Dissipation Factor for Polymers at 1 MHz Selecting Dielectric Strength of Polymers Selecting Dielectric Constants of Polymers at 60 Hz Selecting Dielectric Constants of Polymers at 1 MHz Selecting Tangent Loss in Glass Selecting Tangent Loss in Glass by Temperature Selecting Tangent Loss in Glass by Frequency Selecting Electrical Permittivity of Glass Selecting Electrical Permittivity of Glass by Frequency ©2001 CRC Press LLC Shackelford & Alexander Table of Contents Selecting Arc Resistance of Polymers CHAPTER 15 Selecting Optical Properties Selecting Transmission Range of Optical Materials Selecting Transparency of Polymers Selecting Refractive Indices of Glasses Selecting Refractive Indices of Polymers CHAPTER 16 Selecting Chemical Properties Selecting Water Absorption of Polymers Selecting Iron Alloys in 10% Corrosive Medium Selecting Iron Alloys in 100% Corrosive Medium Selecting Nonferrous Metals for use in a 10% Corrosive Medium Selecting Nonferrous Metals for use in a 100% Corrosive Medium Selecting Corrosion Rates of Metals Selecting Corrosion Rates of Metals in Corrosive Environments Selecting Flammability of Polymers ©2001 CRC Press LLC CRC Handbook of Materials Science & Engineering 2.1 Front Matter Page xvii Wednesday, December 31, 1969 17:00 Dedication To Penelope and Scott Li-Li and Cassie ©2001 CRC Press LLC Shackelford & Alexander Shackelford, James F. et al “Structure of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001 3.0 Structure Page 1 Wednesday, December 31, 1969 17:00 CHAPTER 1 Structure of Materials List of Tables Subatomic Structure Electronic Structure of Selected Elements Available Stable Isotopes of the Elements Atomic Structure Periodic Table of the Elements Periodic Table of Elements in Metallic Materials Periodic Table of Elements in Ceramic Materials Periodic Table of Elements in Polymeric Materials Periodic Table of Elements in Semiconducting Materials Periodic Table of Elements in Superconducting Metals Bond Structure Atomic and Ionic Radii of the Elements Bond Length Values Between Elements Periodic Table of Carbon Bond Lengths (Å) Carbon Bond Lengths Carbon Bond Lengths in Polymers Bond Angle Values Between Elements Crystal Structure Key to Tables of Crystal Structure of the Elements The Seven Crystal Systems ©2001 CRC Press LLC 1 3.0 Structure Page 2 Wednesday, December 31, 1969 17:00 Structural Properties List of Tables (Continued) The Fourteen Bravais Lattices Periodic Table of the Body Centered Cubic Elements Periodic Table of the Face Centered Cubic Elements Periodic Table of the Hexagonal Close Packed Elements Periodic Table of the Hexagonal Elements Structure of Ceramics Density Atomic Mass of Selected Elements Solid Density of Selected Elements Density of Iron and Iron Alloys Density of Wrought Stainless Steels Density of Stainless Steels and Heat-Resistant Alloys Density of Aluminum Alloys Density of Copper and Copper Alloys Density of Magnesium and Magnesium Alloys Density of Nickel and Nickel Alloys Density of Lead and Lead Alloys Density of Tin and Tin Alloys Density of Wrought Titanium Alloys Density of Titanium and Titanium alloys Density of Zinc and Zinc Alloys Density of Permanent Magnet Materials Density of Precious Metals Density of Superalloys Density of Selected Ceramics Density of Glasses Specific Gravity of Polymers Density of 55MSI Graphite/6061 Aluminum Composites Density of Graphite Fiber Reinforced Metals Density of Si3N4 Composites ©2001 CRC Press LLC 2 CRC Handbook of Materials Science & Engineering 3.1 Structure Page 3 Wednesday, December 31, 1969 17:00 Structural Properties Table 1. ELECTRONIC At. Element No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Hydrogen Helium Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon Sodium Magnesium Aluminum Silicon Phosphorus Sulfur Chlorine Argon Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon STRUCTURE OF SELECTED ELEMENTS Sym H He Li Be B C N O F N Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Electronic Configuration 1s 2s 2p 3s 3p 1 2 . 1 . 2 . 2 1 . 2 2 . 2 3 . 2 4 . 2 5 . 2 6 . . . 1 . . . 2 . . . 2 1 . . . 2 2 . . . 2 3 . . . 2 4 . . . 2 5 . . . 2 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3d 4s 1 2 3 5 5 6 7 8 10 10 10 10 10 10 10 10 . . . . . . . . . . . . . . . . . . 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 . . . . . . . . . . . . . . . . . . 4p 4d 1 2 3 4 5 6 . . . . . . . . . . . . . . . . . . 1 2 4 5 6 7 8 10 10 10 10 10 10 10 10 10 4f 5s 5p 5d 5f 6s 6p 6d 7s 1 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 1 2 3 5 5 6 ©2001 CRC Press LLC Shackelford & Alexander 3 3.1 Structure Page 4 Wednesday, December 31, 1969 17:00 Structural Properties At. Element No. Sym Electronic Configuration 1s 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Cesium Barium Lantium Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Asatine Radon Francium Radium Actinium Thorium Protoactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Ce Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lw 2s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2p 3s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3p 3d 4s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4p 4d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4f 5s 2 3 4 5 6 7 7 9 10 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5p 5d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5f 6p 6d 7s 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 3 4 5 6 9 9 10 10 10 10 10 10 10 10 . . . . . . . . . . . . . . . . . 6s 2 3 4 6 7 7 9 10 11 12 13 14 14 1 1 2 2 2 2 2 2 2 . . . . . . . . . . . . . . . . . 1 2 3 4 5 6 . . . . . . . . . . . . . . . . . 1 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ©2001 CRC Press LLC 4 CRC Handbook of Materials Science & Engineering 3.1 Structure Page 5 Wednesday, December 31, 1969 17:00 Structural Properties Table 2. AVAILABLE STABLE ISOTOPES OF THE ELEMENTS (SHEET 1 OF 11) Natural Element Mass No. Abundance (%) Hydrogen 1 99.985 2 0.015 Helium 3 4 0.00013 ≈100.0 Lithium 6 7 7.42 92.58 Beryllium 9 100.0 Boron 10 11 19.78 80.22 Carbon 12 13 98.89 1.11 Nitrogen 14 15 99.63 0.37 Oxygen 16 17 18 99.76 0.04 0.20 Fluorine 19 100.0 Neon 20 21 22 90.92 0.26 8.82 Sodium 23 100.0 Magnesium 24 25 26 78.70 10.13 11.17 Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25. ©2001 CRC Press LLC Shackelford & Alexander 5 3.1 Structure Page 6 Wednesday, December 31, 1969 17:00 Structural Properties Table 2. AVAILABLE STABLE ISOTOPES OF THE ELEMENTS (SHEET 2 OF 11) Natural Element Mass No. Abundance (%) Aluminum 27 100.0 Silicon 28 29 30 92.21 4.70 3.09 Phosphorus 31 100.0 Sulfur 32 33 34 36 95.0 0.76 4.22 0.014 Chlorine 35 37 75.53 24.47 Argon 36 38 40 0.34 0.06 99.60 Potassium 39 40a 41 93.1 0.01 Calcium 40 42 43 44 46 48 96.97 0.64 0.14 2.06 0.003 0.18 Scandium 45 100.0 6.9 Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25. ©2001 CRC Press LLC 6 CRC Handbook of Materials Science & Engineering 3.1 Structure Page 7 Wednesday, December 31, 1969 17:00 Structural Properties Table 2. AVAILABLE STABLE ISOTOPES OF THE ELEMENTS (SHEET 3 OF 11) Natural Mass No. Abundance (%) Titanium 46 47 48 49 50 7.93 7.28 73.94 5.51 5.34 Vanadium 50 51 0.24 99.76 Chromium 50 52 53 54 4.31 83.76 9.55 2.38 Manganese 55 100.0 Iron 54 56 57 58 5.82 91.66 2.19 0.33 Cobalt 59 100.0 Nickel 58 60 61 62 64 67.84 26.23 1.19 3.66 1.08 Copper 63 65 69.09 30.91 Element Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25. ©2001 CRC Press LLC Shackelford & Alexander 7 3.1 Structure Page 8 Wednesday, December 31, 1969 17:00 Structural Properties Table 2. AVAILABLE STABLE ISOTOPES OF THE ELEMENTS (SHEET 4 OF 11) Natural Mass No. Abundance (%) Zinc 64 66 67 68 70 48.89 27.81 4.11 18.57 0.62 Gallium 69 71 60.4 39.6 Germanium 70 72 73 74 76 20.52 27.43 7.76 36.54 7.76 Arsenic 75 100.0 Selenium 74 76 77 78 80 82 0.87 9.02 7.58 23.52 49.82 9.19 Bromine 79 81 50.54 49.46 Krypton 78 80 82 83 84 86 0.35 2.27 11.56 11.55 56.90 17.37 Rubidium 85 87 72.15 27.85 Element Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25. ©2001 CRC Press LLC 8 CRC Handbook of Materials Science & Engineering 3.1 Structure Page 9 Wednesday, December 31, 1969 17:00 Structural Properties Table 2. AVAILABLE STABLE ISOTOPES OF THE ELEMENTS (SHEET 5 OF 11) Natural Mass No. Abundance (%) Strontium 84 86 87 88 0.56 9.86 7.02 82.56 Yttrium 89 100.0 Zirconium 90 91 92 94 96 51.46 11.23 17.11 17.40 2.80 Niobium 93 100.0 Molybdenum 92 94 95 96 97 98 100 15.84 9.04 15.72 16.53 9.46 23.78 9.63 Ruthenium 96 98 99 100 101 102 104 5.51 1.87 12.72 12.62 17.07 31.61 18.60 Rhodium 103 100.0 Element Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25. ©2001 CRC Press LLC Shackelford & Alexander 9 3.1 Structure Page 10 Wednesday, December 31, 1969 17:00 Structural Properties Table 2. AVAILABLE STABLE ISOTOPES OF THE ELEMENTS (SHEET 6 OF 11) Natural Mass No. Abundance (%) Palladium 102 104 105 106 108 110 0.96 10.97 22.23 27.33 26.71 11.81 Silver 107 109 51.82 48.18 Cadmium 106 108 110 111 112 113 114 116 1.22 0.88 12.39 12.75 24.07 12.26 28.86 7.58 Indium 113 115 4.28 95.72 Tin 112 114 115 116 117 118 119 120 122 124 0.96 0.66 0.35 14.30 7.61 24.03 8.58 32.85 4.72 5.94 Antimony 121 123 57.25 42.75 Element Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25. ©2001 CRC Press LLC 10 CRC Handbook of Materials Science & Engineering 3.1 Structure Page 11 Wednesday, December 31, 1969 17:00 Structural Properties Table 2. AVAILABLE STABLE ISOTOPES OF THE ELEMENTS (SHEET 7 OF 11) Natural Mass No. Abundance (%) Tellurium 120 122 123 124 125 126 128 130 0.09 2.46 0.87 4.61 6.99 18.71 31.79 34.48 Iodine 127 100.0 Xenon 124 126 128 129 130 131 132 134 136 0.096 0.090 1.92 26.44 4.08 21.18 26.89 10.44 8.87 Cesium 133 100.0 Barium 130 132 134 135 136 137 138 0.101 0.097 2.42 6.59 7.81 11.30 71.66 Lanthanum 138 139 0.09 99.91 Element Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25. ©2001 CRC Press LLC Shackelford & Alexander 11 3.1 Structure Page 12 Wednesday, December 31, 1969 17:00 Structural Properties Table 2. AVAILABLE STABLE ISOTOPES OF THE ELEMENTS (SHEET 8 OF 11) Natural Mass No. Abundance (%) 136 138 140 142d 0.193 0.250 88.48 11.07 141 100.0 Neodymium 142 143 144 146 148 150 27.11 12.17 23.85 17.22 5.73 5.62 Samarium 144 147e 148f 149g 150 152 154 Element Cerium Praseodymium 3.09 14.97 11.24 13.83 7.44 26.72 22.71 Europium 151 153 47.82 52.18 Gadolinium 152h 154 155 156 157 158 160 0.20 2.15 14.73 20.47 15.68 24.87 21.90 159 100.0 Terbium Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25. ©2001 CRC Press LLC 12 CRC Handbook of Materials Science & Engineering 3.1 Structure Page 13 Wednesday, December 31, 1969 17:00 Structural Properties Table 2. AVAILABLE STABLE ISOTOPES OF THE ELEMENTS (SHEET 9 OF 11) Natural Mass No. Abundance (%) 156i 158 160 161 162 163 164 0.052 Holmium 165 186 100.0 28.41 Erbium 162 164 166 167 168 170 186 0.136 1.56 33.41 22.94 27.07 14.88 1.59 Thulium 169 189 100.0 16.1 Ytterbium 168 170 171 172 173 174 176 0.135 3.03 14.31 21.82 16.13 31.84 12.73 Lutetium 175 176j 97.40 Element Dysprosium 0.090 2.29 18.88 25.53 24.97 28.18 2.60 Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25. ©2001 CRC Press LLC Shackelford & Alexander 13 3.1 Structure Page 14 Wednesday, December 31, 1969 17:00 Structural Properties Table 2. AVAILABLE STABLE ISOTOPES OF THE ELEMENTS (SHEET 10 OF 11) Natural Mass No. Abundance (%) 174k 176 177 178 179 180 0.18 5.20 18.50 27.14 13.75 35.24 Tantalum 180 181 0.012 99.988 Tungsten 180 182 183 184 0.14 26.41 14.40 30.64 Rhenium 185 187 37.07 62.93 Osmium 184 187 188 190 192 0.018 1.64 13.3 26.4 41.0 Iridium 191 193 37.3 62.7 Platinum 190m 192 194 195 196 198 0.013 197 100.0 Element Haffiium Gold 0.78 32.9 33.8 25.3 7.2 Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25. ©2001 CRC Press LLC 14 CRC Handbook of Materials Science & Engineering 3.1 Structure Page 15 Wednesday, December 31, 1969 17:00 Structural Properties Table 2. AVAILABLE STABLE ISOTOPES OF THE ELEMENTS (SHEET 11 OF 11) Natural Mass No. Abundance (%) Mercury 196 198 199 200 201 202 204 0.146 10.02 16.84 23.13 13.22 29.80 6.85 Thallium 203 205 29.50 70.50 Lead 204 206 207 208 1.48 23.6 22.6 52.3 Bismuth 209 100.0 Thorium 232n† 100.0 Uranium 234o† 235p† 238q† 0.0006 0.72 99.27 Element Source: Wang, Y., Ed., Handbook of Radioactive Nuclides, The Chemical Rubber Co., Cleveland, 1969, 25. a b c d e f g h i half-life = 1.3 x 109 y. half-life > 1015 y half-life = 5 x 1014 y half-life = 5 x 1014 y half-life = 1.06 x 1011 y half-life = 1.2 x 1013 y half-life = 1.2 x 1014 y half-life = 1.1 x 1014 y half-life = 2 x 1014 y j half-life = 2.2 x 1010 y k half-life = 4.3 x 1015 y l half-life = 4 x 1010 y m half-life = 6 x 1011 y n half-life = 1.4 x 1010 y o half-life = 2.5 x 105 y p half-life = 7.1 x 108 y q half-life = 4.5 x 109 y † naturally occurring. ©2001 CRC Press LLC Shackelford & Alexander 15 3.2 Structure L Page 16 Wednesday, December 31, 1969 17:00 1 IA 2 3 4 5 Table 3. PERIODIC TABLE OF THE ELEMENTS 6 9 7 8 10 11 12 13 14 15 16 17 18 VIIA 1 H IIA IIIA IVA VA VIA VIIA 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg IIIB IVB VB VIB VIIB ----- VIII ----- IB IIB 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe 55 Cs 56 Ba 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn 87 Fr 88 Ra 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 71 Lu 89 Ac 90 Th 91 Pa 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 100 Fm 101 Md 102 No 103 Lw ©2001 CRC Press LLC 3.2 Structure L Page 17 Wednesday, December 31, 1969 17:00 Table 4. PERIODIC 1 IA 2 3 4 5 6 TABLE OF ELEMENTS IN METALLIC MATERIALS 7 8 9 10 11 12 13 14 15 16 17 IIA IIIA IVA VA VIA VIIA 3 Li 4 Be 5 B 11 Na 12 Mg IIIB IVB VB VIB VIIB ----- VIII ----- IB IIB 13 Al 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 55 Cs 56 Ba 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 87 Fr 88 Ra 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 71 Lu 89 Ac 90 Th 91 Pa 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 100 Fm 101 Md 102 No 103 Lw ©2001 CRC Press LLC 18 VIIA 3.2 Structure L Page 18 Wednesday, December 31, 1969 17:00 Table 5. PERIODIC 1 IA 2 3 4 5 6 TABLE OF ELEMENTS IN CERAMIC MATERIALS 7 8 9 10 11 12 13 14 15 16 17 IIA IIIA IVA VA VIA VIIA 3 Li 4 Be 5 B 6 C 7 N 8 O 11 Na 12 Mg IIIB IVB VB VIB VIIB ----- VIII ----- IB IIB 13 Al 14 Si 15 P 16 S 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 55 Cs 56 Ba 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 87 Fr 88 Ra 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 71 Lu 89 Ac 90 Th 91 Pa 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 100 Fm 101 Md 102 No 103 Lw ©2001 CRC Press LLC 18 VIIA 3.2 Structure L Page 19 Wednesday, December 31, 1969 17:00 1 IA 1 H 2 3 Table 6. PERIODIC TABLE OF ELEMENTS IN POLYMERIC MATERIALS 4 7 5 6 8 9 10 11 12 IIA IIIB ©2001 CRC Press LLC IVB VB VIB VIIB ----- VIII ----- IB IIB 13 14 15 16 17 IIIA IVA VA VIA VIIA 6 C 7 N 8 O 9 F 14 Si 18 VIIA 3.2 Structure L Page 20 Wednesday, December 31, 1969 17:00 Table 7. PERIODIC 1 IA 2 3 4 5 6 TABLE OF ELEMENTS IN SEMICONDUCTING MATERIALS 7 8 9 10 11 12 IIA 13 14 15 16 17 IIIA IVA VA VIA VIIA 8 O IIIB IVB VB VIB VIIB ----- VIII ----- IB IIB 13 Al 14 Si 15 P 16 S 30 Zn 31 Ga 32 Ge 33 As 34 Se 48 Cd 49 In 50 Sn 51 Sb 52 Te 80 Hg ©2001 CRC Press LLC 18 VIIA 3.2 Structure L Page 21 Wednesday, December 31, 1969 17:00 Table 8. PERIODIC 1 IA 2 3 4 5 6 TABLE OF ELEMENTS IN SUPERCONDUCTING METALS 7 8 9 10 11 12 IIA 13 14 15 16 17 IIIA IVA VA VIA VIIA 50 Sn 51 Sb 4 Be IIIB IVB VB 22 Ti 23 V 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 73 Ta 74 W 75 Re 76 Os 57 La 90 Th ©2001 CRC Press LLC 91 Pa VIB VIIB ----- VIII 77 Ir ----- IB IIB 13 Al 30 Zn 31 Ga 48 Cd 49 In 80 Hg 82 Pb 18 VIIA 3.3 Structure Page 22 Wednesday, December 31, 1969 17:00 Structural Properties Table 9. ATOMIC AND IONIC RADII OF THE (SHEET 1 OF 5) ELEMENTS Atomic Number Symbol Atomic Radius (nm) Ion Ionic Radius (nm) 1 2 3 4 H He Li Be 0.046 – 0.152 0.114 H– – Li+ Be2+ 0.154 – 0.078 0.054 5 6 7 8 B C N O 0.097 0.077 0.071 0.060 B3+ C4+ N5+ 02– 0.02 <0.02 0.01–0.2 0.132 9 10 11 12 F Ne Na Mg – 0.160 0.186 0.160 F– – Na+ Mg2+ 0.133 – 0.098 0.078 13 14 . 15 Al Si 0.143 0.117 P 0.109 Al3+ Si4– Si4+ P5+ 0.057 0.198 0.039 0.03–0.04 16 S 0.106 17 18 Cl Ar 0.107 0.192 S2– S6+ Cl– – 0.174 0.034 0.181 – 19 20 21 K Ca Sc 0.231 0.197 0.160 K+ Ca2+ Sc2+ 0.133 0.106 0.083 Source: Data from R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. The ionic radii are based on the calculations of V. M. Goldschmidt, who assigned radii based on known interatomic distances in various ionic crystals. ©2001 CRC Press LLC 22 CRC Handbook of Materials Science & Engineering 3.3 Structure Page 23 Wednesday, December 31, 1969 17:00 Structural Properties Table 9. ATOMIC AND IONIC RADII OF THE (SHEET 2 OF 5) Atomic Number Symbol Atomic Radius (nm) 22 Ti 23 ELEMENTS Ion Ionic Radius (nm) 0.147 Ti2+ Ti3+ Ti4+ 0.076 0.069 0.064 V 0.132 V3+ V4+ V5+ 0.065 0.061 0.04 24 Cr 0.125 Cr3+ Cr6+ 0.064 0.03–0.04 25 Mn 0.112 Mn2+ Mn3+ Mn4+ 0.091 0.070 0.052 26 Fe 0.124 27 Co 0.125 Fe2+ Fe2+ Co2+ Co3+ 0.087 0.067 0.082 0.065 28 29 30 31 Ni Cu Zn Ga 0.125 0.128 0.133 0.135 Ni2+ Cu+ Zn2+ Ga3+ 0.078 0.096 0.083 0.062 32 33 Ge As 0.122 0.125 Ge4+ As3+ As5+ 0.044 0.069 ~0.04 34 Se 0.116 35 36 Br Kr 0.119 0.197 Se2– Se6+ Br– – 0.191 0.03–0.04 0.196 – Source: Data from R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. The ionic radii are based on the calculations of V. M. Goldschmidt, who assigned radii based on known interatomic distances in various ionic crystals. ©2001 CRC Press LLC Shackelford & Alexander 23 3.3 Structure Page 24 Wednesday, December 31, 1969 17:00 Structural Properties Table 9. ATOMIC AND IONIC RADII OF THE (SHEET 3 OF 5) ELEMENTS Atomic Number Symbol Atomic Radius (nm) Ion Ionic Radius (nm) 37 38 39 Rb Sr Y 0.251 0.215 0.181 Rb+ Sr2+ Y3+ 0.149 0.127 0.106 40 Zr 0.158 Zr4+ 0.087 41 Nb 0.143 42 Mo 0.136 Nb4+ Nb5+ Mo4+ Mo6+ 0.074 0.069 0.068 0.065 43 44 45 Tc Ru Rh – 0.134 0.134 – Ru4+ Rh3+ Rh4+ – 0.065 0.068 0.065 46 47 48 49 Pd Ag Cd In 0.137 0.144 0.150 0.157 Pd2+ Ag+ Cd2+ In3+ 0.050 0.113 0.103 0.091 50 Sn 0.158 51 Sb 0.161 Sn4– Sn4+ Sb3+ 0.215 0.074 0.090 52 Te 0.143 Te2– Te4+ 0.211 0.089 53 I 0.136 54 55 Xe Cs 0.218 0.265 I– I5+ – Cs+ 0.220 0.094 – 0.165 Source: Data from R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. The ionic radii are based on the calculations of V. M. Goldschmidt, who assigned radii based on known interatomic distances in various ionic crystals. ©2001 CRC Press LLC 24 CRC Handbook of Materials Science & Engineering 3.3 Structure Page 25 Wednesday, December 31, 1969 17:00 Structural Properties Table 9. ATOMIC AND IONIC RADII OF THE (SHEET 4 OF 5) Atomic Number Symbol Atomic Radius (nm) 56 57 58 Ba La Ce 59 ELEMENTS Ion Ionic Radius (nm) 0.217 0.187 0.182 Ba2+ La3+ Ce3+ Ce4+ 0.13 0.122 0.118 0.102 Pr 0.183 Pr3+ Pr4+ 0.116 0.100 60 61 Nd Pm 0.182 – Nd3+ Pm3+ 0.115 0.106 62 63 64 Sm Eu Gd 0.181 0.204 0.180 Sm3+ Eu3+ Gd3+ 0.113 0.113 0.111 65 Tb 0.177 66 67 Dy Ho 0.177 0.176 Tb3+ Tb4+ Dy3+ Ho3+ 0.109 0.089 0.107 0.105 68 69 70 71 Er Tm Yb Lu 0.175 0.174 0.193 0.173 Er3+ Tm3+ Yb3+ Lu3+ 0.104 0.104 0.100 0.099 72 73 74 Hf Ta W 0.159 0.147 0.137 Hf4+ Ta5+ W4+ W6+ 0.084 0.068 0.068 0.065 75 76 77 Re Os Ir 0.138 0.135 0.135 Re4+ Os4+ Ir4+ 0.072 0.067 0.066 Source: Data from R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. The ionic radii are based on the calculations of V. M. Goldschmidt, who assigned radii based on known interatomic distances in various ionic crystals. ©2001 CRC Press LLC Shackelford & Alexander 25 3.3 Structure Page 26 Wednesday, December 31, 1969 17:00 Structural Properties Table 9. ATOMIC AND IONIC RADII OF THE (SHEET 5 OF 5) Atomic Number Symbol Atomic Radius (nm) 78 Pt 0.138 79 80 Au Hg 0.144 0.150 81 Tl 82 ELEMENTS Ion Ionic Radius (nm) Pt2+ Pt4+ Au+ Hg2+ 0.052 0.055 0.137 0.112 0.171 Tl+ Tl3+ 0.149 0.106 Pb 0.175 83 Bi 0.182 Pb4– Pb2+ Pb4+ Bi3+ 0.215 0.132 0.084 0.120 84 85 86 87 Po At Rn Fr 0.140 – – – Po6+ At7+ – Fr+ 0.067 0.062 – 0.180 88 89 90 91 Ra Ac Th Pa – – 0.180 – Ra+ Ac3+ Th4+ – 0.152 0.118 0.110 – 92 U 0.138 U4+ 0.105 Source: Data from R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. The ionic radii are based on the calculations of V. M. Goldschmidt, who assigned radii based on known interatomic distances in various ionic crystals. ©2001 CRC Press LLC 26 CRC Handbook of Materials Science & Engineering 3.3 Structure Page 27 Wednesday, December 31, 1969 17:00 Structural Properties Table 10. BOND LENGTH VALUES BETWEEN ELEMENTS (SHEET 1 OF 4) Elements Compound B-B B-Br B2H6 BBF BBr3 1.770 1.88 1.87 B-Cl BCl BCl3 B-F BF BF3 1.715 1.72 1.262 1.29 B-H B-H bridge B-N Hydrides Hydrides (BClNH)3 1.21 1.39 1.42 B-0 BO B(OH)3 N-Cl NO2Cl N-F N-H N-N N-O Bond length (Å) ± 0.013 ± 0.02 ± 0.01 ± 0.01 ± ± ± .02 .02 .01 1.2049 1.362 ± 0.005 (av) NF3 1.79 1.36 ± ± 0.02 0.02 [NH4]+ NH ND HNCS 1.034 1.038 1.041 1.013 ± 0.003 ± 0.005 N 3H N 2O 1.02 1.126 ± ± 0.01 0.002 [N2]+ 1.116 NO2Cl NO2 1.24 1.188 ± ± 0.01 0.005 To convert Å to nm, multiply by 10-1 Source: from Kennard, O., in Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed., CRC Press, Boca Raton, Fla., 1988, F-167. ©2001 CRC Press LLC Shackelford & Alexander 27 3.3 Structure Page 28 Wednesday, December 31, 1969 17:00 Structural Properties Table 10. BOND LENGTH VALUES BETWEEN ELEMENTS (SHEET 2 OF 4) Elements Compound N=O N2O Bond length (Å) [NO]+ 1.186 1.0619 N-Si SiN 1.572 O-H [OH]+ OD H2O2 1.0289 0.9699 0.960 B2H6 1.770 1.88 1.87 B-B B-Br BBF BBr3 B-Cl BCl BCl3 B-F ± 0.002 ± 0.005 ± 0.013 ± 0.02 ± 0.01 BF BF3 1.715 1.72 1.262 1.29 ± 0.01 B-H B-H bridge B-N Hydrides Hydrides (BClNH)3 1.21 1.39 1.42 ± ± ± .02 .02 .01 B-0 BO B(OH)3 1.2049 1.362 ± 0.005 (av) N-Cl NO2Cl N-F NF3 1.79 1.36 ± ± 0.02 0.02 N-H [NH4]+ NH ND HNCS 1.034 1.038 1.041 1.013 ± 0.003 ± 0.005 To convert Å to nm, multiply by 10-1 Source: from Kennard, O., in Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed., CRC Press, Boca Raton, Fla., 1988, F-167. ©2001 CRC Press LLC 28 CRC Handbook of Materials Science & Engineering 3.3 Structure Page 29 Wednesday, December 31, 1969 17:00 Structural Properties Table 10. BOND LENGTH VALUES BETWEEN ELEMENTS (SHEET 3 OF 4) Elements Compound N-N N 3H Bond length (Å) N 2O 1.02 1.126 ± ± 0.01 0.002 [N2]+ 1.116 N-O NO2Cl NO2 1.24 1.188 ± ± 0.01 0.005 N=O N 2O ± 0.002 [NO] 1.186 1.0619 N-Si SiN 1.572 O-H [OH]+ OD H2O2 1.0289 0.9699 0.960 ± 0.005 H2O2 1.48 ± 0.01 [O2]+ 1.227 [O2]- 1.26 ± 0.2 1.49 ± 0.02 ± 0.02 ± 0.02 ± ± 0.02 0.005 + O-O -- [O2] P-D P-H P-N P-S PD [PH4]+ PN PSBr3 (Cl3,F3) 1.429 1.42 1.4910 1.86 S-Br SOBr2 S-F S-D SOF2 SD SD2 2.27 1.585 1.3473 1.345 To convert Å to nm, multiply by 10-1 Source: from Kennard, O., in Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed., CRC Press, Boca Raton, Fla., 1988, F-167. ©2001 CRC Press LLC Shackelford & Alexander 29 3.3 Structure Page 30 Wednesday, December 31, 1969 17:00 Structural Properties Table 10. BOND LENGTH VALUES BETWEEN ELEMENTS (SHEET 4 OF 4) Elements Compound Bond length (Å) S-O S-S SO2 SOCl2 S2Cl2 1.4321 1.45 2.04 ± ± 0.02 0.01 Si-Br SiBr4 Si-Cl Si-F SiCl4 SiF4 2.17 2.03 1.561 ± ± ± 1.01 1.01 (av) 0.003 (av) Si-H SiH4 1.480 ± 0.005 Si-O Si-Si [SiO]+ Si2Cl2 1.504 2.30 ± 0.02 To convert Å to nm, multiply by 10-1 Source: from Kennard, O., in Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed., CRC Press, Boca Raton, Fla., 1988, F-167. ©2001 CRC Press LLC 30 CRC Handbook of Materials Science & Engineering 3.4 Structure L Page 31 Wednesday, December 31, 1969 17:00 Table 11. PERIODIC 1 IA H 1.06 2 3 13 14 15 16 17 IIA IIIA IVA VA VIA VIIA Be 1.93 B 1.56 C 1.2 N 1.47 O 1.43 F 1.55 Al 2.24 Si 1.8 P 1.87 S 1.81 Cl 1.7 Ge 1.98 As 1.98 Se 1.98 Br 1.9 Sn 2.15 Sb 2.16 Te 2.05 I 2.1 Pb 2.29 Bi 2.30 IIIB 4 IVB 5 VB 6 VIB Cr 1.92 Mo 2.08 W 2.06 ©2001 CRC Press LLC 7 TABLE OF CARBON BOND LENGTHS (Å) VIIB 8 9 10 ----- VIII ----- Fe 1.94 Co 1.93 Ni 18.2 11 IB 12 IIB Pd 2.27 In 2.16 Hg 2.07 18 VIIA 3.5 Structure Page 32 Wednesday, December 31, 1969 17:00 Structural Properties Table 12. CARBON BOND (SHEET 1 OF 3) LENGTHS Group No. Element. At. No. Sym. 1 2 Hydrogen Beryllium 1 4 H Be 1.056 1.93 ± 1.115 6 Chromium Molybdenum Tungsten 24 42 74 Cr Mo W 1.92 2.08 2.06 ± 0.04 ± 0.04 ± 0.01 8 9 10 Iron Cobalt Nickel Palladium Mercury 26 27 28 46 80 Fe Co Ni Pd Hg 1.94 1.93 1.82 2.27 2 .07 ± 0.02 ± 0.02 ± 0.03 ± 0.04 ± 0.01 13 Aluminum Boron Indium 13 5 49 Al B In 2.24 1. 56 2.16 ± 0.04 ± 0.01 ± 0.04 14 Carbon Germanium Lead Silicon 6 32 82 14 C Ge Pb Si 1.20 1.98 2.29 1.865 1.84 ± 1.54 ± 0.03 ± 0.05 ± 0.008 ± 0.01 1.88 ± 0.01 2.143 ± 0.008 2.18 ± 0.02 1.98 2.30 1 .47 1.87 2.202 ± 0.02 12 Tin 15 Arsenic Bismuth Nitrogen Phosphorus Antimony 50 33 83 7 15 51 Sn As Bi N P Sb Bond Length (Å) ± 1.1 ± 0.02 ± 0.016 Bond Type Alkyls (CH3XH3) Alkyls (CH3XH3) Alkyls (CH3XH3) Alkyls (CH3XH3) Aryls (C6H5XH3) Neg. Subst. (CH3XCI3) Alkyls (CH3XH3) Neg. Subst. (CH3XCI3) Paraffinic (CH3)3X Paraffinic (CH3)3X Paraffinic (CH3)3X Paraffinic (CH3)3X Source: data from Lide, David R., Ed., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, (1990); and “Tables of interatomic distances” Chem. Soc. of London, 1958. ©2001 CRC Press LLC 32 CRC Handbook of Materials Science & Engineering 3.5 Structure Page 33 Wednesday, December 31, 1969 17:00 Structural Properties Table 12. CARBON BOND (SHEET 2 OF 3) Group No. LENGTHS Element. At. No. Sym. 16 Oxygen Sulfur Selenium Tellurium 8 16 34 52 O S Se Te 1.43 1.81 1 .98 2.05 ± 1.15 ± 1.55 ± 1.71 ± 0.14 17 Bromine 35 Br 1.937 ± 0.003 Paraffinic (mono. substituted) (CH3X) Br 1.937 ± 0.003 Paraffinic (disubstituted) (CH2X2) Br 1.89 1.85 1.79 ± 0.01 ± 0.01 ± 0.01 Olfinic(CH2:CHX) Aromatic (C6H3X) Acetylenic (HC:CX) Cl 1.767 ± 0.002 Paraffinic (mono. substituted) (CH3X) Cl 1.767 ± 0.002 Paraffinic (disubstituted) (CH2X2) Cl 1.72 1.70 1.79 ± 0.01 ± 0.01 ± 0.01 Olfinic(CH2:CHX) Aromatic (C6H3X) Acetylenic (HC:CX) F 1.831 ± 0.005 Paraffinic (mono. substituted) (CH3X) F 1.334 ± 0.004 Paraffinic (disubstituted) (CH2X2) Chlorine Fluorine 17 9 Bond Length (Å) Bond Type Source: data from Lide, David R., Ed., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, (1990); and “Tables of interatomic distances” Chem. Soc. of London, 1958. ©2001 CRC Press LLC Shackelford & Alexander 33 3.5 Structure Page 34 Wednesday, December 31, 1969 17:00 Structural Properties Table 12. CARBON BOND (SHEET 3 OF 3) Group No. Element. At. No. Fluorine con’t Iodine Sym. Bond Length (Å) Bond Type 1.325 ± 0.1 Olfinic(CH2:CHX) 1.30 1.635 ± 0.01 ± 0.004 Aromatic (C6H3X) Acetylenic (HC:CX) I 2.13 ± 0.1 Paraffinic (mono. substituted) (CH3X) I 2.13 ± 0.1 Paraffinic (disubstituted) (CH2X2) I 2.092 2.05 1.99 ± 0.005 ± 0.01 ± 0.02 Olfinic(CH2:CHX) Aromatic (C6H3X) Acetylenic (HC:CX) F 53 LENGTHS Source: data from Lide, David R., Ed., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, (1990); and “Tables of interatomic distances” Chem. Soc. of London, 1958. Table 13. CARBON BOND LENGTHS IN POLYMERS (SHEET 1 OF 3) Bond Type Polymer Type Bond Length (Å) CARBONCARBON Single Bond Paraffinic In diamond (18˚C) 1.541 1.54452 ± 0.003 ± 0.00014 Source: data from CRC Handbook of Chemistry and Physics, David R. Lide, Ed., CRC Press, Boca Raton, (1990) and “Tables of interatomic distances” Chem. Soc. of London, (1958). ©2001 CRC Press LLC 34 CRC Handbook of Materials Science & Engineering 3.5 Structure Page 35 Wednesday, December 31, 1969 17:00 Structural Properties Table 13. CARBON BOND LENGTHS IN POLYMERS (SHEET 2 OF 3) Bond Type Polymer Type Bond Length (Å) CARBONCARBON cont’t Partial Double Bond Double Bonds Triple Bond (1) Shortening of single bond in presence of carbon carbon double bond, e.g. (CH2),C3CH2; or of aromatic ring e.g. C6H5 CH3 1.53 ± 0.01 (2) Shortening in presence of a carbon oxygen double bond e.g. CH3CHO 1.516 ± 0.005 (3) Shortening in presence of two carbon oxygen double bonds, e.g. (CO2H)2 1.49 ± 0.01 (4) Shortening in presence of a carbon oxygen triple bond, e.g. CH3C:CH 1.460 ± 0.003 (5) In compounds with tendency to dipole formation, e.g. C:C.C:N 1.44 ± 0.01 (6) In graphite(at 15 ˚C) 1.4210 ± 0.0001 (7) In aromatic compounds 1.395 ± 0.003 (8) in presence of a carbon carbon triple bonds, e.g. HC=C-C=CH 1.373 ± 0.004 (1) simple 1.337 ± 0.006 (2) Part triple bond, e.g. CH2:C:CH2 1.309 ± 0.005 (1) Simple, e.g. C2H2 1.204 ± 0.002 (2) Conjugated, e.g. CH3.(C:C)2.H e.g. C5H5N 1.206 ± 0.004 Source: data from CRC Handbook of Chemistry and Physics, David R. Lide, Ed., CRC Press, Boca Raton, (1990) and “Tables of interatomic distances” Chem. Soc. of London, (1958). ©2001 CRC Press LLC Shackelford & Alexander 35 3.5 Structure Page 36 Wednesday, December 31, 1969 17:00 Structural Properties Table 13. CARBON BOND LENGTHS IN POLYMERS (SHEET 3 OF 3) Bond Type CARBONHYDROGEN CARBONNITROGEN Single Bond Triple Bond Polymer Type Bond Length (Å) (1) Paraffinic (a) in methane (b) in monosubstituted carbon (c) in disubstituted carbon (d) in trisubstituted carbon 1.091 1.101 1.073 1.070 (2) Olefinic, c.g. CH2:CH2 1.07 ± 0.01 (3) Aromatic in C6H6 1.094 ± 0.006 (4) Acetylenic, e.g. CH2:C.X 1.056 ± 0.003 (5) Shortening in presence of a carbon oxygen triple bond, e.g.CH3CN 1.115 ± 0.004 (6) In small rings, e.g. (CH2)2S 1.081 ± 0.007 (1) Paraffinic (a) 4 co-valent nitrogen (b) 3 co-valent nitrogen 1.479 1.472 (2) in C-N= e.g. CH3NO2 1.475 ± 0.010 (3) Aromatic in C6H5NHCOCH3 1.426 ± 0.012 (4) Shortened (partial double bond) in h.heterocyclic systems, 1.352 ± 0.005 (5) Shortened (partial double bond) in NC=O e.g. HCONH2 1.322 ± 0.003 (1) in R.C:N 1.158 ± 0.002 Source: data from CRC Handbook of Chemistry and Physics, David R. Lide, Ed., CRC Press, Boca Raton, (1990) and “Tables of interatomic distances” Chem. Soc. of London, (1958). ©2001 CRC Press LLC 36 CRC Handbook of Materials Science & Engineering 3.5 Structure Page 37 Wednesday, December 31, 1969 17:00 Structural Properties Table 14. BOND ANGLE VALUES BETWEEN ELEMENTS Element Bond Compound Bond angle (°) B B B B B H–B–H Br–B–Br Cl– B–Cl F–B–F O–B–O B2H6 BBr3 BCl3 BF3 B(OH)3 121.5 120 120 120 119.7 N N N N N N B–N–B F–N–F H–N–C H–N–N’ O–N–O O–N–O (BClNH)3 NF3 HNCS N3H NO2Cl NO2 O O–O–H S S S Br–S–Br F–S–F O–S–O ± ± ± 7.5 6 3 121 102.5 130.25 112.65 126 134.1 ± ± ± ± ± 1.5 0.25 0.5 2 0.25 H2O2 100 ± 2 SOBr2 SOF2 SO2 96 92.8 119.54 ± ± 2 1 Source: Kennard, O., in Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed., CRC Press, Boca Raton, Fla., 1988, F–167. ©2001 CRC Press LLC Shackelford & Alexander 37 3.5 Structure Page 38 Wednesday, December 31, 1969 17:00 Structural Properties Table 15. KEY TO TABLES OF CRYSTAL STRUCTURE OF THE ELEMENTS Table Number Page Number The Seven Crystal Systems The Fourteen Bravais Lattices Table 16 Table 17 Page 39 Page 40 Periodic Table of the Body Centered Cubic Elements Periodic Table of the Face Centered Cubic Elements Periodic Table of the Hexagonal Close Packed Elements Periodic Table of the Hexagonal Elements Table 18 Table 19 Table 20 Table 21 Page 41 Page 42 Page 43 Page 44 Table Title ©2001 CRC Press LLC 38 CRC Handbook of Materials Science & Engineering 3.5 Structure Page 39 Wednesday, December 31, 1969 17:00 Structural Properties Table 16. THE System SEVEN CRYSTAL SYSTEMS Axial Lengths and Angles Unit Cell Geometry Source: James F. Shackelford, Introduction to Materials Science for Engineers, 4th ed., Prentice-Hall, Upper Saddle River, NJ, 1996. ©2001 CRC Press LLC Shackelford & Alexander 39 3.5 Structure Page 40 Wednesday, December 31, 1969 17:00 Structural Properties Table 17. THE FOURTEEN BRAVAIS LATTICES Source: James F. Shackelford, Introduction to Materials Science for Engineers, 4th ed., Prentice-Hall, Upper Saddle River, NJ, 1996. ©2001 CRC Press LLC 40 CRC Handbook of Materials Science & Engineering 3.6 Structure L Page 41 Wednesday, December 31, 1969 17:00 Table 18. PERIODIC 1 IA 2 3 4 5 6 TABLE OF THE BODY CENTERED CUBIC ELEMENTS 7 8 9 10 11 12 IIA 3 Li 11 Na IIIB VB VIB VIIB ----- 19 K 23 V 24 Cr 25 Mn 26 Fe 37 Rb 41 Nb 42 Mo 73 Ta 74 W 55 Cs 56 Ba 87 Fr 88 Ra IVB 63 Eu ©2001 CRC Press LLC VIII ----- IB IIB 13 14 15 16 17 IIIA IVA VA VIA VIIA 18 VIIA 3.6 Structure L Page 42 Wednesday, December 31, 1969 17:00 Table 19. PERIODIC 1 IA 2 3 4 5 6 TABLE OF THE FACE CENTERED CUBIC ELEMENTS 7 8 9 10 11 12 IIA 13 14 15 16 17 IIIA IVA VA VIA VIIA 18 VIIA 10 Ne IIIB IVB VB VIB VIIB ----- VIII ----- IB 28 Ni 29 Cu 45 Rh 46 Pd 47 Ag 77 Ir 78 Pt 79 Au 20 Ca 38 Sr 57 La 89 Ac ©2001 CRC Press LLC IIB 13 Al 14 Si 18 Ar 32 Ge 36 Kr 54 Xe 82 Pb 86 Rn 3.6 Structure L Page 43 Wednesday, December 31, 1969 17:00 Table 20. PERIODIC 1 IA 2 3 4 5 6 TABLE OF THE HEXAGONAL CLOSE PACKED ELEMENTS 7 8 9 10 11 12 IIA 13 14 15 16 17 IIIA IVA VA VIA VIIA 4 Be 12 Mg IIIB IVB VB VIB VIIB ----- 22 Ti 39 Y VIII IB 27 Co 40 Zr 43 Tc 44 Ru 72 Hf 75 Re 76 Os IIB 30 Zn 48 Cd 81 Tl 64 Gd ©2001 CRC Press LLC ----- 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 71 Lu 18 VIIA 3.6 Structure L Page 44 Wednesday, December 31, 1969 17:00 Table 21. PERIODIC 1 IA 2 3 4 5 6 7 TABLE OF THE HEXAGONAL ELEMENTS 8 9 10 11 12 IIA 13 14 15 16 17 IIIA IVA VA VIA VIIA 6 C IIIB IVB VB VIB VIIB ----- VIII ----- IB IIB 34 Se 52 Te 57 La 59 Pr 60 Nd 61 Pm 95 Am ©2001 CRC Press LLC 96 Cm 97 Bk 18 VIIA 3.7 Structure Page 45 Wednesday, December 31, 1969 17:00 Structural Properties Table 22. STRUCTURE OF (SHEET 1 OF 6) Ceramic CERAMICS Structure Borides Chromium Diboride (CrB2) hexagonal, AlB2 structure (C-32 type) isomorphous with other transition metal diborides a=2.969Å; c=3.066Å; c/a=1.03 Hafnium Diboride (HfB2) hexagonal, AlB2 structure (C-32 type) isomorphous with TiB2 and ZrB2 a=3.141 ± 0.002 Å; c=3.470 ± 0.002 Å; c/a=1.105 Tantalum Diboride (TaB2) hexagonal, AlB2 structure (C-32 type) isomorphous with other transition metal diborides a=3.078-3.088Å; c=3.241-3.265Å; c/a=1.06-1.074 low boron composition (64 atom % boron) a=3.097-3.099Å; c=3.244-3.277Å high boron composition :(72 atom % boron) a=3.057-3.060Å; c=3.291-3.290Å Titanium Diboride (TiB2) Zirconium Diboride (ZrB2) hexagonal, AlB2 structure (C-32 type) isomorphous with ZrB2 a=3.028-3.030Å; c=3.227-3.228Å; c/a=1.064 hexagonal, AlB2 structure (C-32 type) isomorphous with TiB2 a=3.1694-3.170Å; c=3.528-3.5365Å; c/a=1.114 Carbides Boron Carbide (B4C) rhombic, C3 chains and B12 icosahedral in a NaCl structure, extended along a body diagonal To convert Å to nm, multiply by 10-1. Source: Data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 45 3.7 Structure Page 46 Wednesday, December 31, 1969 17:00 Structural Properties Table 22. STRUCTURE OF (SHEET 2 OF 6) Ceramic Hafnium Monocarbide (HfC) CERAMICS Structure FCC(B1), NaCl type isomorphous with HfB and HfN a=4.46-4.643Å Silicon Carbide (SiC) low temperature form (β) cubic high temperature form (α) hexagonal β-SiC F43m space group a=4.349-4.358Å α-SiC C6MC space group a=3.073Å; c=15.07Å; c/a=4.899 Tantalum Monocarbide (TaC) FCC, NaCl type (B1) a=4.42-4.456Å Titanium Monocarbide (TiC) FCC, NaCl type (B1) isomorphous with TiO and TiN a=4.315-4.3316Å Trichromium Dicarbide (Cr3C2) orthorhombic D510 type a=2.82Å, b=5.53Å, c=11.47Å Tungsten Monocarbide (WC) Hexagonal a=2.2897-2.90Å To convert Å to nm, multiply by 10-1. Source: Data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 46 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 47 Wednesday, December 31, 1969 17:00 Structural Properties Table 22. STRUCTURE OF (SHEET 3 OF 6) Ceramic Zirconium Monocarbide (ZrC) CERAMICS Structure FCC(B1), NaCl type isomorphous with ZrB and ZrN a=4.669-4.694Å Nitrides Aluminum Nitride (AlN) hexagonal, Wurtzite structure a=3.10-3.114Å; c=4.96-4.981Å Boron Nitride (BN) hexagonal (common type) graphite type structure a=2.5038±0.0001Å; c=6.60±0.01Å B-N distance 1.45Å cubic zinc blende structure a=3.615Å B-N distance 1.57Å Titanium Mononitride (TiN) cubic a=4.23Å homogeneity range: TiN0.42-TiN1.16 yields a=4.213 to 4.24Å Trisilicon tetranitride (Si3N4) α hexagonal a=7.748-7.758Å; c=5.617-5.623Å β hexagonal a=7.608Å; c=2.911Å To convert Å to nm, multiply by 10-1. Source: Data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 47 3.7 Structure Page 48 Wednesday, December 31, 1969 17:00 Structural Properties Table 22. STRUCTURE OF (SHEET 4 OF 6) Ceramic Zirconium Mononitride (ZrN) CERAMICS Structure cubic, NaCl type, B1 a=4.567-4.63Å Oxides Aluminum Oxide (Al2O3) hexagonal a=4.785Å; c=12.991Å; c/a=2.72 Beryllium Oxide (BeO) hexagonal a=2.690-2.698Å; c=4.370-4.380Å Calcium Oxide (CaO) cubic, NaCl type a=4.8105Å Cerium Dioxide (CeO2) cubic Dichromium Trioxide (Cr2O3) trigonal rhombic Hafnium Dioxide (HfO2) monoclinic to 1700 °C tetragonal above 1700 °C a=5.1170Å; b=5.1754Å; c=5.2915Å β = 99.216o Magnesium Oxide (MgO) cubic, Fm3m space group a=4.313Å Nickel monoxide (NiO) face centered cubic, NaCl type Silicon Dioxide (SiO2) hexagonal To convert Å to nm, multiply by 10-1. Source: Data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 48 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 49 Wednesday, December 31, 1969 17:00 Structural Properties Table 22. STRUCTURE OF (SHEET 5 OF 6) Ceramic CERAMICS Structure Thorium Dioxide (ThO2) cubic, fluorite type a=5.59525-5.5997Å Titanium Oxide (TiO2) tetragonal (rutile) a=4.594Å; c=2.958Å at 26 °C tetragonal (anatase) rhombic (brookite) Uranium Dioxide (UO2) cubic, fluorite type a=5.471Å Zircoium Oxide (ZrO2) to 1050 °C monoclinic a=5.1505Å; b=5.2031Å; c=5.3154 β=99.194o at room temp. 1050—2100˚C tetragonal above 2100˚C cubic (stabilized) a=5.132±0.006Å (8.13 mol% Y2O3) a=5.145±0.006Å (11.09 mol% Y2O3) a=5.146±0.006Å (12.08 mol% Y2O3) a=5.153±0.006Å (15.52 mol% Y2O3) a=5.162±0.006Å (17.88 mol% Y2O3) Cordierite (2MgO 2Al2O3 5SiO2) 0rthorhombic Mullite (3Al2O3 2SiO2) 0rthorhombic a=7.54±0.03Å; b=7.693±0.03Å;c=2.890±0.01 Sillimanite (Al2O3 SiO2) 0rthorhombic To convert Å to nm, multiply by 10-1. Source: Data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 49 3.7 Structure Page 50 Wednesday, December 31, 1969 17:00 Structural Properties Table 22. STRUCTURE OF (SHEET 6 OF 6) Ceramic Spinel (Al2O3 MgO) CERAMICS Structure cubic a=8.0844Å Silicides Molybdenum Disilicide (MoSi2) tetragonal, D4h17 space group isomorphous with WSi2 a=3.197-3.20Å; c=7.85-7.871 Tungsten Disilicide (WSi2) tetragonal, D4h17 space group isomorphous with MoSi2 a=3.212±0.005Å; c=7.880±0.005 To convert Å to nm, multiply by 10-1. Source: Data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 50 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 51 Wednesday, December 31, 1969 17:00 Structural Properties Table 23. ATOMIC MASS OF SELECTED ELEMENTS (SHEET 1 OF 4) At omic Number Element Symbol Atomic Mass 1 2 3 4 Hydrogen Helium Lithium Beryllium H He Li Be 1.008 4.003 6.941 9.012 5 6 7 8 Boron Carbon Nitrogen Oxygen B C N O 10.81 12.01 14.01 16.00 9 10 11 12 Fluorine Neon Sodium Magnesium F N Na Mg 19.00 20.18 22.99 24.31 13 14 15 Aluminum Silicon Phosphorus (White) Al Si P 26.98 28.09 30.97 16 17 18 19 Sulfur Chlorine Argon Potassium S Cl Ar K 32.06 35.45 39.95 39.1 20 21 22 23 Calcium Scandium Titanium Vanadium Ca Sc Ti V 40.08 44.96 47.9 50.94 24 25 26 27 Chromium Manganese Iron Cobalt Cr Mn Fe Co 52.00 54.94 55.85 58.93 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988). ©2001 CRC Press LLC Shackelford & Alexander 51 3.7 Structure Page 52 Wednesday, December 31, 1969 17:00 Structural Properties Table 23. ATOMIC MASS OF SELECTED ELEMENTS (SHEET 2 OF 4) At omic Number Element Symbol Atomic Mass 28 29 30 31 Nickel Copper Zinc Gallium Ni Cu Zn Ga 58.71 63.55 65.38 69.72 32 33 34 35 Germanium Arsenic Selenium Bromine Ge As Se Br 72.59 74.92 78.96 79.9 36 37 38 39 Krypton Rubidium Strontium Yttrium Kr Rb Sr Y 83.8 85.47 87.62 88.91 40 41 42 43 Zirconium Niobium Molybdenum Technetium Zr Nb Mo Tc 91.22 92.91 95.94 98.91 44 45 46 47 Ruthenium Rhodium Palladium Silver Ru Rh Pd Ag 101.07 102.91 106.4 107.87 48 49 50 51 Cadmium Indium Tin Antimony Cd In Sn Sb 112.4 114.82 118.69 121.75 52 53 54 55 Tellurium Iodine Xenon Cesium (-10˚) Te I Xe Ce 127.6 126.9 131.3 132.91 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988). ©2001 CRC Press LLC 52 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 53 Wednesday, December 31, 1969 17:00 Structural Properties Table 23. ATOMIC MASS OF SELECTED ELEMENTS (SHEET 3 OF 4) At omic Number Element Symbol Atomic Mass 56 57 58 59 Barium Lantium Cerium Praseodymium Ba La Ce Pr 137.33 138.91 140.12 140.91 60 61 62 63 Neodymium Promethium Samarium Europium Nd Pm Sm Eu 144.24 (145) 150.4 151.96 64 65 66 67 Gadolinium Terbium Dysprosium Holmium Gd Tb Dy Ho 157.25 158.93 162.5 164.93 68 69 70 71 Erbium Thulium Ytterbium Lutetium Er Tm Yb Lu 167.26 168.93 173.04 174.97 72 73 74 75 Hafnium Tantalum Tungsten Rhenium Hf Ta W Re 178.49 180.95 183.85 186.2 76 77 78 79 Osmium Iridium Platinum Gold Os Ir Pt Au 190.2 192.22 195.09 196.97 80 81 82 83 Mercury Thallium Lead Bismuth Hg Tl Pb Bi 200.59 204.37 207.2 208.98 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988). ©2001 CRC Press LLC Shackelford & Alexander 53 3.7 Structure Page 54 Wednesday, December 31, 1969 17:00 Structural Properties Table 23. ATOMIC MASS OF SELECTED ELEMENTS (SHEET 4 OF 4) At omic Number Element Symbol Atomic Mass 84 85 86 87 Polonium Asatine Radon Francium Po At Rn Fr (~210) (210) (222) (223) 88 89 90 91 Radium Actinium Thorium Protoactinium Ra Ac Th Pa 226.03 (227) 232.04 231.04 92 93 94 95 Uranium Neptunium Plutonium Americium U Np Pu Am 238.03 237.05 (244) (243) 96 97 98 99 Curium Berkelium Californium Einsteinium Cm Bk Cf Es (247) (247) (251) (254) 100 101 102 103 Fermium Mendelevium Nobelium Lawrencium Fm Md No Lw (257) (258) (259) (260) Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988). ©2001 CRC Press LLC 54 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 55 Wednesday, December 31, 1969 17:00 Structural Properties Table 24. SOLID DENSITY OF SELECTED ELEMENTS (SHEET 1 OF 3) Atomic Number Element Symbol Solid Density (Mg/m3) 3 4 5 6 Lithium Beryllium Boron Carbon Li Be B C 0.533 1.85 2.47 2.27 11 12 13 14 zz 15 16 19 20 Sodium Magnesium Aluminum Silicon Na Mg Al Si 0.966 1.74 2.7 2.33 Phosphorus (White) Sulfur Potassium Calcium P S K Ca 1.82 2.09 0.862 1.53 21 22 23 24 Scandium Titanium Vanadium Chromium Sc Ti V Cr 2.99 4.51 6.09 7.19 25 26 27 28 Manganese Iron Cobalt Nickel Mn Fe Co Ni 7.47 7.87 8.8 8.91 29 30 31 32 Copper Zinc Gallium Germanium Cu Zn Ga Ge 8.93 7.13 5.91 5.32 33 34 37 38 Arsenic Selenium Rubidium Strontium As Se Rb Sr 5.78 4.81 1.53 2.58 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686688, (1988). ©2001 CRC Press LLC Shackelford & Alexander 55 3.7 Structure Page 56 Wednesday, December 31, 1969 17:00 Structural Properties Table 24. SOLID DENSITY OF SELECTED ELEMENTS (SHEET 2 OF 3) Atomic Number Element Symbol Solid Density (Mg/m3) 39 40 41 42 Yttrium Zirconium Niobium Molybdenum Y Zr Nb Mo 4.48 6.51 8.58 10.22 43 44 45 46 Technetium Ruthenium Rhodium Palladium Tc Ru Rh Pd 11.5 12.36 12.42 12.00 47 48 49 50 Silver Cadmium Indium Tin Ag Cd In Sn 10.50 8.65 7.29 7.29 51 52 53 55 Antimony Tellurium Iodine Cesium (-10˚) Sb Te I Ce 6.69 6.25 4.95 1.91 56 57 58 59 Barium Lantium Cerium Praseodymium Ba La Ce Pr 3.59 6.17 6.77 6.78 60 62 63 64 Neodymium Samarium Europium Gadolinium Nd Sm Eu Gd 7.00 7.54 5.25 7.87 65 66 67 68 Terbium Dysprosium Holmium Erbium Tb Dy Ho Er 8.27 8.53 8.80 9.04 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686688, (1988). ©2001 CRC Press LLC 56 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 57 Wednesday, December 31, 1969 17:00 Structural Properties Table 24. SOLID DENSITY OF SELECTED ELEMENTS (SHEET 3 OF 3) Atomic Number Element Symbol Solid Density (Mg/m3) 69 70 71 72 Thulium Ytterbium Lutetium Hafnium Tm Yb Lu Hf 9.33 6.97 9.84 13.28 73 74 75 76 Tantalum Tungsten Rhenium Osmium Ta W Re Os 16.67 19.25 21.02 22.58 77 78 79 81 Iridium Platinum Gold Thallium Ir Pt Au Tl 22.55 21.44 19.28 11.87 82 83 84 90 Lead Bismuth Polonium Thorium Pb Bi Po Th 11.34 9.80 9.2 11.72 92 94 Uranium Plutonium U Pu 19.05 19.81 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686688, (1988). ©2001 CRC Press LLC Shackelford & Alexander 57 3.7 Structure Page 58 Wednesday, December 31, 1969 17:00 Structural Properties Table 25. DENSITY OF IRON AND IRON (SHEET 1 OF 2) ALLOYS Class Metal or Alloy Density g/cm3 Iron and Iron Alloys Pure iron Ingot iron Wrought iron Gray cast iron 7.874 7.866 7.7 7.15 Malleable iron 0.06% C steel 0.23% C steel 7.27 7.871 7.859 0.435% C steel 1.22% C steel 7.844 7.830 0.5% Mo steel 1Cr-0.5Mo steel 1.25Cr-0.5Mo steel 2.25Cr-1.0Mo steel 7.86 7.86 7.86 7.86 5Cr-0.5Mo steel 7Cr-0.5Mo steel 9Cr-1Mo steel 7.78 7.78 7.67 Medium-carbon alloy steels 1Cr-0.35Mo-0.25V steel H11 die steel (5Cr-1.5Mo-0.4V) 7.86 7.79 Other Iron-base alloys A-286 16-25-6 alloy RA-330 Incoloy 7.94 8.08 8.03 8.02 Low-carbon chromiummolybdenum steels Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152 (1993). ©2001 CRC Press LLC 58 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 59 Wednesday, December 31, 1969 17:00 Structural Properties Table 25. DENSITY OF IRON AND IRON (SHEET 2 OF 2) ALLOYS Class Metal or Alloy Density g/cm3 Other Iron-base alloys (Con’t) Incoloy T Incoloy 901 T1 tool steel M2 tool steel 7.98 8.23 8.67 8.16 H41 tool steel 20W-4Cr-2V-12Co steel Invar (36% Ni) Hipernik (50% Ni) 7.88 8.89 8.00 8.25 4% Si 10.27%Si Si 7.6 6.97 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152 (1993). ©2001 CRC Press LLC Shackelford & Alexander 59 3.7 Structure Page 60 Wednesday, December 31, 1969 17:00 Structural Properties Table 26. DENSITY OF WROUGHT STAINLESS STEELS * (SHEET 1 OF 2) Type UNS Designation Density (Mg/m3) 201 202 205 301 S20100 S20200 S20500 S30100 7.8 7.8 7.8 8.0 302 302B 303 304 S30200 S30215 S30300 S30400 8.0 8.0 8.0 8.0 304L S30430 304N 305 S30403 S30430 S30451 S30500 8.0 8.0 8.0 8.0 308 309 310 314 S30800 S30900 S31000 S31400 8.0 8.0 8.0 7.8 316 316L 316N 317 S31600 S31603 S31651 S31700 8.0 8.0 8.0 8.0 317L 321 329 330 S31703 S32100 S32900 N08330 8.0 8.0 7.8 8.0 347 384 405 409 S34700 S38400 S40500 S40900 8.0 8.0 7.8 7.8 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p360, (1993). ©2001 CRC Press LLC 60 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 61 Wednesday, December 31, 1969 17:00 Structural Properties Table 26. DENSITY OF WROUGHT STAINLESS STEELS * (SHEET 2 OF 2) Type UNS Designation Density (Mg/m3) 410 414 416 420 S41000 S41400 S41600 S42000 7.8 7.8 7.8 7.8 422 429 430 430F S42200 S42900 S43000 S43020 7.8 7.8 7.8 7.8 431 434 436 440A S43100 S43400 S43600 S44002 7.8 7.8 7.8 7.8 440C 444 446 PH 13–8 Mo S44004 S44400 S44600 S13800 7.8 7.8 7.5 7.8 15–5 PH 17–4 PH 17–7 PH S15500 S17400 S17700 7.8 7.8 7.8 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p360, (1993). * Annealed Condition. ©2001 CRC Press LLC Shackelford & Alexander 61 3.7 Structure Page 62 Wednesday, December 31, 1969 17:00 Structural Properties Table 27. DENSITY OF STAINLESS STEELS AND HEAT-RESISTANT ALLOYS (SHEET 1 OF 3) Class Metal or Alloy Density g/cm3 Corrrosion-resistant steel castings CA-15 CA-40 CB-30 CC-50 7.612 7.612 7.53 7.53 CE-30 CF-8 CF-20 CF-8M, CF-12M 7.67 7.75 7.75 7.75 CF-8C CF-16F CH-20 CK-20 7.75 7.75 7.72 7.75 CN-7M 8.00 HA HC HD HE 7.72 7.53 7.58 7.67 HF HH HI HK 7.75 7.72 7.72 7.75 HL HN HT HU 7.72 7.83 7.92 8.04 HW HX 8.14 8.14 Heat resistant alloy castings Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152-153 (1993). ©2001 CRC Press LLC 62 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 63 Wednesday, December 31, 1969 17:00 Structural Properties Table 27. DENSITY OF STAINLESS STEELS AND HEAT-RESISTANT ALLOYS (SHEET 2 OF 3) Class Metal or Alloy Density g/cm3 Wrought stainless and heat-resisting steels Type 301 7.9 Type 302 Type 302B Type 303 7.9 8.0 7.9 Type 304 Type 305 Type 308 Type 309 7.9 8.0 8.0 7.9 Type 310 Type 314 Type 316 Type 317 7.9 7.72 8.0 8.0 Type 321 Type 347 Type 403 Type 405 7.9 8.0 7.7 7.7 Type 410 Type 416 Type 420 Type 430 7.7 7.7 7.7 7.7 Type 430F Type 431 Types 440A, 440B, 440C Type 446 7.7 7.7 7.7 7.6 Type 501 Type 502 19-9DL 7.7 7.8 7.97 PH15-7 Mo 17-4 PH 17-7 PH 7.804 7.8 7.81 precipitation-hardening stainless steels Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152-153 (1993). ©2001 CRC Press LLC Shackelford & Alexander 63 3.7 Structure Page 64 Wednesday, December 31, 1969 17:00 Structural Properties Table 27. DENSITY OF STAINLESS STEELS AND HEAT-RESISTANT ALLOYS (SHEET 3 OF 3) Class Metal or Alloy Density g/cm3 Nickel-base alloys D-979 Nimonic 80A Nimonic 90 M-252 8.27 8.25 8.27 8.27 Inconel Inconel "x" 550 Inconel 700 Inconel "713C" 8.51 8.30 8.17 7.913 Waspaloy René 41 Hastelloy alloy B Hastelloy alloy C 8.23 8.27 9.24 8.94 Hastelloy alloy X Udimet 500 GMR-235 8.23 8.07 8.03 Cobalt-chromium-nickel-base alloys N-155 (HS-95) S-590 8.23 8.36 Cobalt-base alloys S-816 V-36 HS-25 HS-36 8.68 8.60 9.13 9.04 HS-31 HS-21 8.61 8.30 Mo-0.5Ti 10.2 Molybdenmun-base alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152-153 (1993). ©2001 CRC Press LLC 64 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 65 Wednesday, December 31, 1969 17:00 Structural Properties Table 28. DENSITY OF ALUMINUM (SHEET 1 OF 2) ALLOYS Class Metal or Alloy Density g/cm3 Pure Aluminum Aluminum (99.996%) 2.6989 Wrought alloys EC, 1060 alloys 1100 2011 2014 2.70 2.71 2.82 2.80 2024 2218 3003 4032 2.77 2.81 2.73 2.69 5005 5050 5052 5056 2.70 2.69 2.68 2.64 5083 5086 5154 5357 2.66 2.65 2.66 2.70 5456 6061, 6063 6101, 6151 7075 2.66 2.70 2.70 2.80 7079 7178 2.74 2.82 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152 (1993). ©2001 CRC Press LLC Shackelford & Alexander 65 3.7 Structure Page 66 Wednesday, December 31, 1969 17:00 Structural Properties Table 28. DENSITY OF ALUMINUM (SHEET 2 OF 2) ALLOYS Class Metal or Alloy Density g/cm3 Casting Alloys A13 43 108, A108 A132 2.66 2.69 2.79 2.72 D132 F132 138 142 2.76 2.74 2.95 2.81 195, B195 214 220 319 2.81 2.65 2.57 2.79 355 356 360 380 2.71 2.68 2.64 2.71 750 40E 2.88 2.81 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152 (1993). ©2001 CRC Press LLC 66 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 67 Wednesday, December 31, 1969 17:00 Structural Properties Table 29. DENSITY OF COPPER AND COPPER ALLOYS (SHEET 1 OF 3) Class Metal or Alloy Density g/cm3 Wrought coppers Pure copper 8.96 Electrolytic tough pitch copper (ETP) Deoxidized copper, high residual phosphorus (DHP) Free-machining copper, 0.5% Te Free-machining copper, 1.0% Pb 8.89 8.94 8.94 8.94 Gilding, 95% Commercial bronze 90% Jewelry bronze, 87.5% Red brass, 85% 8.86 8.80 8.78 8.75 Low brass, 80% Cartridge brass, 70% Yellow brass Muntz metal 8.67 8.53 8.47 8.39 Leaded commercial bronze Low-leaded brass (tube) Medium-leaded brass High-leaded brass (tube) 8.83 8.50 8.47 8.53 High-leaded brass Extra-high-leaded brass Free-cutting brass Leaded Muntz metal 8.50 8.50 8.50 8.41 Forging brass Architectural bronze Inhibited admiralty Naval brass 8.44 8.47 8.53 8.41 Leaded naval brass Manganese bronze Phosphor bronze, 5% Phosphor bronze, 8% 8.44 8.36 8.86 8.80 Wrought alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152 (1993). ©2001 CRC Press LLC Shackelford & Alexander 67 3.7 Structure Page 68 Wednesday, December 31, 1969 17:00 Structural Properties Table 29. DENSITY OF COPPER AND COPPER ALLOYS (SHEET 2 OF 3) Class Metal or Alloy Density g/cm3 Wrought alloys (Con’t) Phosphor bronze, 10% Phosphor bronze, 1.25% Free-cutting phosphor bronze Cupro-nickel, 30% 8.78 8.89 8.89 8.94 Cupro-nickel, 10% Nickel silver,65-18 Nickel silver, 55-18 High-silicon bronze 8.94 8.73 8.70 8.53 Low-silicon bronze Aluminum bronze, 5% Al Aluminum-silicon bronze Aluminum bronze 8.75 8.17 7.69 7.78 Aluminum bronze Beryllium copper 7.58 8.23 Chromium copper (1% Cr) 88Cu-10Sn-2Z 88Cu-8Sn-4Zn 89Cu-11Sn 8.7 8.7 8.8 8.78 88Cu-6Sn-1.5Pb-4.5Zn 87Cu-8Sn-1Pb-4Zn 87Cu-10Sn-1Pb-2Zn 80Cu-10Sn-10Pb 8.7 8.8 8.8 8.95 83Cu-7Sn-7Pb-3Zn 85Cu-5Sn-9Pb-1Zn 78Cu-7Sn-15Pb 70Cu-SSn-2SPb 8.93 8.87 9.25 9.30 85Cu-5Sn-SPb-SZn 83Cu-4Sn-6Pb-7Zn 81Cu-3Sn-7Pb-9Zn 76Cu-2.5Sn-6.5Pb-15Zn 8.80 8.6 8.7 8.77 Casting alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152 (1993). ©2001 CRC Press LLC 68 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 69 Wednesday, December 31, 1969 17:00 Structural Properties Table 29. DENSITY OF COPPER AND COPPER ALLOYS (SHEET 3 OF 3) Class Metal or Alloy Density g/cm3 Casting alloys (Con’t) 72Cu-1Sn-3Pb-24Zn 67Cu-1Sn-3Pb-29Zn 61Cu-1Sn-1Pb-37Zn 8.50 8.45 8.40 Manganese bronze, 60 ksi Manganese bronze, 65 ksi Manganese bronze, 90 ksi Manganese bronze, 110 ksi 8.2 8.3 7.9 7.7 Aluminum bronze, Alloy 9A Aluminum bronze, Alloy 9B Aluminum bronze, Alloy 9C Aluminum bronze, Alloy 9D 7.8 7.55 7.5 7.7 Nickel silver, 12% Ni Nickel silver, 16% Ni Nickel silver, 20% Ni Nickel silver, 25% Ni 8.95 8.95 8.85 8.8 Silicon bronze Silicon brass 8.30 8.30 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p152 (1993). ©2001 CRC Press LLC Shackelford & Alexander 69 3.7 Structure Page 70 Wednesday, December 31, 1969 17:00 Structural Properties Table 30. DENSITY OF MAGNESIUM AND MAGNESIUM ALLOYS Class Metal or Alloy Density g/cm3 Pure Magnesium Magnesium (99.8%) 1.738 Casting alloys AM100A AZ63A AZ81A AZ9lA, B, C 1.81 1.84 1.80 1.81 AZ92A HK31A HZ32A ZH42, ZH62A 1.82 1.79 1.83 1.86 ZK51A ZE41A EZ33A EK30A 1.81 1.82 1.83 1.79 EK41A 1.81 M1A A3A AZ31B PE 1.76 1.77 1.77 1.76 AZ61A AZ80A ZK60A, B ZE10A 1.80 1.80 1.83 1.76 HM21A HM31A 1.78 1.81 Wrought alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p153 (1993). ©2001 CRC Press LLC 70 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 71 Wednesday, December 31, 1969 17:00 Structural Properties Table 31. DENSITY OF NICKEL AND NICKEL ALLOYS Class Metal or Alloy Density g/cm3 Pure Nickel (99.95% Ni+Co) "A" Nickel "D" Nickel Duranickel 8.902 8.885 8.78 8.26 Cast nickel Monel "K" Mond Monel(cast) 8.34 8.84 8.47 8.63 "H" Monel(cast) "S" Monel(cast) Inconel 8.5 8.36 8.51 Inconel (cast) Ni-o-nel 8.3 7.86 Hastelloy B Hastelloy C Hastelloy D Hastelloy F 9.24 8.94 7.8 8.17 Hastelloy N Hastelloy W Hastelloy X 8.79 9.03 8.23 Nickel-chromium-molybdenum-copper alloys Illium G Illium R 8.58 8.58 Electrical resistance alloys 80Ni-20Cr 60Ni-24Fe-16Cr 35Ni-4SFe-20Cr Constantan 8.4 8.147 7.95 8.9 Nickel-molybdenum-chromium-iron alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p153 (1993). ©2001 CRC Press LLC Shackelford & Alexander 71 3.7 Structure Page 72 Wednesday, December 31, 1969 17:00 Structural Properties Table 32. DENSITY OF LEAD AND LEAD ALLOYS Class Metal or Alloy Density g/cm3 Lead alloys Chemical lead (99.90+% Pb) Corroding lead (99.73+% Pb) Arsenical lead Calcium lead 11.34 11.36 11.34 11.34 5-95 solder 20-80 solder 50-50 solder 11.0 10.2 8.89 Antimonial lead alloys 1% antimonial lead Hard lead (96Pb-4Sb) Hard lead (94Pb-6Sb) 8% antimonial lead 9% antimonial lead 11.27 11.04 10.88 10.74 10.66 Lead-base babbitt alloys Lead-base babbitt, SAE 13 Lead-base babbitt, SAE 14 Lead-base babbitt, Alloy 8 Arsenical lead, Babbitt (SAE 15) Arsenical lead, "G" Babbitt 10.24 9.73 10.04 10.1 10.1 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p153 (1993). ©2001 CRC Press LLC 72 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 73 Wednesday, December 31, 1969 17:00 Structural Properties Table 33. DENSITY OF TIN AND TIN ALLOYS Metal or Alloy Density g/cm3 Pure tin Soft solder (30% Pb) Soft solder (37% Pb) 7.3 8.32 8.42 Tin babbitt, Alloy 1 Tin babbitt, Alloy 2 Tin babbitt, Alloy 3 Tin babbitt, Alloy 4 Tin babbitt, Alloy S 7.34 7.39 7.46 7.53 7.75 White metal Pewter 7.28 7.28 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p153 (1993). ©2001 CRC Press LLC Shackelford & Alexander 73 3.7 Structure Page 74 Wednesday, December 31, 1969 17:00 Structural Properties Table 34. DENSITY OF WROUGHT TITANIUM ALLOYS Class Metal or Alloy Density (Mg/m3) Commercially Pure 99.5Ti 99.2Ti 99.1Ti 4.51 4.51 4.51 99.0Ti 99.2 Ti–0.2Pd Ti-0.8Ni-0.3Mo 4.51 4.51 4.54 Alpha Alloys Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2) 4.48 4.48 Near Alpha Alloys Ti-8Al-1Mo-1V Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Ti-6Al-2Sn-4Zr-2Mo 4.37 4.82 4.54 Ti-5Al-5Sn-2Zr-2Mo-0.25Si Ti-6Al-2Nb-1Ta-1Mo 4.51 4.48 Ti-8Mn Ti-3Al-2.5V Ti-6Al-4V 4.73 4.48 4.43 Ti-6Al-4V (low O2) Ti-6Al-6V-2Sn Ti-7Al-4Mo 4.43 4.54 4.48 Ti-6Al-2Sn-4Zr-6Mo Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25Si Ti-10V-2Fe-3Al 4.65 4.57 4.65 Ti-13V-11Cr-3Al Ti-8Mo-8V-2Fe-3Al Ti-3Al-8V-6Cr-4Mo-4Zr 4.84 4.84 4.82 Alpha-Beta Alloys Beta Alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p511, (1993). ©2001 CRC Press LLC 74 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 75 Wednesday, December 31, 1969 17:00 Structural Properties Table 35. DENSITY OF TITANIUM AND TITANIUM ALLOYS Metal or Alloy Density g/cm3 99.9% Ti 99.2% Ti 99.0% Ti 4.507 4.507 4.52 Ti-6Al-4V Ti-5Al-2.5Sn Ti-2Fe-2Cr-2Mo Ti-8Mn 4.43 4.46 4.65 4.71 Ti-7Al-4Mo Ti-4Al-4Mn Ti-4AI-3Mo-1V Ti-2.5Al-16V 4.48 4.52 4.507 4.65 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p153 (1993). ©2001 CRC Press LLC Shackelford & Alexander 75 3.7 Structure Page 76 Wednesday, December 31, 1969 17:00 Structural Properties Table 36. DENSITY OF ZINC AND ZINC ALLOYS Metal or Alloy Density g/cm3 Pure zinc AG40A alloy AC41A alloy 7.133 6.6 6.7 Commercial rolled zinc 0.08% Pb Commercial rolled zinc 0.06 Pb, 0.06 Cd Commercial rolled zinc 0.3 Pb, 0.3 Cd 7.14 7.14 7.14 Copper-hardened, rolled zinc (1% Cu) Rolled zinc alloy (1Cu-0.010Mg) Zn-Cu-Ti alloy (0.8Cu, 0.15Ti) 7.18 7.18 7.18 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p153-154 (1993). ©2001 CRC Press LLC 76 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 77 Wednesday, December 31, 1969 17:00 Structural Properties Table 37. DENSITY OF PERMANENT MAGNET MATERIALS Metal or Alloy Density g/cm3 Cunico Cunife Comol 8.30 8.61 8.16 Alnico I Alnico I Alnico III 6.89 7.09 6.89 Alnico IV Alnico V Alnico VI 7.00 7.31 7.42 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154, (1993). ©2001 CRC Press LLC Shackelford & Alexander 77 3.7 Structure Page 78 Wednesday, December 31, 1969 17:00 Structural Properties Table 38. DENSITY OF PRECIOUS METALS Metal or Alloy Density g/cm3 Silver Gold 70Au-30Pt Platinum 10.49 19.32 19.92 21.45 Pt-3.5Rh Pt-5Rb Pt-lORh Pt-20Rb 20.9 20.65 19.97 18.74 Pt-30Rh Pt-40Rb Pt-5Ir Pt-10Ir 17.62 16.63 21.49 2153 Pt-15Ir Pt-20Ir Pt-25Ir Pt-30Ir 2157 21.61 21.66 21.70 Pt-35Ir Pt-5Ru Pt-10Ru Palladium 21.79 20.67 19.94 12.02 60Pd40Cu 95.5Pd-4.5Ru 95.5Pd-45Ru 10.6 12.07 11.62 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154, (1993). ©2001 CRC Press LLC 78 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 79 Wednesday, December 31, 1969 17:00 Structural Properties Table 39. DENSITY OF SUPERALLOYS Class Alloy Density (Mg/m3) Iron-base alloys Carpenter 20-Cb3 Haynes 556 Incoloy 800 Incoloy 801 8.055 8.23 7.94 7.94 Cobalt-base alloys Haynes 25(L-605) Haynes 188 Stellite 6B UMCo 50 9.13 9.13 8.38 8.05 Nickel-base alloys Hastelloy B–2 Hastelloy C4 Hastelloy C–276 Hastelloy N 9.21 8.64 8.90 8.93 Hastelloy S Hastelloy W Hastelloy X Inconel 600 8.76 9.03 8.23 8.42 Inconel 625 Inconel X750 René 41 Udimet 500 8.44 8.25 8.25 8.14 Udimet 700 Waspaloy 7.92 8.20 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p386, (1993). ©2001 CRC Press LLC Shackelford & Alexander 79 3.7 Structure Page 80 Wednesday, December 31, 1969 17:00 Structural Properties Table 40. DENSITY OF SELECTED (SHEET 1 OF 3) Class Borides Carbides Nitrides CERAMICS Density (g/cm3) Ceramic Chromium Diboride (CrB2) Hafnium Diboride (HfB2) Tantalum Diboride (TaB2) 5.6 11.2 12.60 Titanium Diboride (TiB2) Zirconium Diboride (ZrB2) 4.5-4.62 6.09-6.102 Boron Carbide (B4C) Hafnium Monocarbide (HfC) 2.51 12.52-12.70 Silicon Carbide (SiC) (hexagonal) (cubic) 3.217 3.210 Tantalum Monocarbide (TaC) Titanium Monocarbide (TiC) Trichromium Dicarbide (Cr3C2) 14.48-14.65 4.92-4.938 6.70 Tungsten Monocarbide (WC) Zirconium Monocarbide (ZrC) 15.8 6.44-6.73 Aluminum Nitride (AlN) Boron Nitride (BN) (cubic) (hexagonal) 3.26-3.30 Titanium Mononitride (TiN) Trisilicon tetranitride (Si3N4) (α) (β) 5.43 3.184 3.187 Zirconium Mononitride (TiN) 7.349 3.49 2.27 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 80 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 81 Wednesday, December 31, 1969 17:00 Structural Properties Table 40. DENSITY OF SELECTED (SHEET 2 OF 3) Class Density (g/cm3) Ceramic Oxides CERAMICS Aluminum Oxide (Al2O3) Beryllium Oxide (BeO) Calcium Oxide (CaO) Cerium Dioxide (CeO2) Dichromium Trioxide (Cr2O3) 3.97-3.986 3.01-3.03 3.32 7.28 5.21 Hafnium Dioxide (HfO2) Magnesium Oxide (MgO) Nickel monoxide (NiO) Thorium Dioxide (ThO2) 9.68 3.581 6.8-7.45 9.821 Titanium Oxide (TiO2) (anatase) (brookite) (rutile) Uranium Dioxide (UO2) 3.84 4.17 4.25 10.949-10.97 Zirconium Oxide (ZrO2) (monoclinic) (CaO stabilized) (MgO stabilized) (plasma sprayed) 5.56 5.5 5.43 5.6-5.7 Cordierite (2MgO 2Al2O3 5SiO2) Mullite (3Al2O3 2SiO2) (theoretical) 1.61-2.51 2.6-3.26 3.16-3.22 Sillimanite (Al2O3 SiO2) Spinel (Al2O3 MgO) Zircon (SiO2 ZrO2) 3.23-3.24 3.580 4.6 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 81 3.7 Structure Page 82 Wednesday, December 31, 1969 17:00 Structural Properties Table 40. DENSITY OF SELECTED (SHEET 3 OF 3) Class Silicides CERAMICS Density (g/cm3) Ceramic Molybdenum Disilicide (MoSi2) Tungsten Disilicide (WSi2) 6.24-6.29 9.25-9.3 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 82 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 83 Wednesday, December 31, 1969 17:00 Structural Properties Table 41. DENSITY OF GLASSES (SHEET 1 OF 10) Class Density (g/cm3) Temperature Range of Validity 2.201-2.211 2.1977 room temp. room temp. (~1% wt impurity) (~1% wt impurity) 2.094 2.072 1935˚C 2048˚C (~1% wt impurity) (~1% wt impurity) (~1% wt impurity) 2.057 2.045 1.929 2114˚C 2165˚C 2322˚C (1300˚C for 1 hr then 1000˚C for 70 hr) 2.201 (1300˚C for 1 hr then 1100˚C for 22 hr) 2.198 (1300˚C for 1 hr then 1200˚C for 7 hr) 2.201 (1300˚C for 1 hr then 1400˚C for 5 min) 2.201 (5% wt Na2O) (10% wt Na2O) (14.86% wt Na2O) 2.240 2.291 2.334 20˚C 20˚C 20˚C (19.55% wt Na2O) (25% wt Na2O) (29.20% wt Na2O) 2.383 2.431 2.459 20˚C 20˚C 20˚C (35.25% wt Na2O) (39.66% wt Na2O) (49.20% wt Na2O) 2.498 2.521 2.563 20˚C 20˚C 20˚C Glass SiO2 glass (stabilized) SiO2-Na2O glass Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 83 3.7 Structure Page 84 Wednesday, December 31, 1969 17:00 Structural Properties Table 41. DENSITY OF GLASSES (SHEET 2 OF 10) Class SiO2-Na2O glass (con’t) SiO2-CaO glass Density (g/cm3) Temperature Range of Validity (20.1% wt Na2O) 2.270 987˚C (20.1% wt Na2O) (20.1% wt Na2O) 2.240 2.220 1249˚C 1388˚C (30.1% wt Na2O) (30.1% wt Na2O) (30.1% wt Na2O) 2.270 2.230 2.205 1004˚C 1252˚C 1400˚C (45.6% wt Na2O) (45.6% wt Na2O) (45.6% wt Na2O) 2.260 2.225 2.190 1044˚C 1243˚C 1413˚C (50.2% wt Na2O) (50.2% wt Na2O) (50.2% wt Na2O) 2.250 2.215 2.180 1075˚C 1259˚C 1421˚C (55.4% wt Na2O) (55.4% wt Na2O) (55.4% wt Na2O) 2.245 2.205 2.165 1105˚C 1258˚C 1412˚C (60.9% wt Na2O) (60.9% wt Na2O) (60.9% wt Na2O) 2.250 2.190 2.145 1052˚C 1243˚C 1413˚C (30% mol CaO) (35% mol CaO) (39.0% mol CaO) (40% mol CaO) 2.466 2.475 2.746 2.542 1700˚C 1700˚C 20˚C 1700˚C Glass Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 84 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 85 Wednesday, December 31, 1969 17:00 Structural Properties Table 41. DENSITY OF GLASSES (SHEET 3 OF 10) Class SiO2-CaO glass (Con’t) SiO2-PbO glass Density (g/cm3) Temperature Range of Validity (42.5% mol CaO) 2.555-2.568 1700˚C (44.6% mol CaO) (45% mol CaO) (47.5% mol CaO) 2.835 2.590-2.618 2.602-2.604 20˚C 1700˚C 1700˚C (50.0% mol CaO) (50% mol CaO) (52.5% mol CaO) (52.9% mol CaO) 2.898 2.615-2.617 2.612-2.640 2.918 20˚C 1700˚C 1700˚C 20˚C (57.5% mol CaO) (57.5% mol CaO) (60% mol CaO) 2.953 2.641-2.644 2.661 20˚C 1700˚C 1700˚C (20.78% mol PbO) (24.90% mol PbO) (29.71% mol PbO) 3.6711 3.9606 4.3558 room temp. room temp. room temp. (34.66% mol PbO) (35.0% mol PbO) (40.2% mol PbO) (40.80% mol PbO) 4.7437 5.10 5.15 5.2543 room temp. 1270K 1270K room temp. (44.7% mol PbO) (45.56% mol PbO) (49.5% mol PbO) (50.50% mol PbO) 5.45 5.6416 5.85 6.0473 1270K room temp. 1270K room temp. (52.7% mol PbO) (54.45% mol PbO) (58.0% mol PbO) (59.39% mol PbO) 5.90 6.3322 6.05 6.6894 1270K room temp. 1270K room temp. Glass Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 85 3.7 Structure Page 86 Wednesday, December 31, 1969 17:00 Structural Properties Table 41. DENSITY OF GLASSES (SHEET 4 OF 10) Class SiO2-PbO glass (Con’t) SiO2-Al2O3 glass Density (g/cm3) Temperature Range of Validity (65.97% mol PbO) 7.0810 room temp. (66.7% mol PbO) (73.0% mol PbO) (80.0% mol PbO) 6.20 6.42 6.70 1270K 1270K 1270K (84.9% mol PbO) (89.0% mol PbO) (94.2% mol PbO) 7.03 7.05 7.45 1270K 1270K 1270K (0.04% wt Al2O3 for quintus quartz glass) 2.2000 room temp. (0.10% wt Al2O3 for Cab-O-Sil glass) 2.2025 room temp. (0.37% wt Al2O3 for I.R. vitreosil glass) 2.2043 room temp. 2.1977 room temp. 2.1982 room temp. 2.2047 room temp. 2.2048 room temp. 2.2006 room temp. 2.2027 room temp. Glass (0.38% wt Al2O3 for Cab-O-Sil glass) (0.38% wt Al2O3 for quintus quartz glass) (0.41% wt Al2O3 for Cab-O-Sil glass) (0.47% wt Al2O3 for quintus quartz glass) (0.64% wt Al2O3 for I.R. vitreosil glass) (0.77% wt Al2O3 for quintus quartz glass) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 86 CRC Handbook of Materials Science & Engineering 3.7 Structure Page 87 Wednesday, December 31, 1969 17:00 Structural Properties Table 41. DENSITY OF GLASSES (SHEET 5 OF 10) Class SiO2-Al2O3 glass (Con’t) Density (g/cm3) Temperature Range of Validity (1.22% wt Al2O3 for Cab-O-Sil glass) 2.2095 room temp. (1.29% wt Al2O3 for I.R. vitreosil glass) 2.2072 room temp. (2.30% wt Al2O3 for I.R. vitreosil glass) 2.2081 room temp. (2.34% wt Al2O3 for quintus quartz glass) 2.1994 room temp. (2.70% wt Al2O3 for Cab-O-Sil glass) 2.2031 room temp. (5.22% wt Al2O3 for quintus quartz glass) 2.2118 room temp. (14.82% mol Al2O3) (14.82% mol Al2O3) (14.82% mol Al2O3) (14.82% mol Al2O3) 2.319 2.320 2.313 2.302 1707˚C 1813˚C 1907˚C 2008˚C (30.08% mol Al2O3) (30.08% mol Al2O3) (30.08% mol Al2O3) (30.08% mol Al2O3) 2.475 2.460 2.448 2.446 1758˚C 1858˚C 1909˚C 1975˚C (46.92% mol Al2O3) (46.92% mol Al2O3) (46.92% mol Al2O3) 2.736 2.724 2.627 1755˚C 1803˚C 1859˚C Glass Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 87 3.7 Structure Page 88 Wednesday, December 31, 1969 17:00 Structural Properties Table 41. DENSITY OF GLASSES (SHEET 6 OF 10) Class SiO2-Al2O3 glass (Con’t) SiO2-B2O3 glasss Density (g/cm3) Temperature Range of Validity (46.92% mol Al2O3) 2.625 1910˚C (46.92% mol Al2O3) 2.612 1959˚C (70.21% mol Al2O3) (70.21% mol Al2O3) 2.811 2.791 1966˚C 1995˚C (35.1% mol B2O3) (39.2% mol B2O3) (44.2% mol B2O3) (50.8% mol B2O3) 2.0436 2.0224 2.0031 1.9865 25˚C 25˚C 25˚C 25˚C (53.10% mol B2O3) 1.892-0.0634 x10-3T 1653K< T <1803K (58.4% mol B2O3) 1.9608 25˚C (62.40% mol B2O3) 1.812-0.0475 x10-3T 1553K< T <1733K (71.90% mol B2O3) 1.785-0.0705 x10-3T 1303K R + X. It is given by: D(R–X) = ∆Ηf˚(R) + ∆Hf˚(X) – ∆Hf˚(RX). Some authors list bond strengths for 0K, but here the values for 298K are given because more thermodynamic data are available for this temperature. Bond strengths, or bond dissociation energies, are not equal to, and may differ considerable from, mean bond energies derived solely from thermochemical data on molecules and atoms. The values in this table have usually been measured spectroscopically or by mass spectrometric analysis of hot gases effusing from a Knudsen cell. ©2001 CRC Press LLC 170 CRC Handbook of Materials Science & Engineering 6.1 Thermodynamics Page 171 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 65. BOND STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 1 OF 7) Kcal • mol -1 Molecule H–CH H–CH2 H–CH3 H–ethynyl Value Error 102 ±2 110 104 ±2 ±1 128 ±5 H–vinyl H–C2H5 H–propargyl H–allyl ≥ 108 ±2 98 ±1 93.9 89 ± 1.2 ±1 H–cyclopropyl H–n–C3H7 100.7 ±1 98 95 ±1 ±1 96.5 ±1 97.4 83 ± 1.6 ±1 95 92 ±1 ± 1.2 81.2 80 119 ± 1.2 ±1 ±1 103.6 ±1 103.9 104.7 88 90 ±1 ±1 ±5 ±2 H–i–C3H7 H–cyclobutyl H–cyclopropycarbinyl H–methdllyl H–s–C4H9 H–t–C4H9 H–cyclopentadien–1,3–yl–5 H–pentadien–1,4–yi–3 H–OH H–OCH3 H–OC2H5 H–OC(CH3)3 H–OC6H5 H–O2H To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213. ©2001 CRC Press LLC Shackelford & Alexander 171 6.1 Thermodynamics Page 172 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 65. BOND STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 2 OF 7) Kcal • mol -1 Molecule H–O2CCH3 H–O2CC2H3 H–O2Cn–C3H7 H–ONO H–ONO2 H–SH H–SCH H–SiH3 H–Si(CH3)3 BH3–BH3 HC=CH H2C=CH2 H3C–CH3 CH3–C(CH3)2CH:CH2 C6H5CH2–C2H5 C6H5CH(CH3)– CH3 C6H5CH2–n–C3H7 CH3–CH2CN CH3–C(CH3)2CN C6H5C(CH3 )(CN)–CH3 NC–CN C6H5CH2CO– CH2C6H5 C6H5CO– CF3 CH3CO– COCH3 Value Error 112 110 103 ±4 ±4 ±4 78.3 ± 0.5 101.2 ± 0.5 90 ≥ 88 ±2 94 ±3 90 35 ±3 230 ± 2 172 ±2 88 69.4 69 71 ±2 67 72.7 70.2 59.9 ±2 ±2 ±2 128 ±1 65.4 73.8 67.4 ± 2.3 ±2 To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213. ©2001 CRC Press LLC 172 CRC Handbook of Materials Science & Engineering 6.1 Thermodynamics Page 173 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 65. BOND STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 3 OF 7) Kcal • mol -1 Molecule C6H5CH2– COOH C6H5CH2– O2CCH3 C6H5CO– COC6H5 C6H5CH2– O2CC6H5 (C6H5CH2)2CH–COOH CH2F–CH2F CF2=CF2 CF3–CF3 C6H5CH2–NH2 C6H5NH–CH3 C6H5CH2–NHCH3 C6H5N(CH2)–CH3 C6H5CH2–N(CH3)2 CF3–NF2 CH2 = N2 CH3N:N–CH3 C2H5N:N–C2H5 i –C3H7N:N–i –C3H7 n –C4H9N:N–n –C4H9 i –C4H9N:N–i –C4H9 Value Error 68.1 67 66.4 69 59.4 88 76.3 96.9 71.9 67.7 68.7 65.2 60.9 65 ≤ 41.7 52.5 ±2 ±3 ±2 ±1 ±1 ±1 ± 2.5 ±1 50.0 47.5 50.0 49.0 To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213. ©2001 CRC Press LLC Shackelford & Alexander 173 6.1 Thermodynamics Page 174 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 65. BOND STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 4 OF 7) Kcal • mol -1 Molecule s –C4H9N:N–s –C4H9 t –C4H9N:N–t –C4H9 C6H5CH2N:N–C6H5CH2 CF3N:N–CF3 C2H5–NO2 O=CO CH3–O2SCH3 Allyl–O2SCH3 C6H5CH2–O2SCH3 C6H5S–CH3 C6H5CH2–SCH3 F–CH3 Cl–CN Cl–COC6H5 Cl–CF3 Cl–CCl2F Cl–C2F5 Br–CH3 Br–CN Br–COC6H5 Br–CF3 Br–CBr3 Br–C2F5 Br –n –C3F Value Error 46.7 43.5 37.6 55.2 62 127.2 ± 0.1 66.8 49.6 52.9 60 53.8 103 ±3 97 ±1 74 86.1 73 ±3 ± 0.8 ±2 82.7 70.0 ± 1.7 ± 1.2 83 ±1 64.2 70.6 56.2 68.7 66.5 ± 1.0 ± 1.8 ± 1.5 ± 2.5 To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213. ©2001 CRC Press LLC 174 CRC Handbook of Materials Science & Engineering 6.1 Thermodynamics Page 175 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 65. BOND STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 5 OF 7) Kcal • mol -1 Molecule Value Error I–CH3 1–norbornyl I–CN I–CF3 56.3 ±1 62.5 73 ± 2.5 ±1 53.5 ±2 CH3–Ga(CH3)2 59.5 54.4 57.5 43.7 ±1 47.1 40.7 68 36.4 ± 0.6 CH3–CdCH3 CH3–HgCH3 C2H5–HgC2H5 n –C3H7–Hg n –C3H7 i –C3H7–Hg i –C3H7 C6H5–HgC6H5 CH3 –Tl(CH3)2 CH3–Pb(CH3)3 NH2–NH2 NH2–NHCH3 NH2 –N(CH3)2 NH2 –NHC6H5 NO–NO2 NO2–NO2 NF2–NF2 O–N2 O–NO HO–N:CHCH3 Cl–NF2 49.4 70.8 64.8 62.7 51.1 9.5 12.9 21 ±1 ±2 ± 0.5 ± 0.5 ±1 40 73 49.7 ≈ 32 To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213. ©2001 CRC Press LLC Shackelford & Alexander 175 6.1 Thermodynamics Page 176 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 65. BOND STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 6 OF 7) Kcal • mol -1 Molecule HO–OH CH3O–OCH3 HO–OC(CH3)3 C2H5O–OC2H5 n –C3H7O–O n –C3H7 i –C3H7O–O i –C3H7 s –C4H9O–O s –C4H9 t –C4H9O–O t –C4H9 (CH3)3CCH2O–OCH2C(CH3)3 O–O2CIF CH3CO2–O2CCH3 C2H5CO2–O2CC2H5 n –C3H7CO2–O2Cn –C3H7 O–SO F–OCF3 Cl–OH O–ClO Br–OH I–OH ClO3–ClO4 Value Error 51 ±1 36.9 42.5 37.3 ±1 ± 1.2 37.2 37.0 36.4 37.4 ±1 ±1 ±1 ±1 36.4 58.4 30.4 30.4 ±1 30.4 ±2 ±2 ±2 132 ±2 43.5 ± 0.5 60 ±3 59 56 56 ±3 ±3 ±3 58.4 To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213. ©2001 CRC Press LLC 176 CRC Handbook of Materials Science & Engineering 6.1 Thermodynamics Page 177 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 65. BOND STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 7 OF 7) Kcal • mol -1 Molecule Value Error SiH3–SiH3 130 122 119 81 ±5 ±5 ±5 ±4 (CH3)3Si–Si(CH3)3 80.5 O = PF3 O = PCl3 O = PBr3 To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213. * The values refer to a temperature of 298 K and have mostly been determined by kinetic methods. Some have been calculated from formation of the species involved according to equations: D(R–X) = ∆Hf˚ (R•) + ∆Hf˚(X•) – ∆Hf˚ (RX) or D(R–X) = 2∆Hf˚ (R•) – ∆Hf˚ (RR) ©2001 CRC Press LLC Shackelford & Alexander 177 6.2 Thermodynamics L Page 178 Wednesday, December 31, 1969 17:00 Table 66. SOLUBILITY OF COPPER AND COPPER ALLOYS Family Wrought Alloys UNS Numbers Principal Alloying Element Solid Solubility at 20 °C (at. %) Brasses Phosphor bronzes Aluminum bronzes C20000, C30000, C40000, C66400 to C69800 C50000 C60600 to C64200 Zn Sn Al 37 9 19 Silicon bronzes Copper nickels, nickel silvers C64700 to C66100 C70000 Si Ni 8 100 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p439, (1993). ©2001 CRC Press LLC 6.2 Thermodynamics L Page 179 Wednesday, December 31, 1969 17:00 Table 67. HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 1 OF 16) Reaction 2 Ac(c) + 3/2 O2(g) = Ac2O3(c) 2 Al(c) + 1/2 O2(g) = Al2O(g) 2 Al(l) + 1/2 O2(g) = Al2O(g) Al(c) + 1/2 O2(g) = AlO(g) Al(l) + 1/2 O2(g) = AlO(g) 2 Al(c) + 3/2 O2(g) = Al2O3 (corundum) 2 Al(l) + 3/2 O2(g) = Al2O3 (corundum) 2 Sb(c) + 3/2 O2(g) = Sb2O3 (cubic) 2 Sb(c) + 3/2 O2(g) = Sb2O3 (orthorhombic) 2 As(c) + 3/2 O2(g) = As2O3 (orthorhombic) 2 As(c) + 3/2 O2(g) = As2O3 (monoclinic) 2 As(c) + 5/2 O2(g) = As2O5(c) Temperature range of validity ∆H0 2.303a b c I 298.16–1,000K 298.16–931.7K 931.7–2,000K 298.16–931.7K –446,090 –31,660 –38,670 +10,740 –16.12 +14.97 +10.36 +5.76 – – – – – – – – +109.89 –72.74 –51.53 –37.61 931.7–2,000K 298.16–931.7K 931.7–2,000K 298.16–842K +8,170 –404,080 –407,950 –169,450 +5.76 –15.68 –6.19 +6.12 – +2.18 –0.78 –6.01 – +3.935 +3.935 –0.30 –34.85 +123.64 +102.37 +52.21 298.16–903K 298.16–542K 298.16–586K 298.16–883K –168,060 –154,870 –150,760 –217,080 +6.12 +29.54 +29.54 +12.32 –6.01 –21.33 –21.33 –4.65 –0.30 –0.30 –0.30 –0.50 +50.56 –8.83 –16.95 +80.50 The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations: ∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 6.2 Thermodynamics L Page 180 Wednesday, December 31, 1969 17:00 Table 67. HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 2 OF 16) Temperature range of validity ∆H0 2.303a b c I 298.16–648K 648–977K 298.16–1,556K 298.16–544K –134,590 –134,140 –144,220 –50,450 –7.60 –3.34 –1.91 –4.61 +0.87 –0.56 –0.46 – +0.42 +0.42 +1.24 – +45.76 +34.01 +30.64 +35.51 544–1,600K 298.16–544K 544–1,090K 298.16–723K –52,920 –139,000 –142,270 –304,690 –4.61 –11.56 +2.30 +11.72 – +2.15 –3.25 –7.55 – –0.30 –0.30 +0.355 +40.05 +96.52 +67.55 +34.25 Ca(α) + 1/2 O2(g) = CaO(c) 298.16–723K 298.16–594K 594–1,038K 298.16–673K –298,670 –62,330 –63,240 –151,850 +26.57 –2.05 +2.07 –6.56 –15.90 +0.71 –0.76 +1.46 –0.30 –0.10 –0.10 +0.68 –10.40 +29.17 +20.14 +43.93 Ca(β) + 1/2 O2(g) = CaO(c) 673–1,124K –151,730 –4.14 +0.41 +0.68 +37.63 Reaction Ba(α) + 1/2 O2(g) = BaO(c) Ba(β) + 1/2 O2(g) = BaO(c) Be(c) + 1/2 O2(g) = BeO(c) Bi(c) + 1/2 O2(g) = BiO(c) Bi(l) + 1/2 O2(g) = BiO(c) 2 Bi(c) + 3/2 O2(g) = Bi2O3(c) 2 Bi(l) + 3/2 O2(g) = Bi2O3(c) 2 B(c) + 3/2 O2(g) = B2O(c) 2 B(c) + 3/2 O2(g) = B2O3(gl) Cd(c) + 1/2 O2(g) = CdO(c) Cd(l) + 1/2 O2(g) = CdO(c) The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations: ∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 6.2 Thermodynamics L Page 181 Wednesday, December 31, 1969 17:00 Table 67. HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 3 OF 16) Temperature range of validity ∆H0 2.303a b c I 298.16–2,000K 298.16–2,000K 298.16–1,048K –25,400 –93,690 –435,600 +2.05 +1.63 –4.60 +0.27 –0.7 – –1.095 –0.23 – –28.79 –5.64 +92.84 1,048–1,900K 298.16–1,048K 1,048–2,000K 298.16–301.5K –440,400 –245,490 –247,930 –75,900 –4.60 –6.42 +0.71 – – +2.34 –0.66 – – –0.20 –0.20 – +97.42 +67.79 +51.73 +36.60 2 Cs(c) + 3/2 O2(g) = Cs2O3(c) 301.5–763K 763–963K 963–1,500K 298.16–301.5K –76,900 –75,370 –113,790 –112,690 – –9.21 –23.03 –11.51 – – – – – – – – +39.92 +64.47 +145.60 +110.10 2 Cs(l) + 3/2 O2(g) = Cs2O3(c) 301.5–775K –113,840 –12.66 – – +116.77 Reaction C(graphite) + 1/2 O2(g) = CO(g) C(graphite) + O2(g) = CO2(g) 2 Ce(c) + 3/2 O2(g) = Ce2O3(c) 2 Ce(l) + 3/2 O2(g) = Ce2O3(c) Ce(c) + O2(g) = CeO2(c) Ce(l) + O2(g) = CeO2(c) 2 Cs(c) + 1/2 O2(g) = Cs2O(c) 2 Cs(l) + 1/2 O2(g) = Cs2O(c) 2 Cs(l) + 1/2 O2(g) = Cs2O(l) 2 Cs(g) + 1/2 O2(g) = Cs2O(l) The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations: ∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 6.2 Thermodynamics L Page 182 Wednesday, December 31, 1969 17:00 Table 67. HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 4 OF 16) Reaction 2 Cs(l) + 3/2 O2(g) = Cs2O3(l) 2 Cs(g) + 3/2 O2(g) = Cs2O3(l) Cl2(g) + 1/2 O2(g) = Cl2O(g) 1/2 Cl2(g) + 1/2 O2(g) = ClO(g) 2 Cl2(g) + 3/2 O2(g) = ClO(g) 2 Cr(c) + 3/2 O2(g) = Cr2O3(β) 2 Cr(l) + 3/2 O2(g) = Cr2O3(β) Cr(c) + O2(g) = CrO2 (c) Cr(c) + 3/2 O2(g) = CrO3(c) Cr(c) + 3/2 O2(g) = Cr2O3(l) Co(α,β) + 1/2 O2(g) = CoO(c) Co(γ) + 1/2 O2(g) = CoO(c) 2 Cu(c) + 1/2 O2(g) = Cu2O(c) 2 Cu(l) + 1/2 O2(g) = Cu2O(c) Temperature range of validity ∆H0 2.303a b c I 775–963K 963–1,500K 298.16–2,000K –110,740 –148,680 +17,770 –26.48 –39.14 –0.71 – – –0.12 – – +0.49 +152.70 +229.87 +16.81 298.16–1,000K 298.16–500K 298.16–1,823K 1,823–2,000K +33,000 +37,740 –274,670 –278,030 – +5.76 –14.07 +2.33 – – +2.01 –0.35 – – +0.69 +1.57 0.24 +21.42 +105.65 +58.29 298.16–1,000K 298.16–471K 471–600K 298.16–1,400K –142,500 –141,590 –141,580 –56,910 – –13.82 –32.24 +0.69 – – – – – – – – +42.00 +103.90 +153.14 +16.03 1,400–1,763K 298.16–1,357K 1,357–1,502K –58,160 +10,550 –43,880 –1.15 –1.15 +8.47 – –1.10 –2.60 – –0.10 –0.10 +22.71 +21.92 –3.72 The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations: ∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 6.2 Thermodynamics L Page 183 Wednesday, December 31, 1969 17:00 Table 67. HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 5 OF 16) Temperature range of validity ∆H0 2.303a b c I 2 Cu(l) + 1/2 O2(g) = Cu2O(l) 1,502–2,000K –37,710 –12.48 +0.25 –0.10 +54.44 Cu(c) + 1/2 O2(g) = CuO(c) 298.16–1,357K 1,357–1,720K 1,720–2,000K 298.16–500K –37,740 –39,410 –41,060 –2,160 –0.64 +4.17 –11.35 –10.36 –1.40 –2.15 +0.25 – –0.10 –0.10 –0.10 – +24.87 +12.05 +59.09 +95.14 298.16–2,000K 298.16–373.16K 298.16–2,000K 298.16–374.5K –268,380 –70,600 –56,930 –72,760 –9.74 –18.26 +6.75 –18.10 –0.28 +0.64 –0.64 – +1.54 –0.04 –0.08 – +78.16 +91.67 –8.74 +93.59 298.16–2,000K 298.16–1,033K 1,033–1,179K –58,970 –65,320 –62,380 +5.50 –11.26 +4.08 –0.75 +2.61 –0.75 +0.085 +0.44 +0.235 –3.74 +48.60 +3.00 Reaction Cu(l) + 1/2 O2(g) = CuO(c) Cu(l) + 1/2 O2(g) = CuO(l) 2 Au(c) + 3/2 O2(g) = Au2O3(c) Hf(c) + O2(g) = HfO2 (monoclinic) H2(g) + 1/2 O2(g) = H2O(l) H2(g) + 1/2 O2(g) = H2O(g) D2(g) + 1/2 O2(g) = D2O(l) D2(g) + 1 /2 O2(g) = D2O(g) 0.947 Fe(α) + 1/2 O2(g) = Fe0.9470(c) 0.947 Fe(α) + 1/2 O2(g) = Fe0.9470(c) The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations: ∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 6.2 Thermodynamics L Page 184 Wednesday, December 31, 1969 17:00 Table 67. HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 6 OF 16) Temperature range of validity ∆H0 2.303a b c I 0.947 Fc(β) + 1/2 O2(g) = Fe0.9470(c) 1,179–1,650K –66,750 –8.04 +0.67 –0.10 +42.28 0.947 Fe(γ) + 1/2 O2(g) = Fe0.9470(l) 1,650–1,674K 1,647–1,803K 1,803–2,000K 298.16–900K –64,200 –59,650 –63,660 –268,310 –18.72 –6.84 –7.48 +5.87 +1.67 +0.25 +0.25 –12.45 –0.10 –0.10 –0.10 +0.245 +73.45 +34.81 +39.12 +73.11 900–1,033K 1,033–1,179K 1,179–1,674K 298.16–950K –272,300 –262,990 –276,990 –200,000 –54.27 –5.71 ~4.05 –13.84 +11.65 +1.00 +5.50 –1.45 +0.245 –0.40 –0.40 +1.905 +233.52 +89.19 +213.52 +108.26 950–1,033K 1,033–1,050K 1,050–1,179K 1,179–1,674K –202,960 –196,740 –193,200 –202,540 –42.64 –10.27 –0.39 –25.95 +7.85 +0.75 –0.13 +2.87 +0.13 –0.30 –0.30 –0.30 +188.48 +92.26 +59.96 +142.85 Reaction 0.947 Fe(γ) + 1/2 O2(g) = Fe0.9470(l) 0.947 Fe(δ) + 1/2 O2(g) = Fe0.9470(l) 3 Fe(α) + 2 O2(g) = Fe3O4(magnetite) 3 Fe(α) + 2 O2(g) = Fe3O4(β) 3 Fe(β) + 2 O2(g) = Fe3O4(β) 3 Fe(γ) + 2 O2(g) = Fe3O4(β) 2 Fe(α) + 3/2 O2(g) = Fe2O3(hematite) 2 Fe(α) + 3/2 O2(g) = Fe2O3(β) 2 Fe(β) + 3/2 O2(g) = Fe2O3(β) 2 Fe(β) + 3/2 O2(g) = Fe2O3(γ) 2 Fe(γ) + 3/2 O2(g) = Fe2O3(γ) The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations: ∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 6.2 Thermodynamics L Page 185 Wednesday, December 31, 1969 17:00 Table 67. HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 7 OF 16) Reaction 2 Fe(α) + 3/2 O2(g) = Fe2O3(γ) Pb(c) + 1/2 O2(g) = PbO (red) Pb(l) + 1/2 O2(g) = PbO (red) Pb(c) + 1/2 O2(g) = PbO (yellow) Pb(l) + 1/2 O2(g) = PbO (yellow) I2(c) + 5/2 O2(g) = I2O5(c) I2(l) + 5/2 O2(g) = I2O5(c) I2(g) + 5/2 O2(g) = I2O5(c) Ir(c) + O2(g) = IrO2(c) 3 Pb(c) + 2 O2(g) = Pb3O4(c) Pb(c) + O2(g) = PbO2(c) 2 Li(c) + 1/2 O2(g) = Li2O(c) Temperature range of validity ∆H0 2.303a b c I 1,674–1,800K 298.16–600.5K 600.5–762K 298.16–600.5K –192,920 –52,800 –53,780 –52,040 –0.85 –2.76 –0.51 +0.81 –0.13 –0.80 –1.75 –2.00 –0.30 –0.10 –0.10 –0.10 +61.21 +32.49 +28.44 +22.13 600.5–1,159K 298.16–386.8K 386.8–456K 456–500K –53,020 –42,040 –43,490 –58,020 +3.06 +2.30 +16.12 –6.91 –2.95 – – – –0.10 – – – +18.08 +113.71 +81.70 +174.79 298.16–1,300K 298.16–600.5K 298.16–600.5K 298.16–452K –39,480 –174,920 –66,120 –142,220 +8.17 +8.82 +0.64 –3.06 –6.39 –8.20 –2.45 +5.77 –0.20 –0.40 –0.20 –0.10 +20.33 +72.78 +45.58 +34.19 The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations: ∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 6.2 Thermodynamics L Page 186 Wednesday, December 31, 1969 17:00 Table 67. HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 8 OF 16) Reaction Mg(c) + 1/2 O2(g) = MgO (periclase) Mg(l) + 1/2 O2(g) = MgO (periclase) Mg(g) + 1/2 O2(g) = MgO (periclase) Mn(α) + 1/2 O2(g) = MnO(c) Mn(β) + 1/2 O2(g) = MnO(c) Mn(γ) + 1/2 O2(g) = Mno(c) Mn(δ) + 1/2 O2(g) = MnO(c) Mn(l) + 1/2 O2(g) = MnO(c) 3 Mn(α) + 2 O2(g) = Mn3O4(α) 2 Mn(α) + 3/2 O2(g) = Mn2O3(c) Mn(α) + O2(g) = MnO2(c) 2 Hg(l) + 1/2 O2(g) = Hg2O(c) Hg(l) + 1/2 O2(g) = HgO (red) Mo(c) + O2(g) = MoO2(c) Temperature range of validity ∆H0 2.303a b c I 298.16–923K 923–1,393K 1,393–2,000K 298.16–1,000K –144,090 –145,810 –180,700 –92,600 –1.06 +1.84 –3.75 –4.21 +0.13 –0.62 –0.62 +0.97 +0.25 +0.64 +0.64 +0.155 +29.16 +23.07 +65.69 +29.66 1,000–1,374K 1,374–1,410K 1,410–1,517K 1,517–2,000K –91,900 –89,810 –89,390 –93,350 +1.84 +7.30 +8.68 +7.99 –0.39 –0.72 –0.72 –0.72 +0.34 +0.34 +0.34 +0.34 +12.15 –6.05 –10.70 –5.90 298.16–1,000K 298.16–1,000K 298.16–1,000K 298.16–629.88K –332,400 –230,610 –126,400 –22,400 –7.41 –5.96 –8.61 –4.61 +0.66 –0.06 +0.97 – +0.145 +0.945 +1.555 – +106.62 +80.74 +70.14 +43.29 298.16–629.88K 298.16–2,000K –21,760 –132,910 +0.85 –3.91 –2.47 – –0.10 – +24.81 +47.42 The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations: ∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 6.2 Thermodynamics L Page 187 Wednesday, December 31, 1969 17:00 Table 67. HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 9 OF 16) Temperature range of validity ∆H0 2.303a b c I Mo(c) + 3/2 O2(g) = MoO3(c) 298.16–1,068K 298.16–633K –182,650 –57,640 –8.86 –4.61 –1.55 +2.16 +1.54 –0.10 +90.07 +34.41 Ni(β) + 1/2 O2(g) = NiO(c) 633–1,725K 298.16–2,000K 298.16–1,785K 1,785–2,000K –57,460 –382,050 –458,640 –463,630 –0.14 –9.67 –16.14 –66.04 –0.46 – –0.56 +2.21 –0.10 – +1.94 –0.50 +23.27 +116.23 +157.66 +317.84 298.16–2,000K 298.16–2,000K 298.16–317.4K 317.4–553K 18,650 +33,980 –9,370 –9,390 –1.57 +2.03 +2.53 +3.45 –0.27 –0.48 – – +0.92 +0.36 – – +23.47 +11.45 –25.40 –27.63 298.16–317.4K 298.16–336.4K –711,520 –86,400 +95.67 – –51.50 – –1.00 – –28.24 +33.90 Reaction Ni(α) + 1/2 O2(g) = NiO(c) 2 Nb(c) + 2 O2(g) = Nb2O4(c) 2 Nb(c) + 5/2 O2(g) = Nb2O5(c) 2 Nb(c) + 5/2 O2(g) = Nb2O5(l) N2(g) + 1/2 O2(g) = N2O(g) 3/2 O2(g) = O3(g) P (white) + 1/2 O2(g) = PO(g) P(l) + 1/2 O2(g) = PO(g) 4 P (white) + 5 O2(g) = P4H10 (hexagonal) 2 K(c) + 1/2 O2(g) = K2O(c) The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations: ∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 6.2 Thermodynamics L Page 188 Wednesday, December 31, 1969 17:00 Table 67. HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 10 OF 16) Reaction 2 K(l) + 1/2 O2(g) = K2O(c) 2 K(g) + 1/2 O2(g) = K2O(c) Ra(c) + 1/2 O2(g) = RaO(c) Re(c) + 3/2 O2(g) = ReO3(c) Re(c) + 3/2 O2(g) = ReO3(l) 2Re(c) + 7/2 02(g) = Re2O7(c) 2 Re(c) + 7/2 02(g) = Re2O7(l) 2 Re(c) + 4 O2(g) = Re2O8(l) 2 Rb(c) + 1/2 O2(g) = Rb2O(c) 2 Rb(l) + 1/2 O2(g) = Rb2O(c) Se(c) + 1/2 O2(g) = SeO(g) Se(l) + 1/2 O2(g) = SeO(g) 1/2 Se2(g) + 1/2 O2(g) = SeO(g) Si(c) + 1/2 O2(g) = SiO(g) Temperature range of validity ∆H0 2.303a b c I 336.4–1,049K 1,049–1,500K –87,380 –133,090 +1.15 –16.12 – – – – +33.90 +129.64 298.16–1,000K 298.16–433K 433–1,000K 298.16–569K –130,000 –149,090 –146,750 –301,470 – –16.12 –31.32 –34.64 – – – – – – – – +23.50 +110.49 +145.16 +250.57 569–635.5K 420–600K 298.16–312.2K 312.2–750K –295,810 –318,470 –78,900 –79,950 –73.68 –87.50 – – – – – – – – – – +348.45 +425.32 +32.20 +35.56 298.16–490K 490–1,027K 1,027–2,000K 298.16–1,683K +9,280 +9,420 –7,400 –21,090 –3.04 +8.70 –0.37 +3.84 +4.40 – – –0.16 +0.30 +0.30 +0.19 –0.295 –14.78 –44.50 –0.80 –33.14 The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations: ∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 6.2 Thermodynamics L Page 189 Wednesday, December 31, 1969 17:00 Table 67. HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 11 OF 16) Reaction Si(l) + 1/2 O2(g) = SiO(g) Si(c) + O2(g) = SiO2(α–quartz) Si(c) + O2(g) = SiO2(β–quartz) Si(l) + O2(g) = SiO2(l) Si(c) + O2(g) = SiO2(α–cristobalite) Si(c) + O2(g) = SiO2(β–cristobalite) Si(c) + 02(g) = SiO2(α–tridymite) Si(c) + O2(g) = SiO2(β–tridymite) 2 Ag(c) + 1/2 O2(g) = Ag2O2(c) 2 Ag(c) + O2(g) = Ag2O2(c) 2 Na(c) + 1/2 O2(g) = Na2O(c) 2 Na(l) + 1/2 O2(g) = Na2O(c) Temperature range of validity ∆H0 2.303a b c I 1,683–2,000K 298.16–848K 848–1,683K 1,883–2,000K –30,170 –210,070 –209,920 –228,590 –7.78 +3.98 –3.36 –15.66 –0.12 –3.32 –0.19 – +0.25 +0.605 –0.745 – –40.01 +34.59 +53.44 +103.97 298.16–523K 523–1,683K 298.16–390K 390–1,683K –207,330 –209,820 –207,030 –209,350 +19.96 –3.34 +22.29 –1.59 –9.75 –0.24 –11.62 –0.54 –0.745 –0.745 –0.745 –0.745 –9.78 +53.35 –15.64 +47.86 298.16–1,000K 298.16–500K 298.16–371K 371–1,187K –7,740 –6,620 –99,820 –100,150 –4.14 –3.22 –7.51 +4.97 – – +5.47 –2.45 – – –0.10 –0.10 +27.84 +52.17 +50.43 +22.19 The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations: ∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 6.2 Thermodynamics L Page 190 Wednesday, December 31, 1969 17:00 Table 67. HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 12 OF 16) Temperature range of validity ∆H0 2.303a b c I 298.16–371K 298.16–1,043K 298.16–368.6K 368.6–392K –122,500 –142,410 +19,250 +19,200 –2.30 –6.79 –1.24 –1.29 – +0.305 +2.95 +3.31 – +0.675 +0.225 +0.225 +57.51 +44.33 –18.84 –18.72 392–718K 298.16–2,000K 298.16–368.6K 368.6–392K +20,320 +3,890 –70,980 –71,020 +10.22 +0.07 +0.83 +0.78 –0.17 – +2.35 +2.71 +0.225 – +0.51 +0.51 –50.05 –1.50 –5.85 –5.74 S(rhombohedral) + 3/2 O2(g) = SO3(c–II) 392–718K 298.16–2,000K 298.16–335.4K 298.16–305.7K –69,900 –86,330 –111,370 –108,680 +12.30 +2.42 –6.45 –11.97 –0.77 –0.70 – – +0.51 +0.31 – – –37.10 +10.71 +88.32 +94.95 S(rhombohedral) + 3/2 O2(g) = SO3(l) 298.16–335.4K –107,430 –21.18 – – +113.76 Reaction 2 Na(c) + O2(g) = Na2O2(c) Sr(c) + 1/2 O2(g) = SrO(c) S(rhombohedral) + 1/2 O2(g) = SO(g) S(monoclmic) + 1/2 O2(g) = SO(g) S(lλ,µ) + 1/2 O2(g) = SO(g) 1/2 S2 (g) + 1/2 O2(g) = SO(g) S(rhombohedral) + O2(g) = SO2(g) S(monoclinic) + O2(g) = SO2(g) S(lλ,µ) + O2(g) = SO2(g) 1/2 S2(g) + O2(g) = SO2(g) S(rhombohedral) + 3/2 O2(g) = SO3(c–I) The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations: ∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 6.2 Thermodynamics L Page 191 Wednesday, December 31, 1969 17:00 Table 67. HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 13 OF 16) Reaction S(rhombohedral) + 3/2 O2(g) = SO3(g) S(monoclinic) + 3/2 O2(g) = SO3(g) S(lλ,µ) + 3/2 O2(g) = SO3(g) 1/2 S2(g) + 3/2 O2(g) = SO3(g) 2 Ta(c) + 5/2 O2(g) = Ta2O5(c) Te(c) + 1/2 O2(g) = TeO(g) Te(l) + 1/2 O2(g) = TeO(g) 2 Tl(α) + O2(g) = Tl2rO(c) 2 Tl(β) + O2(g) = Tl2rO(c) 2 Tl(α) + 3/2 O2(g) = Tl2rO3(c) Th(c) + O2(g) = ThO2(c) Sn(c) + 1/2 O2(g) = SnO(c) Temperature range of validity ∆H0 2.303a b c I 298.16–368.6K 368.6–392K 392–718K –95,070 –95,120 –94,010 +1.43 +1.38 +12.89 +0.66 +1.02 –2.46 +1.26 +1.26 +126 +16.81 +16.93 –14.40 298.16–1,500K 298.16–2,000K 298.16–723K 723–1,360K –110,420 –492,790 +43,110 +39,750 +3.02 –17.18 +1.91 +6.08 –2.39 –1.25 +0.84 +0.09 +106 +2.46 +0.315 +0.315 +33.41 +161.68 –27.22 –33.94 298.16–505.5K 505.5–573K 298.16–505.5K 298.16–2,000K –44,110 –44,260 –99,410 –294,350 –6.91 –6.91 –16.12 –5.25 – – – +0.59 – – – +0.775 +42.30 +42.60 +119.09 +62.81 298.16–505K –68,600 –3.57 +1.65 –0.10 +32.59 The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations: ∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 6.2 Thermodynamics L Page 192 Wednesday, December 31, 1969 17:00 Table 67. HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 14 OF 16) Reaction Sn(l) + 1/2 O2(g) = SnO(c) Sn(c) + O2(g) = SnO2(c) Ti(α) + 1/2 O2(g) = TiO(α) Ti(α) + 1/2 O2(g) = TiO(α) 2 Ti(α) + 3/2 O2(g) = Ti2O3(α) 2 Ti(α) + 3/2 O2(g) = Ti2O3(β) Ti(α) + O2(g) = TiO2 (rutile) Ti(α) + O2(g) = TiO2 (rutile) W(c) + O2(g) = WO2(c) 4W(c) + 11/2 O2(g) = W4O11(c) W(c) + 3/2 O2(g) = WO3(c) W(c) + 3/2 O2(g) = WO3(l) U(α) + O2(g) = UO2(c) U(β) + O2(g) = UO2(c) Temperature range of validity ∆H0 2.303a b c I 505–1,300K 298.16–505K 298.16–1,150K –69,670 –0,142 –125,010 +3.06 –14.00 –4.01 –1.50 +2.45 –0.29 –0.10 +2.38 +0.83 +18.39 +90.74 +36.28 1,150–1,264K 298.16–473K 473–1,150K 298.16–1,150K –125,040 –360,660 –369,710 –228,360 +1.17 +32.08 –30.95 –12.80 –1.55 –23.49 +2.62 +1.62 +0.83 –0.30 +4.80 +1.975 +21.90 –10.66 +162.79 +82.81 1,150–2,000K –228,380 –7.62 +0.36 +1.975 +68.43 298.16–1,500K –137,180 –1.38 – – +45.56 298.16–1,700K 298.16–1,743K –745,730 –201,180 –32.70 –2.92 – –1.81 – –0.30 +321.84 +70.89 1,743–2,000K 298.16–935K 935–1,045K –203,140 –262,880 –260,660 –35.74 –19.92 –4.28 +1.13 +3.70 –0.31 –0.30 +2.13 +1.78 +173.27 +100.54 +55.50 The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations: ∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 6.2 Thermodynamics L Page 193 Wednesday, December 31, 1969 17:00 Table 67. HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 15 OF 16) Temperature range of validity ∆H0 2.303a b c I U(γ) + O2(g) = UO2(c) 1,045–1,405K –262,830 –6.54 –0.31 +1.78 +64.41 U(l) + O2(g) = UO2(l) 1,405–1,500K 298.16–935K 935–1,045K 1,045–1,405K –264,790 –863,370 –856,720 –863,230 –5.92 –56.57 –9.67 –16.44 – +10.68 –1.35 –1.35 – +5.20 +4.15 +4.15 +63.50 +330.19 +195.12 +221.79 1,405–1,500K 298.16–935K 935–1,045K 1,045–1,400K –869,460 –294,090 –291,870 –294,040 –10.91 –18.33 –2.69 –4.95 –1.35 +3.49 –0.52 –0.52 +4.15 +1.535 +1.185 +1.185 +208.82 +114.94 +69.90 +78.80 298.16–2,000K 298.16–2,000K 298.16–2,000K –101,090 +52,090 –299,910 –5.39 +1.80 –17.98 –0.36 +1.04 +0.37 +0.53 +0.35 +2.41 +38.69 –28.42 +118.83 Reaction 3 U(α) + 4 O2(g) = U3O8(c) 3 U(β) + 4 O2(g) = U3O8(c) 3 U(γ) + 4 O2(g) = U3O8(c) 3 U(l) + 4 O2(g) = U3O8(c) U(α) + 3/2 O2(g) = UO3 (hexagonal) U(β) + 3/2 O2(g) = UO3 (hexagonal) U(γ) + 3/2 O2(g) = UO3 (hexagonal) V(c) + 1/2 O2(g) = VO(c) V(c) + 1/2 O2(g) = VO(g) 2 V(c) + 3/2 O2(g) = V2O3(c) The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations: ∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 6.2 Thermodynamics L Page 194 Wednesday, December 31, 1969 17:00 Table 67. HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 16 OF 16) Temperature range of validity ∆H0 2.303a b c I 2 V(c) + 2 O2(g) = V2O4(α) 209.16–345K –342,890 –11.03 +3.00 –0.40 +117.38 2 V(c) + 2 O2(g) = V2O4(β) 345–1,818K 298.16–1,000K 298.16–943K 298.16–1,773K –345,330 –1,076,340 –381,960 –419,600 –24.36 –95.33 –41.08 +2.76 +1.30 – +5.20 –1.73 +3.545 – +6.11 –0.30 +155.55 +557.61 +228.50 +66.36 298.16–692.7K 298.16–1,135K 1,135–1,478K 1.478–2,000K –84,670 –262,980 –264,190 –262,290 –6.40 –6.10 –5.09 –7.76 +0.84 +0.16 –0.40 +0.50 +0.99 +1.045 +1.48 –0.20 +43.25 +65.00 +63.58 +69.50 Reaction 6 V(c) + 13/2 O2(g) = V6O13(c) 2 V(c) + 5/2 O2(g) = V2O5(c) 2 Y(c) + 3/2 O2(g) = Y2O3(c) Zn(c) + 1/2 O2(g) = ZnO(c) Zr(α) + O2(g) = ZrO2(α) Zr(β) + O2(g) = ZrO2(α) Zr(β) + O2(g) = ZrO2(β) The ∆Ho values are given in gram calories per mole. The a, b, and I values listed here make it possible for one to calculate the ∆F and ∆S values by use of the following equations: ∆Ft = ∆Ηo + 2.303aT log T + b x 10–3 T2 + c x l05 T–1 + IT ∆St = – a – 2.303a log T – 2b x 10–3T + c x l05 T–2 – I Source: data from CRC Handbook of Materials Science, Vol I, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 6.3 Thermodynamics Page 195 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 68. PHASE CHANGE THERMODYNAMIC PROPERTIES FOR THE ELEMENTS (SHEET 1 OF 7) Heat of Transition (kcal • g mole-1) Entropy of Transition Element Phase Transition Temperature (K) Ac solid liquid (1090) (2750) (2.5) (70) (2.3) (25) Ag solid liquid 1234 2485 2.855 60.72 2.313 24.43 Al solid liquid 931.7 2600 2.57 67.9 2.76 26 Am solid liquid (1200) 2733 (2.4) 51.7 (2.0) 18.9 As solid 883 3.25 35.25 Au solid liquid 1336.16 2933 3.03 74.21 2.27 25.30 B solid liquid 2313 2800 (3.8) 75 (1.6) 27 Ba solid, α solid, β liquid 648 977 0.14 1.83 0.22 1.87 1911 35.665 18.63 Be solid liquid 1556 – 2.919 1.501 Bi solid liquid 544.2 1900 2.63 41.1 4.83 21.6 C solid – – – Ca solid, α solid, β liquid 723 1123 0.24 2.2 0.33 1.96 1755 38.6 22.0 (e.u.) Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC Shackelford & Alexander 195 6.3 Thermodynamics Page 196 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 68. PHASE CHANGE THERMODYNAMIC PROPERTIES FOR THE ELEMENTS (SHEET 2 OF 7) Heat of Transition (kcal • g mole-1) Entropy of Transition Element Phase Transition Temperature (K) Cd solid liquid 594.1 1040 1.46 23.86 2.46 22.94 Ce solid liquid 1048 2800 2.1 73 2.0 26 Cl2 gas – – – Co solid, α solid, β solid, γ liquid 723 1398 1766 0.005 0.095 3.7 0.007 0.068 2.1 3370 93 28 Cr solid liquid 2173 2495 3.5 72.97 1.6 29.25 Cs solid liquid 301.9 963 0.50 16.32 1.7 17.0 Cu solid liquid 1356.2 2868 3.11 72.8 2.29 25.4 F2 gas – – – Fe solid, α solid, β solid, γ solid, δ liquid 1033 1180 1673 1808 0.410 0.217 0.15 3.86 0.397 0.184 0.084 2.14 3008 84.62 28.1 solid liquid 302.94 2700 1.335 – 4.407 – Ga (e.u.) Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC 196 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 197 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 68. PHASE CHANGE THERMODYNAMIC PROPERTIES FOR THE ELEMENTS (SHEET 3 OF 7) Heat of Transition (kcal • g mole-1) Entropy of Transition Element Phase Transition Temperature (K) Ge solid liquid 1232 2980 8.3 68 6.7 23 H2 gas – – – Hf solid (2600) (6.0) (2.3) Hg liquid 629.73 13.985 22.208 In solid liquid 430 2440 0.775 53.8 1.80 22.0 Ir solid 2727 6.6 2.4 K solid liquid 336.4 1052 0.5575 18.88 1.657 17.95 La solid liquid 1153 3000 (2.3) 80 (2.0) 27 Li solid liquid 459 1640 0.69 32.48 1.5 19.81 Mg solid liquid 923 1393 2.2 31.5 2.4 22.6 Mn solid, α solid, β solid, γ solid, δ liquid 1000 1374 1410 1517 0.535 0.545 0.430 3.5 0.535 0.397 0.305 2.31 2368 53.7 22.7 solid 2883 (5.8) (2.0) Mo (e.u.) Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC Shackelford & Alexander 197 6.3 Thermodynamics Page 198 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 68. PHASE CHANGE THERMODYNAMIC PROPERTIES FOR THE ELEMENTS (SHEET 4 OF 7) Heat of Transition (kcal • g mole-1) Entropy of Transition Element Phase Transition Temperature (K) N2 gas – – – Na solid liquid 371 1187 0.63 23.4 1.7 20.1 Nb solid 2760 (5.8) (2.1) Nd solid liquid 1297 (2750) (2.55) (61) (197) (22) Ni solid α solid β liquid 626 1728 0.092 4.21 0.15 2.44 3110 90.48 29.0 Np solid liquid 913 (2525) (2.3) (55) (2.5) (22) O2 gas – – – Os solid 2970 (6.4) (2.2) P4 solid, white 317.4 0.601 1.89 liquid 553 11.9 21.5 Pa solid liquid (18.25) (4500) (4.0) (115) (2.2) (26) Pb solid liquid 600.6 2023 1.141 42.5 1.900 21.0 Pd solid liquid 1828 3440 4.12 89 2.25 26 (e.u.) Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC 198 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 199 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 68. PHASE CHANGE THERMODYNAMIC PROPERTIES FOR THE ELEMENTS (SHEET 5 OF 7) Heat of Transition (kcal • g mole-1) Entropy of Transition Element Phase Transition Temperature (K) Po solid liquid 525 (1235) (2.4) (24.6) (4.6) (19.9) Pr solid liquid 1205 3563 (25) – (2.1) – Pt solid liquid 2042.5 4100 5.2 122 25 29.8 Pu solid liquid 913 – (2.26) (2.48) Ra solid liquid 1233 (1700) (2.3) (35) (1.9) (21) Rb solid liquid 312.0 952 0.525 18.11 1.68 19.0 Re solid 3440 (7.9) (2.3) Rh solid liquid 2240 4150 (5.2) 127 (2.3) 30.7 Ru solid, α solid, β solid, γ solid, δ 1308 1473 1773 2700 0.034 0 0.23 (6.1) 0.026 – 0.13 (2.3) S solid, α solid, β liquid 368.6 392 0.088 0.293 0.24 0.747 717.76 2.5 3.5 Sb solid (α, β, γ) liquid (e.u.) 903.7 4.8 5.3 1713 46.665 27.3 Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC Shackelford & Alexander 199 6.3 Thermodynamics Page 200 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 68. PHASE CHANGE THERMODYNAMIC PROPERTIES FOR THE ELEMENTS (SHEET 6 OF 7) Heat of Transition (kcal • g mole-1) Entropy of Transition Element Phase Transition Temperature (K) Sc solid liquid 1670 3000 (4.0) 80 (2.4) 27 Se solid liquid 490.6 1000 1.25 14.27 2.55 14.27 Si solid liquid 1683 2750 11.1 71 6.60 26 Sm solid liquid 1623 (2800) 3.7 (70) 2.3 (25) Sn solid, α, β liquid 505.1 1.69 335 2473 (55) (22) Sr solid liquid 1043 1657 2.2 33.61 2.1 20.28 Ta solid 3250 7.5 2.3 Tc solid liquid (2400) (3800) (5.5) (120) (2.3) (32) Te solid, α solid, β liquid 621 723 0.13 4.28 0.21 5.92 1360 11.9 8.75 Th solid liquid 2173 4500 (4.6) (130) (2.1) (29) Ti solid, α solid, β liquid 1155 2000 0.950 (4.6) 0.822 (23) 3550 (101) (28) (e.u.) Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC 200 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 201 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 68. PHASE CHANGE THERMODYNAMIC PROPERTIES FOR THE ELEMENTS (SHEET 7 OF 7) Transition Temperature (K) Heat of Transition (kcal • g mole-1) Entropy of Transition (e.u.) Element Phase Tl solid, α solid, β liquid 508.3 576.8 0.082 1.03 0.16 1.79 1730 38.81 22.4 solid, α solid, β solid, γ liquid 938 1049 1405 0.665 1.165 (3.0) 0.709 1.111 (2.1) 3800 – – V solid liquid 2003 3800 (4.0) – (2.0) – W solid 3650 8.42 2.3 Y solid liquid 1750 3500 (4.0) (90) (2.3) (26) Zn solid liquid 692.7 1180 1.595 27.43 2.303 23.24 Zr solid, α solid, β liquid 1135 2125 0.920 (4.9) 0.811 (2.3) (3900) (100) (26) U Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC Shackelford & Alexander 201 6.3 Thermodynamics Page 202 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 69. PHASE CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 1 OF 10) Heat of Transition (kcal • g mole-1) Entropy of Transition (e.u.) Oxide Phase Transition Temperature (K) Ac2O3 Solid Liquid (2250) – (20) – (8.9) – Ag2O Solid Solid dec. 460 – – dec. – – Solid 2300 dec. 26 – 11 – (2225) (3400) dec. (17) (85) – (7.6) (25) – 503 586 730 4.1 4.4 7.15 8.2 7.5 9.79 (9.0) – – (7.5) – – Ag2O2 Al2O3 Liquid Am2O3 Solid Liquid AmO2 Solid As2O3 Solid, α Solid, β Liquid AsO2 Solid As2O5 Solid (1200) (dec.) dec. >1100 Au2O3 Solid dec. – – Solid 723 2520 5.27 (55) 7.29 (22) (880) (1040) 2196 3000 723 dec. 1110 (5.2) (20) 13.8 (62) (5.7) – (5.9) (19) 6.28 (21) (7.9) – Liquid B2O3 Liquid Ba2O Solid BaO Liquid Solid Liquid BaO2 Solid Liquid Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC 202 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 203 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 69. PHASE CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 2 OF 10) Heat of Transition (kcal • g mole-1) Entropy of Transition (e.u.) Oxide Phase Transition Temperature (K) BeO Solid dec. – – BiO Solid Liquid (1175) (1920) 1090 (dec.) (3.7) (54) 6.8 – (3.1) (28) 6.2 – Bi2O3 Solid Liquid CO CO2 Gas – – – – – – CaO Solid 2860 (18) (6.3) CdO Solid dec. – – Solid 1960 (3500) 3000 (20) (80) (19) (10) (23) (6.3) 2078 (2900) dec. 1240 (12) (61) – (5.8) (21) – 2538 dec. 700 460 (1000) (25) – (6.1) (25) (10) – (13) (25) 763 dec. 867 dec. (4.58) – (5.5) – (6.0) – (6.3) – 775 dec. (7.75) – (10) – Ce2O3 Gas Liquid CeO2 Solid CoO Solid Liquid Co3O4 Solid Cr2O3 CrO2 CrO3 Solid Solid Solid Liquid Cs2O Solid Liquid Cs2O2 Solid Liquid Cs2O3 Solid Liquid Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC Shackelford & Alexander 203 6.3 Thermodynamics Page 204 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 69. PHASE Oxide Phase CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 3 OF 10) Transition Temperature (K) Heat of Transition (kcal • g mole-1) Entropy of Transition (e.u.) Cu2O Solid CuO Liquid Solid Liquid 1503 dec. 1609 dec. 13.4 – (8.9) – 8.92 – (5.5) – Solid Liquid Solid, α Solid, β Solid, α Solid, β Solid, γ 1641 (2700) 900 dec. 950 1050 dec. 7.5 (55) (0) – 0.16 0 – 4.6 (20) (0) – 0.17 0 – Solid Liquid Liquid (925) (1000) 2013 (2900) (8.5) (20) (22) (75) (9.2) (20) (11) (26) GeO GeO2 Solid Solid (α,β) Liquid 983 1389 (2625) (50) 10.5 (61) (51) 7.56 (23) In2O Solid Liquid Solid Liquid (600) (800) (1325) (2000) (4.5) (16) (4.0) (60) (7.5) (20) (3.0) (30) In2O3 Solid Liquid (2000) (3600) (20) (85) (10) (24) Ir2O3 Solid Liquid Solid (1450) (2250) dec. 1373 (10) (50) – (6.8) (22) – FeO Fe3O4 Fe2O3 Ga2O Ga2O3 Solid InO IrO2 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC 204 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 205 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 69. PHASE CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 4 OF 10) Heat of Transition (kcal • g mole-1) Entropy of Transition (e.u.) Oxide Phase Transition Temperature (K) K2O Solid Liquid Solid Liquid Solid Liquid Solid Liquid (980) dec. 763 (1800) 703 (975) 653 dec. (6.8) – (7.0) (45) (6.1) (25) (4.9) – (6.9) – (9.2) (25) (8.7) (26) (7.5) – La2O3 Solid 2590 (18) (7) Li2O Li2O2 Solid Liquid Solid 2000 2600 dec.470 (14) (56) – (7) (22) – MgO MgO2 Solid Solid 3075 dec. 361 18.5 – 5.8 – MnO Solid Liquid 2058 dec. 13.0 – 6.32 – Mn3O4 Solid, α Solid, β Liquid Solid Solid 1445 1863 (2900) dec. 1620 dec. 1120 4.97 (33) (75) – – 3.44 (18) (26) – – Solid Liquid Solid Liquid (2200) dec. 2250 1068 1530 (16) – 12.54 33 (7.3) – 11.74 22 Gas – – – K2O2 K2O3 KO2 Mn2O3 MnO2 MoO2 MoO3 N 2O Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC Shackelford & Alexander 205 6.3 Thermodynamics Page 206 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 69. PHASE CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 5 OF 10) Heat of Transition (kcal • g mole-1) Entropy of Transition (e.u.) Oxide Phase Transition Temperature (K) Na2O Solid Liquid Solid Solid Liquid 1193 dec. dec. 919 (825) (1300) (7.1) – – (6.2) (28) (6.0) – – (7.5) (22) Solid Solid Liquid Solid Liquid (2650) (2275) (3800) 1733 (3200) (16) (16) (85) (28) (80) (6.0) (7.0) (22) (16) (25) Nd2O3 Solid 2545 (22) (8.8) NiO Solid Liquid 2230 dec. (12.1) – (5.43) – NpO2 Solid Solid (15) – (5.7) – – 3.41 9.45 – 10.9 23.4 Na2O2 NaO2 NbO NbO2 Nb2O5 OsO2 OsO4 Solid Solid Liquid (2600) dec. 800–900 K dec. 923 313.3 403 P2O3 PO2 Liquid Solid Liquid Solid 448.5 (350) (dec.) 631 4.5 (2.7) – 8.8 10 (7.7) – 13.9 Solid Solid Liquid (2560) (2050) (3350) (20) (26) (95) (7.8) (13) (28) Np2O5 P2O5 PaO2 Pa2O5 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC 206 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 207 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 69. PHASE CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 6 OF 10) Heat of Transition (kcal • g mole-1) Entropy of Transition (e.u.) Oxide Phase Transition Temperature (K) PbO Solid, red Solid, yellow Liquid 762 1159 1745 (0.4) 2.8 51 (0.5) 2.4 29 Pb2O4 PbO2 Solid Solid dec. dec. – – – – PdO Solid dec. 1150 – – PoO2 Solid Liquid (825) (dec.) (5.5) – (6.7) – Pr2O3 Solid Liquid (2200) (4000 (22) (90) (10) (23) PrO2 Solid dec. 700 – – PtO Pt3O4 PtO2 Solid Solid Solid Liquid dec. 780 (dec.) 723 dec. 750 – – (4.6) – – – (6.4) – PuO Solid Liquid (1290) (2325) (7.2) (47) (5.6) (20) Pu2O3 Solid Liquid (1880) (3250) (16) (75) (8.5) (23) PuO2 Solid Liquid (2400) (3500) (15) (90) (6.2) (26) RaO Solid (>2500) – – Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC Shackelford & Alexander 207 6.3 Thermodynamics Page 208 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 69. PHASE CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 7 OF 10) Heat of Transition (kcal • g mole-1) Entropy of Transition (e.u.) Oxide Phase Transition Temperature (K) Rb2O Solid Liquid Solid Liquid (910) dec. 843 (dec.) (5.7) – (7.3) – (6.3) – (8.7) – Solid Liquid Solid Liquid 762 dec. 685 dec. (7.6) – (4.1) – (10) – (6.0) – Solid Liquid Solid Liquid (1475) (3250) 433 dec. (12) (80) 5.2 – (8.1) (25) 12 – Solid Liquid Solid Liquid 569 635.5 420 (460) 15.8 17.7 (4.2) (9.3) 27.8 27.9 (10) (20) Rh2O RhO Rh2O3 Solid Solid Solid dec. 1400 dec. 1394 dec. 1388 – – – – – – RuO2 RuO4 Solid Solid Liquid dec. 1400 300 dec. – (3.2) – – (11) – SO2 Gas – – Sb2O3 Solid Liquid 14.74 8.92 15.88 5.25 Rb2O2 Rb2O3 RbO2 ReO2 ReO3 Re2O7 ReO4 – 928 1698 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC 208 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 209 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 69. PHASE CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 8 OF 10) Heat of Transition (kcal • g mole-1) Entropy of Transition (e.u.) Oxide Phase Transition Temperature (K) SbO2 Sb2O5 Solid Solid dec. dec. – – – – Sc2O3 Solid (2500) (23) (9.3) SeO SeO2 Solid Liquid Solid (1375) (2075) 603 (7.6) (45) (24.5) (5.5) (22) (40.6) SiO Solid (2550) (12) (4.7) SiO2 Solid, β Solid, α Liquid 856 1883 dec. 2250 0.15 2.04 – 0.18 1.08 – Sm2O3 Solid Liquid (2150) (3800) (20) (80) (9.3) (21) SnO Solid Liquid Solid Liquid (1315) (1800) 1898 (3200) (6.4) (60) (11.39) (75) (4.9) (33) (5.95) (23) SrO SrO2 Solid Solid 2703 dec.488 16.7 – 6.2 – Ta2O5 Solid Liquid 2150 – (16) – (7.4) – TcO2 Solid Liquid Solid Solid Liquid (2400) (4000) (dec. <1200) 392.7 583.8 (18) (105) – (11) (14) (7.5) (26) – (28) (24) SnO2 TcO3 Tc2O7 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC Shackelford & Alexander 209 6.3 Thermodynamics Page 210 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 69. PHASE CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 9 OF 10) Heat of Transition (kcal • g mole-1) Entropy of Transition (e.u.) Oxide Phase Transition Temperature (K) TeO Solid Liquid Solid Liquid (1020) (1775) 1006 dec. (7.1) (50) 3.2 – (7.0) (28) 3.2 – TeO2 Solid Liquid (2150) (3250) (13) (65) (6.0) (20) ThO2 Solid 3225 (18) (5.6) TiO Solid, α Solid, β Solid, α Solid, β Liquid Solid, α Solid, β Liquid Solid Liquid 1264 dec. 2010 473 2400 3300 450 (2450) (3600) 2128 dec. 3200 0.82 – 0.215 (24) 0.65 – 0.455 (10) 2.24 (50) (85) (16) 4.98 (20) (24) (7.5) Ti2O Solid Liquid 573 773 (5.0) (17) (8.7) (22) Tl2O3 Solid Liquid 990 (dec.) (12.4) – (13) – UO UO2 Solid Solid Solid Solid (2750) 3000 dec. dec. 925 (14) – – – (5.1) – – – TeO3 Ti2O3 Ti3O5 TiO2 U3O8 UO3 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC 210 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 211 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 69. PHASE Oxide Phase VO Solid Liquid Solid Liquid Solid Liquid V2O3 V3O4 VO2 V2O5 WO2 WO3 Solid, α Solid, β Liquid Solid Liquid Solid Liquid Solid Liquid CHANGE THERMODYNAMIC PROPERTIES OF OXIDES (SHEET 10 OF 10) Transition Temperature (K) Heat of Transition (kcal • g mole-1) Entropy of Transition (e.u.) (2350) (3400) (15) (70) (6.4) (21) (11) 2240 (24) dec. 3300 – – (2100) (42) (20) (dec.) – – 345 1818 1.02 13.60 2.96 7.48 dec. 3300 – – 943 15.56 16.50 (2325) (63) (27) (7.45) (1543) (11.5) dec. 2125 – – 1743 (17) (9.8) (2100) (43) (20) (25) (10) Y2O3 Solid (2500) ZnO ZrO2 Solid Solid, α Solid, β dec. – – 1478 2950 1.420 20.8 0.961 7.0 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC Shackelford & Alexander 211 6.3 Thermodynamics Page 212 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 70. MELTING POINTS OF THE ELEMENTS (SHEET 1 OF 4) At. No. Element Symbol Melting Point (˚C) 1 2 3 4 Hydrogen Helium Lithium Beryllium H He Li Be -259.14 -272.2 180.54 1278 5 6 7 8 Boron Carbon Nitrogen Oxygen B C N O 2300 ~3550 -209.86 -218.4 9 10 11 12 Fluorine Neon Sodium Magnesium F N Na Mg -219.62 -248.67 97.81 648.8 13 14 15 Aluminum Silicon Phosphorus (White) Al Si P 660.37 1410 44.1 16 17 18 19 Sulfur Chlorine Argon Potassium S Cl Ar K 112.8 -100.98 -189.2 63.65 20 21 22 23 Calcium Scandium Titanium Vanadium Ca Sc Ti V 839 1539 1660 1890 24 25 26 27 Chromium Manganese Iron Cobalt Cr Mn Fe Co 1857 1244 1535 1495 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillan Publishing Company, New York, pp.686-688, (1988). ©2001 CRC Press LLC 212 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 213 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 70. MELTING POINTS OF THE ELEMENTS (SHEET 2 OF 4) At. No. Element Symbol Melting Point (˚C) 28 29 30 31 Nickel Copper Zinc Gallium Ni Cu Zn Ga 1453 1083.4 419.58 29.78 32 33 34 35 Germanium Arsenic Selenium Bromine Ge As Se Br 937.4 817 217 -7.2 36 37 38 39 Krypton Rubidium Strontium Yttrium Kr Rb Sr Y -156.6 38.89 769 1523 40 41 42 43 Zirconium Niobium Molybdenum Technetium Zr Nb Mo Tc 1852 2408 2617 2172 44 45 46 47 Ruthenium Rhodium Palladium Silver Ru Rh Pd Ag 2310 1966 1552 961.93 48 49 50 51 Cadmium Indium Tin Antimony Cd In Sn Sb 320.9 156.61 231.9681 630.74 52 53 54 55 Tellurium Iodine Xenon Cesium (-10˚) Te I Xe Ce 449.5 113.5 -111.9 28.4 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillan Publishing Company, New York, pp.686-688, (1988). ©2001 CRC Press LLC Shackelford & Alexander 213 6.3 Thermodynamics Page 214 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 70. MELTING POINTS OF THE ELEMENTS (SHEET 3 OF 4) At. No. Element Symbol Melting Point (˚C) 56 57 58 59 Barium Lantium Cerium Praseodymium Ba La Ce Pr 7.25 920 798 931 60 61 62 63 Neodymium Promethium Samarium Europium Nd Pm Sm Eu 1010 ~1080 1072 822 64 65 66 67 Gadolinium Terbium Dysprosium Holmium Gd Tb Dy Ho 1311 1360 1409 1470 68 69 70 71 Erbium Thulium Ytterbium Lutetium Er Tm Yb Lu 1522 1545 824 1659 72 73 74 75 Hafnium Tantalum Tungsten Rhenium Hf Ta W Re 2227 2996 3410 3180 76 77 78 79 Osmium Iridium Platinum Gold Os Ir Pt Au 3045 2410 1772 1064.43 80 81 82 83 Mercury Thallium Lead Bismuth Hg Tl Pb Bi -38.87 303.5 327.502 271.3 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillan Publishing Company, New York, pp.686-688, (1988). ©2001 CRC Press LLC 214 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 215 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 70. MELTING POINTS OF THE ELEMENTS (SHEET 4 OF 4) At. No. Element Symbol Melting Point (˚C) 84 85 86 87 Polonium Asatine Radon Francium Po At Rn Fr 254 302 -71 ~27 88 89 90 91 Radium Actinium Thorium Protoactinium Ra Ac Th Pa 700 1050 1750 <1600 92 93 94 95 Uranium Neptunium Plutonium Americium U Np Pu Am 1132 640 641 994 96 Curium Cm 1340 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillan Publishing Company, New York, pp.686-688, (1988). ©2001 CRC Press LLC Shackelford & Alexander 215 6.3 Thermodynamics Page 216 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 71. MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 1 OF 13) Formula Melting Point ˚C Actinium227 Aluminum Aluminum bromide Ac Al Al2Br6 1050±50 658.5 87.4 Aluminum chloride Al2Cl6 192.4 Compound Aluminum iodide Al2I6 190.9 Aluminum oxide Antimony Antimony pentachloride Al2O3 Sb SbCl5 2045.0 630 4.0 Antimony tribromide Antimony trichloride SbBr3 SbCl3 Antimony trioxide Sb4O6 96.8 73.3 655.0 Antimony trisulfide Sb4S6 546.0 Argon Arsenic Arsenic pentafluoride Arsenic tribromide Ar As AsF5 AsBr3 190.2 816.8 80.8 30.0 Arsenic trichloride Arsenic trifluoride AsCl3 AsF3 Arsenic trioxide Barium As4O6 Ba –16.0 –6.0 312.8 725 Barium bromide Barium chloride Barium fluoride Barium iodide BaBr2 BaCl2 BaF2 BaI2 846.8 959.8 1286.8 710.8 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC 216 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 217 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 71. MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 2 OF 13) Formula Melting Point ˚C Barium nitrate Barium oxide Barium phosphate Barium sulfate Ba(NO3)2 BaO Ba3(PO4)2 BaSO4 594.8 1922.8 1727 1350 Beryllium Beryllium bromide Beryllium chloride Beryllium oxide Be BeBr2 BeCl2 BeO 1278 487.8 404.8 2550.0 Bismuth Bismuth trichloride Bismuth trifluoride Bi BiCl3 BiF3 Bismuth trioxide Bi2O3 271 223.8 726.0 815.8 Boron Boron tribromide Boron trichloride Boron trifluoride B BBr3 BCl3 BF3 2300 –48.8 –107.8 –128.0 Boron trioxide Bromine Bromine pentafluoride Cadmium B2O3 Br2 BrF5 Cd 448.8 –7.2 –61.4 320.8 Cadmium bromide Cadmium chloride Cadmium fluoride Cadmium iodide CdBr2 CdCl2 CdF2 CdI2 567.8 567.8 1110 386.8 Compound Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC Shackelford & Alexander 217 6.3 Thermodynamics Page 218 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 71. MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 3 OF 13) Formula Melting Point ˚C Cadmium sulfate Calcium Calcium bromide Calcium carbonate CdSO4 Ca CaBr2 CaCO3 1000 851 729.8 1282 Calcium chloride Calcium fluoride Calcium metasilicate CaCl2 CaF2 CaSiO3 Ca(NO3)2 782 1382 1512 560.8 Calcium oxide Calcium sulfate Carbon dioxide Carbon monoxide CaO CaSO4 CO2 CO 2707 1297 –57.6 –205 Cyanogen Cyanogen chloride Cerium Cesium C2N2 CNCl Ce Cs –27.2 –5.2 775 28.3 Cesium chloride Cesium nitrate Chlorine Chromium CsCl CsNO3 Cl2 Cr 38.5 406.8 –103±5 1890 Chromium (II) chloride CrCl2 Chromium (III) sequioxide Chromium trioxide Cobalt Cr2O3 CrO3 Co 814 2279 197 1490 Compound Calcium nitrate Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC 218 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 219 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 71. MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 4 OF 13) Formula Melting Point ˚C CoCl2 Cu CuCl2 CuCl 727 1083 430 429 Copper(l) cyanide Copper (I) iodide Copper (II) oxide Copper (I) oxide Cu2(CN)2 CuI CuO Cu2O 473 587 1446 1230 Copper (I) sulfide Dysprosium Erbium Europium Cu2S Dy Er Eu 1129 1407 1496 826 Europium trichloride Fluorine Gadolinium Gallium EuCl3 F2 Gd Ga 622 –219.6 1312 29 Germanium Gold Hafnium Holmium Ge Au Hf Ho 959 1063 2214 1461 Hydrogen Hydrogen bromide Hydrogen chloride Hydrogen fluoride H2 HBr HCl HF –259.25 –86.96 –114.3 83.11 HI HNO3 Compound Cobalt (II) chloride Copper Copper (II) chloride Copper (I) chloride Hydrogen iodide Hydrogen nitrate Hydrogen oxide (water) H2O –50.91 –47.2 0 Deuterium oxide D2O 3.78 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC Shackelford & Alexander 219 6.3 Thermodynamics Page 220 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 71. MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 5 OF 13) Formula Melting Point ˚C Hydrogen peroxide H2O2 –0.7 Hydrogen selenate H2SeO4 57.8 Hydrogen sulfate H2SO4 10.4 Hydrogen sulfide H2S –85.6 Hydrogen sulfide, di– H2S2 –89.7 Hydrogen telluride Indium lodine H2Te In I2 –49.0 156.3 112.9 lodine chloride (α) lodine chloride (β) Iron Iron carbide ICl ICl Fe Fe3C 17.1 13.8 1530.0 1226.8 Iron (III) chloride Iron (II) chloride Iron (II) oxide Iron oxide Fe2Cl6 FeCl2 FeO Fe3O4 303.8 677 1380 1596 Iron pentacarbonyl Iron (II) sulfide Lanthanum Lead Fe(CO)5 FeS La Pb –21.2 1195 920 327.3 PbBr2 PbCl2 PbF2 PbI2 487.8 497.8 823 412 Compound Leadbromide Lead chloride Lead fluoride Lead iodide Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC 220 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 221 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 71. MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 6 OF 13) Formula Melting Point ˚C Lead molybdate Lead oxide Lead sulfate Lead sulfide PbMoO4 PbO PbSO4 PbS 1065 890 1087 1114 Lithium Lithium bromide Lithium chloride Lithium fluoride Li LiBr LiCl LiF 178.8 552 614 896 Lithium hydroxide Lithium iodide Lithium metasilicate LiOH LiI Li2SiO3 462 440 1177 Lithium molybdate Li2MoO4 705 Lithium nitrate LiNO3 Lithium orthosilicate Li4SiO4 250 1249 Lithium sulfate Li2SO4 857 Lithium tungstate Li2WO4 742 Lutetium Magnesium Magnesium bromide Magnesium chloride Lu Mg MgBr2 MgCl2 1651 650 711 712 Magnesium fluoride Magnesium oxide Magnesium silicate Magnesium sulfate MgF2 MgO MgSiO3 MgSO4 1221 2642 1524 1327 Compound Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC Shackelford & Alexander 221 6.3 Thermodynamics Page 222 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 71. MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 7 OF 13) Formula Melting Point ˚C Manganese Manganese dichloride Manganese metasilicate Manganese (II) oxide Mn MnCl2 MnSiO3 MnO 1220 650 1274 1784 Manganese oxide Mercury Mercury bromide Mercury chloride Mn3O4 Hg HgBr2 HgCl2 1590 –39 241 276.8 Mercury iodide Mercury sulfate Molybdenum Molybdenum dichloride HgI2 HgSO4 Mo MoCl2 250 850 2622 726.8 Molybdenum hexafluoride Molybdenum trioxide Neodymium Neon MoF6 MoO3 Nd Ne 17 795 1020 – 248.6 Nickel Nickel chloride Ni NiCl2 Nickel subsulfide Niobium Ni3S2 Nb 1452 1030 790 2496 Niobium pentachloride NbCl5 Niobium pentoxide Nitric oxide Nitrogen Nb2O5 NO N2 Compound 21 l 1511 –163.7 –210 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC 222 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 223 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 71. MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 8 OF 13) Formula Melting Point ˚C Nitrogen tetroxide N2O4 –13.2 Nitrous oxide Osmium Osmium tetroxide (white) N2O Os OsO4 –90.9 2700 41.8 Osmium tetroxide (yellow) Oxygen Palladium Phosphoric acid OsO4 O2 Pd H3PO4 55.8 –218.8 1555 42.3 Phosphoric acid. hypo– H4P2O6 54.8 Phosphorus acid, hypo– H3PO2 17.3 Phosphorus acid, ortho– Phosphorus oxychloride H3PO3 POCl3 73.8 1.0 Phosphorus pentoxide P4O10 569.0 Phosphorus trioxide Phosphorus, yellow Platinum P4O6 P4 Pt 23.7 44.1 1770 K KBO2 KBr K2CO3 63.4 947 742 897 KCl K2CrO4 KCN K2Cr2O7 770 984 623 398 Compound Potassium Potassium borate, meta– Potassium bromide Potassium carbonate Potassium chloride Potassium chromate Potassium cyanide Potassium dichromate Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC Shackelford & Alexander 223 6.3 Thermodynamics Page 224 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 71. MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 9 OF 13) Formula Melting Point ˚C Potassium fluoride Potassium hydroxide Potassium iodide Potassium nitrate KF KOH Kl KNO3 875 360 682 338 Potassium peroxide K2O2 490 Compound Potassium phosphate K3PO4 1340 Potassium pyro– phosphate K4P2O7 1092 Potassium sulfate K2SO4 1074 Potassium thiocyanate Praseodymium Rhenium Rhenium heptoxide KSCN Pr Re Re2O7 179 931 3167±60 296 Rhenium hexafluoride Rubidium Rubidium bromide Rubidium chloride ReF6 Rb RbBr RbCl 19.0 38 .9 677 717 Rubidium fluoride Rubidium iodide Rubidium nitrate Samarium RbF Rbl RbNO3 Sm 833 638 305 1072 Scandium Selenium Seleniumoxychloride Sc Se SeOCl3 Silane, hexaHuoro– Si2F6 1538 217 9.8 –28.6 Silicon Silicon dioxide (Cristobalite) Silicon tetrachloride Si SiO2 SiCl4 1427 1723 –67.7 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC 224 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 225 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 71. MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 10 OF 13) Formula Melting Point ˚C Silver Silver bromide Silver chloride Silver cyanide Ag AgBr AgCl AgCN 961 430 455 350 Silver iodide Silver nitrate Agl AgNO3 Silver sulfate Ag2SO4 557 209 657 Silver sulfide Ag2S 841 Sodium Sodium borate, meta– Sodium bromide Sodium carbonate Na NaBO2 NaBr Na2CO3 97.8 966 747 854 Sodium chlorate Sodium chloride Sodium cyanide Sodium fluoride NaClO3 NaCl NaCN NaF 255 800 562 992 NaOH Nal Na2MoO4 NaNO3 322 662 687 310 Na2O2 NaPO3 Compound Sodium hydroxide Sodium iodide Sodium molybdate Sodium nitrate Sodium peroxide Sodium phosphate, meta– Sodium pyrophosphate Na4P2O7 460 988 970 Sodiumsilicate,aluminum– NaAlSi3O8 1107 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC Shackelford & Alexander 225 6.3 Thermodynamics Page 226 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 71. MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 11 OF 13) Formula Melting Point ˚C Sodium silicate, di– Na2Si2O5 884 Sodium silicate, meta– Na2SiO3 1087 Sodium sulfate Na2SO4 884 Sodium sulfide Na2S 920 Sodium thiocyanate Sodium tungstate Strontium Strontium bromide NaSCN Na2WO4 Sr SrBr2 323 702 757 643 Strontium chloride Strontium fluoride Strontium oxide Sulfur (monatomic) SrCl2 SrF2 SrO S 872 1400 2430 119, Sulfur dioxide Sulfur trioxide (α) Sulfur trioxide (β) Sulfur trioxide (γ) SO2 SO3 SO3 SO3 – 73.2 16.8 32.3 62.1 Tantalum Tantalum pentachloride Ta TaCl5 Tantalum pentoxide Tellurium Ta2O5 Te 2996 ± 50 206.8 1877 453 Tb Tl TlBr Tl2CO3 1356 302.4 460 273 Compound Terbium Thallium Thallium bromide, mono– Thallium carbonate Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC 226 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 227 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 71. MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 12 OF 13) Compound Formula Melting Point ˚C Thallium chloride, mono– Thallium iodide, mono– Thallium nitrate TICl TlI TINO3 Thallium sulfate Tl2SO4 427 440 207 632 Thallium sulfide Thorium Thorium chloride Thorium dioxide Tl2S Th ThCl4 ThO2 449 1845 765 2952 Thulium Tin Tin bromide, di– Tin bromide, tetra– Tm Sn SnBr2 SnBr4 1545 231.7 231.8 29.8 Tin chloride, di– Tinchloride,tetra– Tin iodide, tetra– Tin oxide SnCl2 SnCl4 SnI4 SnO 247 –33.3 143.4 1042 Titanium Titanium bromide, tetra– Titanium chloride, tetra– Titanium dioxide Ti TiBr4 TiCl4 TiO2 1800 38 –23.2 1825 Titanium oxide Tungsten Tungsten dioxide Tungsten hexafluoride TiO W WO2 WF6 991 3387 1270 –0.5 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC Shackelford & Alexander 227 6.3 Thermodynamics Page 228 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 71. MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 13 OF 13) Formula Melting Point ˚C Tungsten tetrachloride Tungsten trioxide WCl4 WO3 327 1470 Uranium235 Uranium tetrachloride U UCl4 ~1133 Vanadium Vanadium dichloride Vanadium oxide Vanadium pentoxide V VCl2 VO V2O5 1917 1027 2077 670 Xenon Ytterbium Yttrium Yttrium oxide Xe Yb Y Y2O3 –111.6 823 1504 2227 Zinc Zincchloride Zinc oxide Zinc sulfide Zn ZnCl2 ZnO ZnS 419.4 283 1975 1745 Zirconium Zirconium dichloride Zirconium oxide Zr ZrCl2 ZrO2 1857 727 2715 Compound 590 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC 228 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 229 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 72. MELTING POINTS OF (SHEET 1 OF 11) Compound CERAMICS (K) AgBr AgCl AgF AgI 703 728 708 831 AgNO3 Ag2O 483 Ag2SO4 Ag2S 933 1098 AlBr3 Al4C3 2000 AlCl3 AlF3 1564 AlI AlN Al2O3 464 >2475 2322 573 371 465 Al2(SO4)3 1043 Al2S3 BBr3 1373 B4C BCl3 2720 BF3 BN B2O3 146 3000 723 BS4 663 227 166 Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC Shackelford & Alexander 229 6.3 Thermodynamics Page 230 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 72. MELTING POINTS OF (SHEET 2 OF 11) Compound CERAMICS (K) BaB4 BaBr2 BaCl2 2543 BaF2 1627 BaI2 Ba(NO3)2 1013 BaO BaSO4 1123 1235 865 2283 1853 BaS BeB2 1473 >2243 BeBr2 Be2C 793 >2375 BeCl2 BeF2 BeI2 713 Be3N2 2513 BeO BeSO4 2725 848 491 BiBr3 BiCl3 813 783 507 BiF3 BiI3 B2O3 1000 Bi(SO4)3 678 681 1098 Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC 230 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 231 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 72. MELTING POINTS OF (SHEET 3 OF 11) Compound CERAMICS (K) Bi2S3 CaBr2 CaCl2 1020 CaF2 1675 CaI2 Ca(NO3)2 848 Ca3N2 CaO 1468 3183 CaSO4 CdBr2 1723 CdCl2 CdF2 841 CdI2 Cd(NO3)2 1003 1055 623 841 1373 423 CdO CdSO4 834 1773 1273 CdS CeB6 2023 2463 CeCl3 CeF2 1095 CeI3 CeO2 1025 CeS Ce(SO4)2 1710 >2873 2400 468 Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC Shackelford & Alexander 231 6.3 Thermodynamics Page 232 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 72. MELTING POINTS OF (SHEET 4 OF 11) Compound CERAMICS (K) CrB2 Cr3C2 CrN Cr2O3 2168 1770 >2603 CrSi2 CuBr CuCl CuF2 1843 777 695 1129 CuI Cu3N 878 573 Cu2O Cu4Si 1508 Cu2S FeBr2 1400 Fe3C FeCl2 2110 FeF3 Fe2O3 >1275 Fe2(SO4)3 FeS InBr3 2123 1123 955 945 1864 753 1468 InCl InF3 709 498 1443 InI3 483 Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC 232 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 233 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 72. MELTING POINTS OF (SHEET 5 OF 11) Compound CERAMICS (K) In2O3 2183 In2S3 KBr KCl 1323 1008 1043 KF KI KNO3 1131 958 610 K2O3 703 K2SO4 1342 K2S LiBr LiCl 1113 823 883 LiF LiI LiNO3 1119 722 527 Li3N 1118 Li2O Li2SO4 >1975 Li2S MgBr2 1198 MgCl2 MgF2 MgI2 MgO Mg2Si MgS MgSO4 MnCl2 1132 984 987 1535 <910 3098 1375 >2275 1397 923 Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC Shackelford & Alexander 233 6.3 Thermodynamics Page 234 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 72. MELTING POINTS OF (SHEET 6 OF 11) Compound CERAMICS (K) MnF2 MnO MoB Mo2C 1129 1840 2625 2963 MoF6 MoI4 290 MoO3 MoSi2 1068 MoS2 NaBr NaC2 NaCl 1458 1023 973 1073 NaF NaI NaNO3 1267 935 583 Na2N 573 Na2SO4 Na2S 1157 NbB NbC 373 2553 1453 >2270 3770 NbN Nb2O5 2323 1764 NbSi2 NiBr2 2203 NiCl3 NiF2 1274 1273 NiI2 1070 2257 NiO 1236 Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC 234 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 235 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 72. MELTING POINTS OF (SHEET 7 OF 11) Compound CERAMICS (K) NiSO4 NiS PbBr2 PbCl2 1121 1070 643 PbF2 PbI2 Pb(NO3)2 1095 675 PbO PbSO4 771 743 1159 PbS PtBr2 1443 1387 523 PtCl2 854 PtI2 PtS2 633 508 SbBr3 SbCl3 370 SbF3 SbI3 565 443 Sb2O3 SbS3 928 SiC SiF4 2970 183 Si3N4 SiO2 2715 346 820 1978 Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC Shackelford & Alexander 235 6.3 Thermodynamics Page 236 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 72. MELTING POINTS OF (SHEET 8 OF 11) Compound CERAMICS (K) SnBr2 SnCl2 SnF4 488 SnI2 788 SnO SnSO4 581 978 SnS SrB6 1353 >635 1153 2508 SrBr2 SrC2 916 >1970 SrCl2 SrF2 1148 SrI2 Sr(NO3)2 593 SrO SrSO4 SrS TaB TaBr5 TaC 1736 643 2933 1878 >2275 >2270 538 3813 TaCl5 TaF5 489 Ta2N Ta2O5 3360 370 2100 Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC 236 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 237 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 72. MELTING POINTS OF (SHEET 9 OF 11) Compound CERAMICS (K) TaSi2 TaS4 TeBr2 >1575 TeCl2 448 TeO2 ThB4 ThBr4 >2270 ThC ThCl4 ThF4 2670 612 1006 883 2898 1043 ThN ThO2 1375 2903 3493 ThS2 TiB2 2198 3253 TiBr4 312 3433 TiC TiCl4 TiF3 TiI2 TiN TiO2 TiSi2 UB2 UBr4 250 1475 873 3200 2113 1813 >1770 789 Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC Shackelford & Alexander 237 6.3 Thermodynamics Page 238 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 72. MELTING POINTS OF (SHEET 10 OF 11) Compound CERAMICS (K) UC UCl4 2863 843 UF4 UI4 1233 UN UO2 3123 3151 1970 779 USi2 US2 >1375 VB2 VC VCl4 2373 3600 245 VF3 >1075 FI2 VN V2O5 1048 2593 947 VSi2 2023 V2S3 >875 3133 2900 548 WB WC WCl6 WO3 WSi2 WS2 1744 ZnBr2 667 ZnCl2 ZnF2 ZnI2 ZnO 2320 1523 548 1145 719 2248 Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC 238 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 239 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 72. MELTING POINTS OF (SHEET 11 OF 11) Compound ZnSO4 ZrB2 ZrBr2 ZrC ZrCl2 ZrF4 ZrI4 ZrN ZrO2 Zr(SO4)2 ZrS2 CERAMICS (K) 873 3313 >625 3533 623 873 772 3250 3123 683 1823 Source: data from: Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC Shackelford & Alexander 239 6.3 Thermodynamics Page 240 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 73. HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 1 OF 16) Heat of fusion Compound Formula Melting point ˚C Actinium227 Aluminum Aluminum bromide Ac 1050±50 (11.0) Al 658.5 94.5 2550 Al2Br6 Aluminum chloride Al2Cl6 87.4 192.4 10.1 63.6 5420 19600 Aluminum iodide Al2I6 Aluminum oxide Antimony Antimony pentachloride Al2O3 Sb SbCl5 190.9 2045.0 9.8 (256.0) 7960 (26000) 630 39.1 4770 4.0 8.0 2400 Antimony tribromide Antimony trichloride Antimony trioxide SbBr3 SbCl3 Sb4O6 Antimony trisulfide Sb4S6 96.8 73.3 655.0 546.0 9.7 13.3 (46.3) 33.0 3510 3030 (26990) 11200 Argon Arsenic Arsenic pentafluoride Arsenic tribromide Ar As AsF5 AsBr3 190.2 816.8 7.25 (22.0) 290 (6620) 80.8 30.0 16.5 8.9 2800 2810 Arsenic trichloride Arsenic trifluoride Arsenic trioxide Barium AsCl3 AsF3 –16.0 –6.0 312.8 13.3 18.9 22.2 2420 2486 8000 725 13.3 1830 As4O6 Ba cal/g cal/g mole (3400) For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC 240 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 241 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 73. HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 2 OF 16) Heat of fusion Compound Formula Melting point ˚C Barium bromide Barium chloride Barium fluoride Barium iodide BaBr2 BaCl2 BaF2 BaI2 846.8 959.8 1286.8 710.8 21.9 25.9 17.1 (17.3) 6000 5370 3000 (6800) Barium nitrate Barium oxide Barium phosphate Barium sulfate Ba(NO3)2 BaO Ba3(PO4)2 BaSO4 (5900) Beryllium Beryllium bromide Beryllium chloride Beryllium oxide Be BeBr2 BeCl2 BeO Bismuth Bismuth trichloride Bismuth trifluoride Bismuth trioxide Bi BiCl3 BiF3 Boron Boron tribromide Boron trichloride Boron trifluoride cal/g cal/g mole 594.8 (22.6) 1922.8 93.2 13800 1727 1350 30.9 41.6 18600 9700 1278 260.0 – 487.8 (26.6) (4500) 404.8 2550.0 (30) 679.7 (3000) 17000 271 12.0 2505 Bi2O3 223.8 726.0 815.8 8.2 (23.3) 14.6 2600 (6200) 6800 B BBr3 BCl3 BF3 2300 (490) (5300) –48.8 –107.8 –128.0 (2.9) (4.3) 7.0 (700) (500) 480 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC Shackelford & Alexander 241 6.3 Thermodynamics Page 242 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 73. HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 3 OF 16) Heat of fusion Melting point ˚C cal/g cal/g mole Compound Formula Boron trioxide Bromine Bromine pentafluoride Cadmium B2O3 Br2 BrF5 Cd 448.8 –7.2 –61.4 78.9 16.1 7.07 5500 2580 1355 320.8 12.9 1460 Cadmium bromide Cadmium chloride Cadmium fluoride Cadmium iodide CdBr2 CdCl2 CdF2 CdI2 567.8 567.8 1110 386.8 (18.4) 28.8 (35.9) 10.0 (5000) 5300 (5400) 3660 Cadmium sulfate Calcium Calcium bromide Calcium carbonate CdSO4 Ca CaBr2 CaCO3 1000 22.9 4790 851 55.7 2230 729.8 1282 20.9 (126) 4180 (12700) Calcium chloride Calcium fluoride Calcium metasilicate Calcium nitrate CaCl2 CaF2 CaSiO3 Ca(NO3)2 782 1382 1512 560.8 55 52.5 115.4 31.2 6100 4100 13400 5120 Calcium oxide Calcium sulfate Carbon dioxide Carbon monoxide CaO CaSO4 CO2 CO 2707 (218.1) (12240) 1297 –57.6 49.2 43.2 6700 1900 –205 7.13 199.7 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC 242 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 243 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 73. HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 4 OF 16) Compound Formula Cyanogen Cyanogen chloride Cerium Cesium C2N2 CNCl Ce Cs Cesium chloride Cesium nitrate Chlorine Chromium CsCl CsNO3 Cl2 Cr Chromium (II) chloride Chromium (III) sequioxide Chromium trioxide Cobalt CrCl2 Cr2O3 CrO3 Co Cobalt (II) chloride Copper Copper (II) chloride Copper (I) chloride CoCl2 Cu CuCl2 CuCl Copper(l) cyanide Copper (I) iodide Copper (II) oxide Copper (I) oxide Cu2(CN)2 CuI CuO Cu2O Heat of fusion Melting point ˚C cal/g cal/g mole –27.2 39.6 2060 –5.2 775 28.3 36.4 27.2 3.7 2240 2120 500 38.5 21.4 3600 406.8 –103±5 16.6 22.8 3250 1531 1890 62.1 3660 814 2279 197 65.9 27.6 37.7 7700 4200 3770 1490 62.1 3640 7390 727 56.9 1083 49.0 3110 430 24.7 4890 429 26.4 2620 473 (30.1) (5400) 587 1446 (13.6) 35.4 (2600) 2820 1230 (93.6) (l3400) For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC Shackelford & Alexander 243 6.3 Thermodynamics Page 244 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 73. HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 5 OF 16) Heat of fusion Melting point ˚C cal/g cal/g mole Compound Formula Copper (I) sulfide Dysprosium Erbium Europium Cu2S Dy Er Eu 1129 62.3 5500 1407 1496 826 25.2 24.5 16.4 4100 4100 2500 Europium trichloride Fluorine Gadolinium Gallium EuCl3 F2 Gd Ga 622 –219.6 (20.9) 6.4 (8000) 244.0 1312 29 23.8 19.1 3700 1336 Germanium Gold Hafnium Holmium Ge Au Hf Ho 959 1063 2214 1461 (114.3) (15.3) (34.1) 24.8 (8300) 3030 (6000) 4100 Hydrogen Hydrogen bromide Hydrogen chloride Hydrogen fluoride H2 HBr HCl HF –259.25 13.8 28 –86.96 –114.3 83.11 7.1 13.0 54.7 575.1 476.0 1094 Hydrogen iodide Hydrogen nitrate HI HNO3 –50.91 5.4 686.3 Hydrogen oxide (water) H2O Deuterium oxide D2O –47.2 0 3.78 9.5 79.72 75.8 601 1436 1516 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC 244 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 245 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 73. HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 6 OF 16) Compound Formula Hydrogen peroxide H2O2 Hydrogen selenate H2SeO4 Hydrogen sulfate H2SO4 Hydrogen sulfide H2S Hydrogen sulfide, di– H2S2 Hydrogen telluride Indium lodine H2Te In I2 lodine chloride (α) lodine chloride (β) Iron Iron carbide Iron (III) chloride Iron (II) chloride Iron (II) oxide Iron oxide Iron pentacarbonyl Iron (II) sulfide Lanthanum Lead Heat of fusion Melting point ˚C cal/g cal/g mole –0.7 57.8 10.4 –85.6 8.58 23.8 24.0 16.8 2920 3450 2360 5683 –89.7 –49.0 27.3 12.9 1805 1670 156.3 6.8 781 112.9 14.3 3650 ICl ICl 17.1 13.8 16.4 13.3 2660 2270 Fe Fe3C 1530.0 63.7 3560 1226.8 68.6 12330 Fe2Cl6 FeCl2 FeO Fe3O4 303.8 677 63.2 61.5 20500 7800 1380 (107.2) (7700) 1596 142.5 33000 Fe(CO)5 FeS La Pb –21.2 16.5 3250 1195 920 327.3 56.9 17.4 5.9 5000 2400 1224 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC Shackelford & Alexander 245 6.3 Thermodynamics Page 246 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 73. HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 7 OF 16) Heat of fusion Compound Formula Melting point ˚C Leadbromide Lead chloride Lead fluoride Lead iodide PbBr2 PbCl2 PbF2 PbI2 487.8 497 8 823 412 11 7 20.3 7.6 17.9 4290 5650 1860 5970 Lead molybdate Lead oxide Lead sulfate Lead sulfide PbMoO4 PbO PbSO4 PbS 1065 70.8 (25800) 890 12.6 2820 1087 31.6 9600 1114 17.3 4150 Lithium Lithium bromide Lithium chloride Lithium fluoride Li LiBr LiCl LiF 178.8 552 614 896 158.5 33 4 75.5 (91.1) 1100 2900 3200 (2360) Lithium hydroxide Lithium iodide Lithium metasilicate LiOH LiI Li2SiO3 462 440 103.3 (10.6) 2480 (1420) Lithium molybdate Li2MoO4 1177 705 80.2 24.1 7210 4200 Lithium nitrate Lithium orthosilicate LiNO3 Li4SiO4 Lithium sulfate Li2SO4 Lithium tungstate Li2WO4 250 1249 857 742 87.8 60.5 27.6 (25.6) 6060 7430 3040 (6700) cal/g cal/g mole For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC 246 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 247 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 73. HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 8 OF 16) Heat of fusion Melting point ˚C cal/g cal/g mole Compound Formula Lutetium Magnesium Magnesium bromide Magnesium chloride Lu Mg MgBr2 MgCl2 1651 650 26.3 88.9 4600 2160 711 712 45.0 82.9 8300 8100 Magnesium fluoride Magnesium oxide Magnesium silicate Magnesium sulfate MgF2 MgO MgSiO3 MgSO4 1221 94.7 5900 2642 459.0 18500 1524 1327 146.4 28.9 14700 3500 Manganese Manganese dichloride Manganese metasilicate Manganese (II) oxide Mn MnCl2 MnSiO3 MnO 1220 62.7 3450 650 1274 58.4 (62.6) 7340 (8200) 1784 183.3 13000 Manganese oxide Mercury Mercury bromide Mercury chloride Mn3O4 Hg HgBr2 HgCl2 1590 (170.4) (39000) –39 2.7 557.2 241 276.8 10.9 15.3 3960 4150 Mercury iodide Mercury sulfate Molybdenum Molybdenum dichloride HgI2 HgSO4 Mo MoCl2 250 850 9.9 (4.8) 4500 (1440) 2622 (68.4) (6600) 726.8 3.58 6000 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC Shackelford & Alexander 247 6.3 Thermodynamics Page 248 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 73. HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 9 OF 16) Compound Formula Molybdenum hexafluoride Molybdenum trioxide Neodymium Neon MoF6 MoO3 Nd Ne Nickel Nickel chloride Ni NiCl2 Nickel subsulfide Niobium Ni3S2 Nb Niobium pentachloride NbCl5 Niobium pentoxide Nitric oxide Nitrogen Nb2O5 NO N2 Nitrogen tetroxide N2O4 Nitrous oxide Osmium Osmium tetroxide (white) N 2O Os OsO4 Osmium tetroxide (yellow) Oxygen Palladium Phosphoric acid OsO4 O2 Pd H3PO4 Heat of fusion Melting point ˚C cal/g cal/g mole 17 795 11.9 (17.3) 2500 (2500) 1020 – 248.6 11.8 3.83 1700 77.4 1452 71.5 4200 1030 790 142 5 25.8 1 18470 5800 2496 (68.9) (6500) 21.1 1511 30 8 91.0 8400 24200 –163.7 18.3 549.5 –210 6.15 172.3 –13.2 –90.9 60.2 35.5 5540 1563 2700 (36.7) (7000) 41.8 9.2 2340 55.8 –218.8 15.5 3.3 4060 106.3 1555 38.6 4120 42.3 25.8 2520 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC 248 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 249 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 73. HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 10 OF 16) Compound Formula Phosphoric acid. hypo– H4P2O6 Phosphorus acid, hypo– H3PO2 Phosphorus acid, ortho– Phosphorus oxychloride H3PO3 POCl3 Phosphorus pentoxide P4O10 Phosphorus trioxide Phosphorus, yellow Platinum P4O6 P4 Pt Potassium Potassium borate, meta– Potassium bromide Potassium carbonate K KBO2 KBr K2CO3 Potassium chloride Potassium chromate Potassium cyanide Potassium dichromate KCl K2CrO4 KCN K2Cr2O7 Potassium fluoride Potassium hydroxide Potassium iodide Potassium nitrate KF KOH Kl KNO3 Heat of fusion Melting point ˚C cal/g cal/g mole 54.8 17.3 73.8 1.0 51.2 35.0 37.4 20.3 8300 2310 3070 3110 569.0 23.7 44.1 60.1 15.3 4.8 17080 3360 600 1770 24.1 4700 63.4 14.6 574 947 (69.1) (5660) 742 42.0 5000 897 56.4 7800 770 85.9 6410 984 35.6 6920 623 (53.7) (3500) 398 29.8 8770 875 360 682 111.9 (35.3) 24.7 6500 (1980) 4100 338 78.1 2840 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC Shackelford & Alexander 249 6.3 Thermodynamics Page 250 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 73. HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 11 OF 16) Compound cal/g cal/g mole 490 1340 1092 1074 55.3 41.9 42.4 46.4 6100 8900 14000 8100 179 931 3167±60 23.1 19.0 (42.4) 2250 2700 (7900) 296 30.1 15340 Formula Potassium peroxide K2O2 Potassium phosphate K3PO4 Potassium pyro– phosphate K4P2O7 Potassium sulfate K2SO4 Potassium thiocyanate Praseodymium Rhenium Rhenium heptoxide KSCN Pr Re Re2O7 Rhenium hexafluoride Rubidium Rubidium bromide Rubidium chloride ReF6 Rb RbBr RbCl Rubidium fluoride Rubidium iodide Rubidium nitrate Samarium RbF Rbl RbNO3 Sm Scandium Selenium Seleniumoxychloride Sc Se SeOCl3 Silane, hexaHuoro– Si2F6 Heat of fusion Melting point ˚C 19.0 16.6 5000 38 .9 677 717 6. 1 22.4 36.4 525 3700 4400 833 638 39.5 14.0 4130 2990 305 9.1 1340 1072 17.3 2600 1538 217 84.4 15.4 3800 1220 9.8 –28.6 6.1 22.9 1010 3900 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC 250 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 251 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 73. HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 12 OF 16) Compound Heat of fusion Formula Melting point ˚C cal/g cal/g mole Silicon Silicon dioxide (Cristobalite) Silicon tetrachloride Silver Si 1427 337.0 9470 SiO2 1723 35.0 2100 SiCl4 Ag –67.7 10.8 1845 961 25.0 2700 Silver bromide Silver chloride Silver cyanide Silver iodide AgBr AgCl AgCN AgI 430 455 350 557 11.6 22.0 20.5 9.5 2180 3155 2750 2250 Silver nitrate AgNO3 209 657 841 16.2 (13.7) 13.5 2755 (4280) 3360 97.8 27.4 630 8660 Silver sulfate Ag2SO4 Silver sulfide Sodium Ag2S Na Sodium borate, meta– Sodium bromide Sodium carbonate 966 134.6 747 59.7 6140 Sodium chlorate NaBO2 NaBr Na2CO3 NaClO3 854 255 66.0 49.7 7000 5290 Sodium chloride Sodium cyanide Sodium fluoride Sodium hydroxide NaCl NaCN NaF NaOH 800 562 992 322 123.5 (88.9) 166.7 50.0 7220 (4360) 7000 2000 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC Shackelford & Alexander 251 6.3 Thermodynamics Page 252 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 73. HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 13 OF 16) Compound Formula Sodium iodide Sodium molybdate Sodium nitrate Sodium peroxide NaI Na2MoO4 NaNO3 Sodium phosphate, meta– Sodium pyrophosphate NaPO3 Na4P2O7 Sodiumsilicate,aluminum– NaAlSi3O8 Sodium silicate, di– Na2Si2O5 Sodium silicate, meta– Na2SiO3 Na2O2 Melting point ˚C Heat of fusion cal/g cal/g mole 662 35.1 5340 687 310 460 17.5 44.2 75.1 3600 3760 5860 988 970 1107 884 (48.6) (51.5) 50.1 46.4 (4960) (13700) 13150 8460 1087 884 920 84.4 41.0 15.4 10300 5830 (1200) 323 54.8 4450 5800 Sodium sulfate Na2SO4 Sodium sulfide Sodium thiocyanate Na2S NaSCN Sodium tungstate Strontium Strontium bromide Strontium chloride Na2WO4 Sr SrBr2 SrCl2 702 19.6 757 25.0 2190 643 872 19.3 26.5 4780 4100 Strontium fluoride Strontium oxide Sulfur (monatomic) Sulfur dioxide SrF2 SrO S SO2 1400 34.0 4260 2430 119 161.2 9.2 16700 295 –73.2 32.2 2060 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC 252 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 253 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 73. HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 14 OF 16) Heat of fusion Compound Formula Melting point ˚C Sulfur trioxide (α) SO3 SO3 SO3 16.8 32.3 62.1 25.8 36.1 79.0 2060 2890 6310 Ta 2996 ± 50 34.6–41.5 (7500) TaCl5 206.8 1877 25.1 108.6 9000 48000 453 1356 25.3 24.6 3230 3900 302.4 460 5.0 21.0 1030 5990 273 9.5 4400 427 17.7 4260 Sulfur trioxide (β) Sulfur trioxide (γ) Tantalum Tantalum pentachloride Tantalum pentoxide Tellurium Terbium Ta2O5 Te Tb Thallium Thallium bromide, mono– Thallium carbonate Thallium chloride, mono– Tl TlBr Tl2CO3 TICl Thallium iodide, mono– Thallium nitrate TlI TINO3 Thallium sulfate Tl2SO4 Thallium sulfide Tl2S Thorium Thorium chloride Thorium dioxide Thulium Th ThCl4 ThO2 Tm cal/g cal/g mole 440 9.4 3125 207 632 449 8.6 10.9 6.8 2290 5500 3000 1845 (<19.8) (<4600) 765 2952 61.6 1102.0 22500 291100 1545 26.0 4400 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC Shackelford & Alexander 253 6.3 Thermodynamics Page 254 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 73. HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 15 OF 16) Heat of fusion Compound Formula Melting point ˚C Tin Tin bromide, di– Tin bromide, tetra– Tin chloride, di– Sn SnBr2 SnBr4 SnCl2 231.7 14.4 1720 231.8 29.8 247 (6.1) 6.8 16.0 (1720) 3000 3050 Tin chloride,tetra– Tin iodide, tetra– Tin oxide Titanium SnCl4 SnI4 SnO Ti –33.3 143.4 8.4 (6.9) 2190 (4330) 1042 1800 (46.8) (104.4) (6400) (5000) Titanium bromide, tetra– Titanium chloride, tetra– Titanium dioxide Titanium oxide TiBr4 TiCl4 TiO2 TiO 38 –23.2 1825 (5.6) 11.9 (142.7) (2060) 2240 (11400) 991 219 14000 Tungsten Tungsten dioxide Tungsten hexafluoride Tungsten tetrachloride W WO2 WF6 WCl4 Tungsten trioxide WO3 Uranium235 U Uranium tetrachloride Vanadium UCl4 V cal/g cal/g mole 3387 (45.8) (8420) 1270 –0.5 327 60 1 6.0 18.4 13940 1800 6000 1470 ~1133 590 60 1 20 27.1 13940 3700 10300 1917 (70) (4200) For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC 254 CRC Handbook of Materials Science & Engineering 6.3 Thermodynamics Page 255 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 73. HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS (SHEET 16 OF 16) Melting point ˚C Compound Formula Vanadium dichloride Vanadium oxide Vanadium pentoxide Xenon VCl2 VO V2O5 Xe Ytterbium Yttrium Yttrium oxide Zinc Yb Y Y2O3 Zn Zinc chloride Zinc oxide Zinc sulfide Zirconium ZnCl2 ZnO ZnS Zr Zirconium dichloride Zirconium oxide ZrCl2 ZrO2 727 2715 Heat of fusion cal/g cal/g mole 1027 65.6 8000 2077 224.0 15000 670 85.5 15560 –111.6 5.6 740 823 1504 12.7 46.1 2200 4100 2227 110.7 25000 419.4 24.4 1595 283 (406) (5540) 1975 1745 1857 54.9 (93.3) (60) 4470 (9100) (5500) 45.0 168.8 7300 20800 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Values in parentheses are of uncertain reliability. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC Shackelford & Alexander 255 6.3 Thermodynamics Page 256 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 74. HEATS OF SUBLIMATION OF METALS AND THEIR OXIDES Metal kcal/mole (25˚C) kJ/mole (25˚C) Al Cu Fe Mg 78 81 100 113 326 338 416 473 122 145 143 509 605 597 153 639 Metal Oxide FeO MgO α-TiO TiO2 (rutile) Data from: JANAF Thermochemical Tables, 2nd ed., National Standard Reference Data Series, Natl. Bur. Std. (U.S.), 37 (1971) and Supplement in J. Phys. Chem. Ref. Data 4(1), 1175 (1975). ©2001 CRC Press LLC 256 CRC Handbook of Materials Science & Engineering Table 75. KEY TO TABLES OF THERMODYNAMIC COEFFICIENTS (SHEET 1 OF 4) Thermodynamic calculations over a wide range of temperatures are generally made with the aid of algebraic equations representing the characteristic properties of the substances being considered. The necessary integrations and differentiations, or other mathematical manipulations, are then most easily effected. The most convenient starting point in making such calculations for a given substance is the heat capacity at constant pressure. From this quantity and a knowledge of the properties of any phase transitions, the other thermodynamic properties may be computed by the well-known equations given in standard texts on thermodynamics. Please note that the units for a, b, c, and d are cal/g mole, whereas those for A are kcal/g mole. The necessary adjustment must be made when the data are substituted into the equations. Empirical heat capacity equations are generated in the form of a power series, with the absolute temperature T as the independent variable: Since both forms are used in the following, let ©2001 CRC Press LLC Table 75. KEY TO TABLES OF THERMODYNAMIC COEFFICIENTS (SHEET 2 OF 4) The constants a, b, c, and d are to be determined either experimentally or by some theoretical or semi-empirical approach. The heat content, or enthalpy (H), is determined from the heat capacity by a simple integration of the range of temperatures for which the formula for cp is valid. Thus, if 298K is taken as a reference temperature, where all the constants on the right-hand side of the equation have been incorporated in the term –A. In general, the enthalpy is given by a sum of terms for each phase of the substance involved in the temperature range considered plus terms that represent the heats of transitions: In a similar manner, the entropy S is obtained by performing the integration ©2001 CRC Press LLC Table 75. KEY TO TABLES OF THERMODYNAMIC COEFFICIENTS (SHEET 3 OF 4) where From the definition of free energy (F): the quantity ©2001 CRC Press LLC Table 75. KEY TO TABLES OF THERMODYNAMIC COEFFICIENTS (SHEET 4 OF 4) may be written as: and also the free energy function Values of these thermodynamic coefficients are given in the following tables. The first column in each table lists the material. The second column gives the phase to which the coefficients are applicable. The remaining columns list the values of the constants a, b, c, d, A, and B required in the thermodynamic equations. All values that represent estimates are enclosed in parentheses. The heat capacities at temperatures beyond the range of experimental determination were estimated by extrapolation. Where no experimental values were found, analogy with compounds of neighboring elements in the periodic table was used. ©2001 CRC Press LLC Table 76. THERMODYNAMIC COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 1 OF 14) Element Phase a – b – c (cal • g mole-1 ) – (kcal • g mole-1) (e.u.) Ac solid liquid (5.4) (8) (3.0) – – – – – (1.743) (0.295) (18.7) (31.3) Ag solid liquid gas 5.09 7.30 (4.97) 1.02 – – – – – 0.36 – – 1.488 0.164 (–66.34) 19.21 30.12 (–12.52) Al solid liquid 4.94 7.0 2.96 – – – – – 1.604 0.33 22.26 30.83 Am solid liquid (4.9) (8.5) (4.4) – – – – – (1.657) (0.409) (16.2) (34.5) As solid 5.17 2.34 – – 1.646 21.8 Au solid liquid 6.14 7.00 –0.175 – 0.92 – – – 1.831 –0.631 23.65 26.99 B solid liquid 1.54 (6.0) 4.40 – – – – – 0.655 (–4.599) 8.67 (31.4) d A Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC B Table 76. THERMODYNAMIC COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 2 OF 14) a – b – c (cal • g mole-1 ) – (kcal • g mole-1) (e.u.) 5.55 5.55 4.50 1.50 – – – – 1.722 1.582 16.1 15.9 (7.4) (497) – – – – – – (0.843) (–39.65) (25.3) (–11.7) solid liquid 5.07 5.27 1.21 – – – –1.15 – 1.951 –1.611 27.62 25.68 Bi solid liquid gas 5.38 7.60 (4.97) 2.60 – – – – – – – – 1.720 –0.087 (–46.19) 17.8 25.6 (–15.9) C solid 4.10 1.02 – –2.10 1.972 23.484 Ca solid, α solid, β liquid gas 5.24 6.29 3.50 1.40 – – – – 1.718 1.689 2095 26.01 7.4 (4.97) – – – – – – –0.147 (–43.015) 30.28 (–9.88) Element Phase Ba solid, α solid, β liquid gas Be d A Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC B Table 76. THERMODYNAMIC COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 3 OF 14) Element Phase a – b – c (cal • g mole-1 ) – (kcal • g mole-1) (e.u.) Cd solid liquid gas 5.31 7.10 (4.97) 2.94 – – – – – – – – 1.714 0.798 (–25.28) 18.8 26.1 (–11.7) Ce solid liquid 4.40 (7.9) 6.0 – – – – – 1.579 (–0.148) 13.1 (29.1) Cl2 gas 8.76 0.27 – –0.65 2.845 –2.929 Co solid, α solid, β solid, γ liquid 4.72 3.30 9.60 4.30 5.86 – – – – – – – 1.598 0.974 3.961 21.4 3.1 50.5 8.30 – – – –2.034 38.7 solid liquid gas 5.35 9.40 (4.97) 2.36 – – – – – –0.44 – – 1.848 1.556 (–82.47) 25.75 50.13 (–13.8) Cr d A Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC B Table 76. THERMODYNAMIC COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 4 OF 14) Element Phase a – b – c (cal • g mole-1 ) – (kcal • g mole-1) (e.u.) Cs solid liquid gas 7.42 8.00 (4.97) – – – – – – – – – 2.212 1.887 (–17.35) 22.5 24.1 (–13.6) Cu solid liquid 5.41 7.50 1.50 – – – – – 1.680 0.024 23.30 34.05 F2 gas 8.29 0.44 – –0.80 2.760 –0.76 Fe solid, α solid, β solid, γ solid, δ liquid 3.37 10.40 4.85 10.30 7.10 – 3.00 – – – – – 0.43 – – – 1.176 4.281 0.396 4.382 14.59 55.66 19.76 55.11 10.00 – – – –0.021 50.73 solid liquid 5.237 (6.645) 3.33 – – – – – 1.710 (0.648) 21.01 (23.64) Ga d A Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC B Table 76. THERMODYNAMIC COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 5 OF 14) Element Phase a – b – c (cal • g mole-1 ) – (kcal • g mole-1) (e.u.) Ge solid liquid 5.90 (7.3) 1.13 – – – – – 1.764 (–5.668) 23.8 (25.7) H2 gas 6.62 0.81 – – 2.010 6.75 Hf solid (6.00) (0.52) – – (1.812) (21.2) Hg liquid gas 6.61 4.969 – – – – – – 1.971 –13.048 19.20 –13.54 In solid liquid gas 5.81 7.50 (4.97) 2.50 – – – – – – – – 1.844 1.564 (–58.42) 19.97 27.34 (–14.46) Ir solid 5.56 1.42 – – 1.721 23.4 K solid liquid gas 1.3264 8.8825 (4.97) 19.405 4.565 – – 2.9369 – – – – 1.258 1.923 (–19.689) –1.86 32.55 (–9.46) d A Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC B Table 76. THERMODYNAMIC COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 6 OF 14) Element Phase a – b – c (cal • g mole-1 ) – (kcal • g mole-1) (e.u.) La solid liquid 6.17 (7.3) 1.60 – – – – – 1.911 (–0.15) 21.9 (26.0) Li solid liquid gas 3.05 7.0 (4.97) 8.60 – – – – – – – – 1.292 1.509 (–34.30) 12.92 32.00 (–2.84) Mg solid liquid gas 5.33 (8.0) (4.97) 2.45 – – – – – –0.103 – – 1.733 0.942 (–34.78) 23.39 36.967 (–7.60) Mn solid, α solid, β solid, γ solid, δ liquid gas 6.70 8.33 10.70 11.30 3.38 0.66 – – – – – – –0.37 – – – 1.974 2.672 4.760 5.176 26.11 41.02 56.84 60.88 11.00 6.26 – – – – 1.221 –63.704 56.38 –3.13 solid 5.48 1.30 – – 1.692 24.78 Mo d A Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC B Table 76. THERMODYNAMIC COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 7 OF 14) Element Phase a – b – c (cal • g mole-1 ) – (kcal • g mole-1) (e.u.) N2 gas 6.76 0.606 0.13 – 2.044 –7.064 Na solid liquid 5.657 8.954 (4.97) 3.252 –4.577 – 0.5785 2.540 – – – – 1.836 1.924 (–24.40) 20.92 36.0 (–8.7) Nb solid 5.66 0.96 – – 1.730 24.24 Nd solid liquid 5.61 (9.1) 5.34 – – – – – 1.910 (–0.606) 19.7 35.8 Ni solid α solid β liquid 4.06 6.00 7.04 1.80 – – – – 1.523 1.619 18.095 27.16 9.20 – – – 0.251 45.47 Np solid liquid (5.3) (9.0) (3.4) – – – – – (1.731) (1.392) (17.9) (37.5) O2 gas 8.27 0.258 – –1.877 3.007 –0.750 d A Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC B Table 76. THERMODYNAMIC COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 8 OF 14) Element Phase a – b – c (cal • g mole-1 ) – (kcal • g mole-1) (e.u.) Os solid 5.69 0.88 – – 1.736 24.9 P4 solid, white 13.62 28.72 – – 5.338 43.8 liquid gas 19.23 (19.5) 0.51 (–0.4) – (1.3) –2.98 – 6.035 (–6.32) 66.7 (46.1) Pa solid liquid (5.2) (8.0) (4.0) – – – – – (1.728) (–3.823) (17.3) (28.8) Pb solid liquid gas 5.64 7.75 (4.97) 2.30 –0.73 – – – – – – – 1.784 1.362 (–45.25) 17.33 27.11 (–13.6) Pd solid liquid 5.80 (9.0) 1.38 – – – – – 1.791 (1.215) 24.6 (43.8) Po solid liquid gas (5.2) (9.0) (4.97) (3.2) – – – – – – – – (1.693) (0.847) (–28.73) (17.6) (35.2) (–13.5) d A Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC B Table 76. THERMODYNAMIC COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 9 OF 14) Element Phase a – b – c (cal • g mole-1 ) – (kcal • g mole-1) (e.u.) Pr solid liquid (5.0) (8.0) (4.6) – – – – – (1.705) (–0.519) (16.4) (30.0) Pt solid liquid 5.74 (9.0) 1.34 – – – 0.10 – 1.737 (0.406) 23.0 (42.6) Pu solid liquid (5.2) (8.0) (3.6) – – – – – (1.710) (0.506) (17.7) (31.0) Ra solid liquid gas (5.8) (8.0) (4.97) (1.2) – – – – – – – – (1.783) (1.284) (–38.87) (16.4) (28.6) (–14.5) Rb solid liquid gas 3.27 7.85 (4.97) 13.1 – – – – – – – – 1.557 1.814 (–19.04) 5.9 26.5 (–12.3) Re solid (5.85) (0.8) – – (1.780) (24.7) d A Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC B Table 76. THERMODYNAMIC COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 10 OF 14) Element Phase a – b – c (cal • g mole-1 ) – (kcal • g mole-1) (e.u.) Rh solid liquid 5.40 (9.0) 2.19 – – – – – 1.707 (–0.923) 23.8 (44.4) Ru solid, α solid, β solid, γ solid, δ 5.25 7.20 7.20 7.50 1.50 – – – – – – – – – – – 1.632 2.867 2.867 3.169 23.5 35.5 35.5 37.6 S solid, α solid, β liquid 3.58 3.56 6.24 6.95 – – – – 1.345 1.298 14.64 14.54 5.4 5.0 – – 1.576 24.02 /2 S2 gas (4.25) (0.15) – (–1.0) (–2.859) (9.57) Sb solid, α, β, γ liquid 5.51 1.74 – – 1.720 21.4 7.50 – – – 1.992 28.1 gas 4.47 – – –0.11 –53.876 –21.7 1 1/2 Sb2 d A Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC B Table 76. THERMODYNAMIC COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 11 OF 14) Element Phase a – b – c (cal • g mole-1 ) – (kcal • g mole-1) (e.u.) Sc solid liquid (5.13) (7.50) (3.0) – – – 1.663 (–2.563) 21.1 31.3 Se solid liquid 3.30 7.0 8.80 – – – – – 1.375 0.881 11.28 27.34 Si solid liquid 5.70 7.4 1.02 – – –1.06 2.100 7.646 28.88 33.17 Sm solid liquid (6.7) (9.0) (3.4) – – – – – (2.149) (–2.296) (24.2) (33.4) Sn solid, α, β liquid gas 4.42 6.30 – – 1.598 14.8 7.30 (4.97) – – – – – – 0.559 60.21) 26.2 (–14.3) solid liquid gas (5.60) (7.7) (4.97) (1.37) – – – – – – – – (1.731) (0.976) (37.16) (19.3) (30.4) (–10.2) Sr d A Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC B Table 76. THERMODYNAMIC COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 12 OF 14) Element Phase a – b – c (cal • g mole-1 ) – (kcal • g mole-1) (e.u.) Ta solid 5.82 0.78 – – 1.770 23.4 Tc solid liquid (5.6) – (2.0) – – – – – (1.759) (3.459) (24.5) (59.4) Te solid, α solid, β liquid 4.58 4.58 5.25 5.25 – – – – 1.599 1.469 15.78 15.57 9.0 – – – –0.988 34.96 /2 Te2 gas 4.47 – – –0.10 –19.048 –6.47 Th solid liquid 8.2 (8.0) –0.77 – 2.04 – – – 2.591 (–7.602) 33.64 (26.84) Ti solid, α solid, β liquid 5.25 7.50 2.52 – – – – – 1.677 1.645 23.33 35.46 (7.8) – – – (–2.355) (35.45) 1 d A Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC B Table 76. THERMODYNAMIC COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 13 OF 14) Element Phase Tl solid, α solid, β liquid gas a – b – c (cal • g mole-1 ) – (kcal • g mole-1) (e.u.) 5.26 7.30 3.46 – – – – – 1.722 2.230 15.6 26.4 7.50 (4.97) – – – – – – 1.315 (–41.88) 25.9 (–15.4) d A B solid, α solid, β solid, γ liquid 3.25 10.28 9.12 8.15 – – – – – 0.80 – – 1.063 3.493 1.110 8.47 48.27 39.09 (8.99) – – – (–2.073) 36.01 V solid liquid 5.57 (8.6) 0.97 – – – – – 1.704 1.827 24.97 44.06 W solid 5.74 0.76 – – 1.745 24.9 Y solid liquid (5.6) (7.5) (2.2) – – – – – (1.767) 2.277) (21.6) (29.6) U Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC Table 76. THERMODYNAMIC COEFFICIENTS FOR SELECTED ELEMENTS * (SHEET 14 OF 14) a – b – c (cal • g mole-1 ) – (kcal • g mole-1) (e.u.) solid liquid 5.35 7.50 (4.97) 2.40 – – – – – – – – 1.702 1.020 (–29.407) 21.25 31.35 (–9.81) solid, α solid, β liquid 6.83 7.27 1.12 – – – –0.87 – 2.378 1.159 30.45 31.43 (8.0) – – – (–2.190) (34.7) Element Phase Zn Zr d A Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. * Please refer to Table 75, ”Key to Tables of Thermodynamic Coefficients” on page 257 for an explanation of the coefficients. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 1 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) Ac2O3 Solid Liquid (20.0) (40) (20.4) – – – – – (6.870) (–19.767) (80.9) (180.5) Ag2O Solid 13.26 7.04 – – 4.266 48.56 Ag2O2 Solid (16.4) (12.2) – – (5.432) (76.7) Al2O3 Solid Liquid 26.12 (33) 4.388 – – – –7.269 – 10.422 (– 11.655) 142.03 (174.1) Am2O3 Solid Liquid Solid (20.0) (38.5) (14.0) (15.6) – (6.8) – – – – – – (6.657) (–7.796) (4.477) (81.6) (181.8) (61.8) AmO2 d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 2 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) As2O3 Solid, α Solid, β Liquid Gas 8.37 8.37 (39) (21.5) 48.6 48.6 – – – – – – – – – – 4.656 0.556 (5.760) (–14.164) 36.6 28.4 (187.6) (62.5) AsO2 As2O5 Solid Liquid Solid (8.5) (21) (31.1) (9.4) – (16.4) – – – – – (–5.4) (2.952) (2.184) (11.813) (38.2) (108.0) (159.9) Au2O3 Solid (23.5) (4.8) – – (7.220) (105.3) B2O3 Solid Liquid 8.73 30.50 25.40 – – – –1.31 – 4.171 7.822 45.04 161.59 Ba2O Solid Liquid Gas (20.0) (22) (15) (2.2) – – – – – – – – (6.061) (1.769) (–25.51) (91.1) (96.8) (29.0) d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 3 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) BaO Solid Liquid Solid Liquid 12.74 (13.9) (13.6) (21) 1.040 – (2.0) – – – – – –1.984 – – – 4.510 (–9.341) (4.144) (3.241) 57.2 (57.5) (59.6) (99.0) BeO Solid 8.69 3.65 – –3.13 3.803 48.99 BiO Solid Liquid Gas Solid Liquid (9.7) (14) (8.9) 23.27 (35.7) (3.0) – – 11.05 – – – – – – – – – – – (3.025) (2.306) (–61.49) 7.429 (7.614) (41.2) (64.9) (–1.8) 99.7 (168.3) CO Gas 6.60 1.2 – – 2.021 –9.34 CO2 Gas 7.70 5.3 –0.83 – 2.490 –5.64 CaO Solid 10.00 4.84 – –1.08 3.559 49.5 BaO2 Bi2O3 d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 4 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) CdO Solid 9.65 2.08 – – 2.970 42.5 Ce2O3 Solid Liquid Solid (–23.0) (37) 15.0 (9.0) – 2.5 – – – – – – (7.258) (–2.591) 4.579 (100.2) (178.5) 68.5 Co3O4 Solid Liquid Solid (9.8) (15.5) (29.5) (2.2) – (17.0) – – – – – – (3.020) (–1.886) (9.551) (46.0) (79.2) (137.6) Cr2O3 Solid 28.53 2.20 – –3.736 9.857 145.9 CrO2 Solid (16.1) (3.0) – (–3.0) (5.946) (82.8) CrO3 Solid Liquid Gas (18.1) (27) (20) (4.0) – – – – – (–2.0) – – (6.245) (3.381) (–28.62) (87.9) (127.0) (53.6) CeO2 CoO d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 5 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) Cs2O Solid Liquid Solid Liquid (16.51) (22) (21.4) (29.5) (5.4) – (11.4) – – – – – – – – – (5.160) (3.205) (6.887) (4.125) (72.6) (99.0) (85.3) (123.8) Cs2O3 Solid Liquid (24.0) (35) (22.6) – – – – – (8.160) (2.148) (96.5) (142.2) Cu2O Solid Liquid Solid Liquid (13.4) (21.5) 14.34 (22) (8.6) – 6.2 – – – – – – – – – (4.378) (3.721) 4.551 (–4.339) (96.0) (54.9) 61.11 (98.91) Solid Liquid Solid, α Solid, β 9.27 (14.5) 12.38 (14.5) 4.80 – 1.62 – – – – – – – –0.38 – (2.977) (–3.721) 3.826 (–2.399) (43.8) (69.2) 58.3 (66.7) Cs2O2 CuO FeO Fe3O4 d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 6 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) Fe2O3 Solid, α Solid, β Solid, γ 21.88 48.00 48.20 18.6 – – – – 8.666 12.652 104.0 238.3 Solid Liquid Gas Solid 23.49 36.00 31.71 (13.8) 18.6 – 1.8 – – – – – –3.55 – – – 9.021 11.979 8.467 (4.497) 119.9 187.6 159.7 (58.7) Liquid Solid Gas (21.5) (14) 11.77 – – 25.2 – – – – – – (–0.559) (–28.06) (4.630) (94.1) (22.3) (54.35) Solid (α,β) Liquid (35.5) (10.4) – (2.6) – – – (–0.5) (–20.66) (3.3) (173.2) (47.8) Ga2O Ga2O3 GeO GeO2 d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 7 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) In2O Solid Liquid Gas (14.7) (22) (15) (7.8) – – – – – – – – (4.730) (3.206) (–18.39) (58.1) (92.6) (25.8) InO Solid Liquid Gas (10.0) (14) (9.0) (3.2) – – – – – – – – (3.124) (1.615) (–68.38) (43.4) (64.9) (–3.1) In2O3 Solid Liquid (22.6) (35) (6.0) – – – – – (7.005) (–0.195) (100.5) (172.8) Ir2O3 Solid Liquid Gas Solid (21.8) (35) (20) 9.17 (14.4) – (10) 15.20 – – – – – – – – (7.140) (0.706) (–57.73) 3.410 (102.0) (170.3) (54.8) 40.9 Solid Liquid (15.9) (22) (6.4) – – – – – (5.025) (1.130) (69.5) (98.3) IrO2 K2O d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 8 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) K2O2 Solid Liquid Gas (20.8) (29) (20) (5.4) – – – – – – – – (6.442) (4.127) (–57.07) (93.1) (134.2) (41.7) K2O3 Solid Liquid Gas (19.1) (35.5) (20) (23.2) – (5.0) – – – – – – (6.750) (6.447) (–31.29) (82.2) (164.7) (37.3) KO2 Solid Liquid (15.0) (24) (12.0) – – – – – (5.006) (3.424) (61.1) (105.5) La2O3 Solid 28.86 3.076 – –3.275 9.840 (130.7) Li2O Solid Liquid (11.4) (21) (5.4) – – – – – (3.639) (–1.961) (57.5) (112.7) Li2O2 Solid (17.0) (5.4) – – (5.309) (82.0) d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 9 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) MgO Solid 10.86 1.197 – –2.087 3.991 57.0 MgO2 Solid (12.1) (2A) – – (3.714) (49.2) MnO Solid Liquid 11.11 (13.5) 1.94 – – – –0.88 – 3.689 (–8.543) 50.10 (58.02) Mn3O4 Solid, α Solid, β Liquid 34.64 50.20 (49) 10.82 – – – – – –2.20 – – 11.312 17.376 (–17.86) 166.3 260.4 (233.4) Mn2O3 Solid 24.73 8.38 – –3.23 8.829 118.8 MnO2 Solid 16.60 2.44 – –3.88 6.359 84.8 MoO2 Solid Liquid (16.2) (23) (3.0) – – – (–3.0) – (5.973) (–2.463) (80.4) (118.4) d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 10 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) MoO3 Solid Liquid Gas 13.6 (28.4) (18.1) 13.5 – – – – – – – – 4.655 (0.222) (–48.54) 62.83 (139.88) (42.8) N2O Gas (10.92) 2.06 – –2.04 4.032 11.40 Na2O Solid Liquid 15.70 (22) 5.40 – – – – – 4.921 (1.494) 73.7 (105.9) Na2O2 Solid (20.2) (3.8) – – (6.192) (93.6) NaO2 Solid Liquid Gas (16.2) (23) (15) (3.6) – – – – – – – – (4.990) (3.175) (–35.22) (65.7) (100.9) (22.0) NbO Solid (9.6) (4.4) – – (3.058) (44.0) d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 11 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) NbO2 Solid Liquid (17.1) (24) (1.6) – – – (–2.8) – (6.109) (1.033) (84.6) (127.2) Nb2O5 Solid Liquid 21.88 (44.2) 28.2 – – – – – 7.776 (–24.09) 100.3 (201.6) Nd2O3 Solid 28.99 5.760 – (–4.159) 10.295 (133.9) NiO Solid Liquid 13.69 (14.3) 0.83 – – – –2.915 – 5.097 (–7.861) 70.67 (67.91) NpO2 Np2O5 Solid Solid (17.7) (32.4) (3.2) (12.6) – – (–2.6) – (6.292) (10.22) (84.08) (145.4) OsO2 Solid (11.5) (6.0) – – (3.696) (52.8) d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 12 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) OsO4 Solid Liquid Gas (16.4) (33) 16.46 (23.1) – 8.60 – – – (–2.4) – –4.6 (6.726) (6.612) (–7.644) (67.0) (143.0) (25.3) P2O3 Liquid Gas (34.5) (153) – (10) – – – – (10.287) (–1.953) (162.6) (38.0) PO2 Solid Liquid (11.3) (20) (5.0) – – – – – (3.591) (3.640) (54.4) (95.9) P2O5 Solid Gas 8.375 36.80 5.40 – – – – – 4.897 3.284 30.3 165.6 PaO2 Solid (14.4) (2.6) – – (4.409) (65.0) Pa2O5 Solid Liquid (28.4) (48) (11.4) – – – – – (8.975) (–0.800) (127.7) (241.1) d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 13 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) PbO Solid, red Solid, yellow Liquid Gas 10.60 9.05 (14.6) (8.1) 4.00 6.40 – (0.4) – – – – – – – – 3.338 2.454 1.788 (–59.94) 45.4 36.4 65.7 (–11.0) Pb2O4 PbO2 PdO Solid Solid Solid (31.1) 12.7 3.30 (17.6) 7.80 14.2 – – – – – – (10.055) 4.133 1.615 (132.0) 56.4 (13.9) PoO2 Solid Liquid (14.3) (22) (5.6) – – – – – (4.513) (3.460) (66.1) (106.5) Pr2O3 Solid Liquid (29.0) (36) (4.0) – – – (–4.0) – (10.166) (–6.298) (133.2) (168.3) PrO2 Solid (17.6) (3.4) – (–2.8) (6.338) (85.9) d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 14 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) PtO Pt3O4 Solid Solid (9.0) (30.8) (6.4) (17.4) – – – – (2.968) (9.957) (39.7) (139.7) PtO2 Solid Liquid (11.1) (21) (9.6) – – – – – (3.736) (3.785) (49.6) (101.5) PuO Solid Liquid Gas (12.0) (14.5) (8.9) (2.4) – – – – – – – – (3.685) (–2.287) (–62.307) (49.1) (58.3) (–5.3) Pu2O3 Solid Liquid (21.2) (40) (18.2) – – – – – (7.130) (–5.691) (88.2) (187.2) PuO2 Solid Liquid (17.1) (20.5) (3.4) – – – (–2.6) – (6.122) (–10.62) (80.2) (92.2) RaO Solid (10.5) (2.0) – – (3.220) (43.4) d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 15 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) Rb2O Solid Liquid (15.4) (22) (5.8) – – – – – (4.850) (2.754) (62.5) (95.9) Rb2O2 Solid Liquid (20.9) (29) (8.0) – – – – – (6.587) (3.273) (94.0) (133.2) Rb2O3 Solid Liquid (20.5) (34) (13.0) – – – – – (6.690) (5.603) (88.2) (157.8) RbO2 Solid Liquid (13.8) (21) (6.4) – – – – – (4.399) (3.720) (59.0) (95.7) ReO2 Solid Liquid (10.8) (24.5) (9.8) – – – – – (3.656) (1.204) (49.5) (127.0) ReO3 Solid Liquid (18.0) 29 (5.8) – – – – – (5.625) (4.644) (84.5) (136.8) d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 16 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) Re2O7 Solid Liquid Gas (41.8) (65.7) (38.2) (14.8) – – – – – (–3.0) – – (14.127) (9.203) (–25.97) (200.3) (314.7) (109.3) ReO4 Solid Liquid Gas (21.4) (33) (16.5) (10.8) – (8.6) – – – (–2.0) – (–5.0) (7.531) (6.775) (–8.118) (91.8) (146.7) (30.6) Rh2O RhO Rh2O3 RuO2 Solid Solid Solid Solid 15.59 (9.84) 20.73 (11.4) 6.47 (553) 13.80 (6.0) – – – – – – – – 4.936 (3.179) 6.794 3.666 (65.3) (45.7) (99.2) (54.2) RuO4 Solid Liquid (20) (33) – – – – – – (5.963) (6.663) (81.5) (144.9) SO2 Gas 11.4 1.414 – –2.045 4.148 7.12 d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 17 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) Sb2O3 Solid Liquid Gas 19.10 (36) (20.8) 17.1 – – – – – – – – 6.455 (0.035) (–34.70) 84.5 (168.2) (49.9) SbO2 Sb2O5 Solid Solid 11.30 (22.4) 8.1 (23.6) – – – – 3.725 (7.723) 51.6 (104.8) Sc2O3 Solid 23.17 5.64 – – 7.159 1089 SeO Solid Liquid Gas (9.1) (15.5) 8.20 (3.8) – 0.50 – – – – – –0.80 (2.882) (0.490) (–58.54) (42.0) (77.5) (0.7) SeO2 Solid Gas (12.8) (14.5) (6.1) – – – (–0.2) – (4.150) (–20.45) (59.9) (26.4) SiO Solid (7.3) (2.4) – – (2.283) (35.8) d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 18 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) SiO2 Solid, β Solid, α Liquid 11.22 14.41 (20) 8.20 1.94 – – – – –2.70 – – 4.615 4.602 (9.649) 57.83 73.67 (111.08) Sm2O3 Solid Liquid (25.9) (36) (7.0) – – – – – (8.033) (–6.431) (113.2) (166.3) SnO Solid Liquid Gas 9.40 (14.5) (9.0) 3.62 – – – – – – – – 2.964 (0.141) (–69.76) 41.1 (68.1) (–6.4) SnO2 Solid Liquid 17.66 (22.5) 2.40 – – – –5.16 – 7.103 (0.304) 91.7 (117.7) SrO SrO2 Solid Solid 12.34 (16.8) 1.120 (2.2) – – –1.806 (–3.0) 4.335 (6.113) 58.7 (83.3) d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 19 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) Ta2O5 Solid Liquid 29.2 (46) 10.0 – – – – – 9.151 (6.158) 135.2 (235.1) TcO2 Solid Liquid (10.4) (25) (9.2) – – – – – (3.510) (–5.946) (48.6) (132.7) TcO3 Solid (19.4) (5.2) – (–2.0) (6.686) (93.7) Tc2O7 Solid Liquid Gas (39.1) (64) (25) (18.6) – (28) – – – (–2.4) – – (13.29) (10.02) (–21.98) (187.2) (299.8) (43.8) TeO Solid Liquid Gas (8.6) (15.5) (8.9) (6.2) – – – – – – – – (2.840) (–0.448) (–62.16) (37.8) (72.3) (–5.2) TeO3 Solid Liquid 13.85 (20) 6.87 – – – – – 4.435 (3.940) 63.97 (96.4) d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 20 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) TeO2 Solid Liquid (11.0) (15) (2.4) – – – – – (3.386) (–6.561) (47.4) (66.9) ThO2 Solid 16.45 2.346 – –2.124 5.721 80.03 TiO Solid, α Solid, β 10.57 11.85 3.60 3.00 – – –1.86 – 3.935 4.108 54.03 61.71 Ti2O3 Solid, α Solid, β Liquid 7.31 34.68 (37.5) 53.52 1.30 – – – – – –10.20 – 4.559 13.605 (–7.796) 38.78 184.48 (193.2) Ti3O5 Solid, α Solid, β Liquid 35.47 41.60 (60) 29.50 8.00 – – – – – – – 11.887 10.230 (–18.701) 179.98 202.80 (306.4) d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 21 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) TiO2 Solid Liquid 17.97 (21.4) 0.28 – – – –4.35 – 6.829 (–2.610) 92.92 (111.08 Ti2O Solid Liquid Gas (15.8) (22.1) (13.7) (6.0) – – – – – (–0.3) – – (5.078) (2.651) (–20.94) (68.2) (96.0) (18.0) Tl2O3 Solid Liquid (23.0) (35.5) (5.0) – – – – – (7.080) (4.604) (99.0) (167.8) UO UO2 Solid Solid Solid Solid (10.6) 19.20 (65) 22.09 (2.0) 1.62 (7.5) 2.54 – – – – – –3.957 (–10.9) –2.973 (3.249) 7.124 (23.37) 7.969 (45.0) 93.37 (312.7) 104.72 Solid Liquid 11.32 (14.5) 1.61 – – – –1.26 – 3.869 (–8.157) 56.4 (70.9) U3O8 UO3 VO d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 22 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) V2O3 Solid Liquid 29.35 (38) 4.76 – – – –5.42 – 10.780 (–6.028) 148.12 (193.4) V3O4 Solid Liquid (36) (55.6) (30) – – – – – (12.07) (–54.72) (182.1) (249.1) VO2 Solid, α Solid, β Liquid 14.96 17.85 25.50 – 1.70 – – – – – –3.94 – 4.460 5.680 2.962 72.92 89.09 135.87 V2O5 Solid Liquid Gas 46.54 45.60 (40) –390 – – – – – –13.22 – – 18.136 2.122 (–73.90) 240.2 220.1 (149.6) WO2 Solid Liquid (17.6) (24) (4.2) – – – (–4.0) – (6.772) (–0.112) (88.8) (121.8) d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B Table 77. THERMODYNAMIC COEFFICIENTS FOR (SHEET 23 OF 23) OXIDES Oxide Phase a – b (cal • g mole-1 ) c – – (kcal • g mole-1) (e.u.) WO3 Solid Liquid Gas 17.33 (30) (18) 7.74 – – – – – – – – 5.511 (–1.162) (–69.36) 81.15 (152.5) (40.2) Y2O3 Solid (26.0) (8.2) – (–2.2) (8.846) (122.3) ZnO ZrO2 Solid Solid, α Solid, β 11.71 16.64 17.80 1.22 1.80 – – – – –2.18 –3.36 – 4.277 6.168 4.270 57.88 85.21 89.96 d A For discussion of these coefficients, please see Table 75, Key to Tables of Thermodynamic Coefficients on page 257 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-58. ©2001 CRC Press LLC B 6.5 Thermodynamics Page 298 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 78. ENTROPY OF THE (SHEET 1 OF 3) ELEMENTS Element Phase Entropy at 298K (e.u.) Ac Ag Al Am solid solid solid solid (13) 10.20 6.769 (13) As Au B Ba solid solid solid solid, α 8.4 11.32 1.42 16 Be Bi C Ca solid solid solid solid, α 2.28 13.6 1.3609 9.95 Cd Ce Cl2 Co solid solid gas solid, α 12.3 13.8 53.286 6.8 Cr Cs Cu F2 solid solid solid gas 5.68 19.8 7.97 48.58 Fe Ga Ge H2 solid, α solid solid gas 6.491 9.82 10.1 31.211 Hf Hg In Ir solid liquid solid solid 13.1 18.46 13.88 8.7 Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC 298 CRC Handbook of Materials Science & Engineering 6.5 Thermodynamics Page 299 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 78. ENTROPY OF THE (SHEET 2 OF 3) ELEMENTS Element Phase Entropy at 298K (e.u.) K La Li Mg solid solid solid solid 15.2 13.7 6.70 7.77 Mn Mo N2 Na solid, α solid gas solid 7.59 6.83 45.767 12.31 Nb Nd Ni Np solid solid solid, α solid 8.3 13.9 7.137 (14) O2 Os P4 Pa gas solid solid, white solid 49.003 7.8 42.4 (13.5) Pb Pd Po Pr solid solid solid solid 15.49 8.9 13 (13.5) Pt Pu Ra Rb solid solid solid solid 10.0 (13.0) (17) 16.6 Re Rh Ru S solid solid solid, α solid, α (8.89) 7.6 6.9 7.62 Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC Shackelford & Alexander 299 6.5 Thermodynamics Page 300 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 78. ENTROPY OF THE (SHEET 3 OF 3) ELEMENTS Element Phase Entropy at 298K (e.u.) Sb Sc Se Si solid (α, β, γ) solid solid solid 10.5 (9.0) 10.144 4.50 Sm Sn Sr Ta solid solid (α, β) solid solid (15) 12.3 13.0 9.9 Tc Te Th Ti solid solid, α solid solid, α (8.0) 11.88 12.76 7.334 Tl U V W solid, α solid, α solid solid 15.4 12.03 7.05 8.0 Y Zn Zr solid solid solid, α (11) 9.95 9.29 Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC 300 CRC Handbook of Materials Science & Engineering 6.5 Thermodynamics Page 301 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 79. VAPOR PRESSURE OF THE ELEMENTS AT VERY LOW PRESSURES (SHEET 1 OF 2) Pressure (mm Hg) Element Melting point (˚C) 10 -5 10-4 10-3 10-2 10-1 1 Ag Al Au Ba 961 660 1063 717 767 724 1083 418 848 808 1190 476 936 889 1316 546 1047 996 1465 629 1184 1123 1646 730 1353 1279 1867 858 Be Bi C Cd 1284 271 1029 536 2288 180 1130 609 2471 220 1246 698 2681 264 1395 802 2926 321 1582 934 3214 321 942 474 2129 148 Co Cr Cu Fe 1478 1900 1083 1535 1249 907 946 1094 1362 992 1035 1195 1494 1090 1141 1310 1649 1205 1273 1447 1833 1342 1432 1602 2056 1504 1628 1783 Hg In Ir Mg –38.9 157 2454 651 –23.9 667 1993 287 –5.5 746 2154 331 18.0 840 2340 383 48.0 952 2556 443 82.0 1088 2811 515 126 1260 3118 605 Mn Mo Ni Os 1244 2622 1455 2697 717 1923 1157 2101 791 2095 1257 2264 878 2295 1371 2451 980 2533 1510 2667 1103 1251 1679 2920 1884 3221 To convert mm Hg (torr) to N/m2, divide by 133.3 To convert atm to MN/m2, divide by 0.1013 This table lists the temperature in degrees Celsius (Centigrade) at which an element has a vapor pressure indicated by the headings of the columns. The values given in this table are from a variety of sources that are not always in agreement; for that reason, the table should be used only as a general guide. Source: from Dushman, S., Scientific Foundations of Vacuum Technique, John Wiley & Sons, New York, (1949) ©2001 CRC Press LLC Shackelford & Alexander 301 6.5 Thermodynamics Page 302 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 79. VAPOR PRESSURE OF THE ELEMENTS AT VERY LOW PRESSURES (SHEET 2 OF 2) Pressure (mm Hg) Element Melting point (˚C) 10 -5 10-4 10-3 10-2 10-1 1 Pb Pd Pt Sb 328 1555 1774 630 483 1156 1606 466 548 1271 1744 525 625 1405 1904 595 718 1566 2090 678 832 1759 2313 779 975 2000 2582 904 Si Sn Ta W 1410 232 2996 3382 1024 823 2407 2554 1116 922 2599 2767 1223 1042 2820 3016 1343 1189 1485 1373 1670 1609 Zn Zr 419 2127 211 1527 248 1660 292 1816 343 2001 405 2212 2459 3309 To convert mm Hg (torr) to N/m2, divide by 133.3 To convert atm to MN/m2, divide by 0.1013 This table lists the temperature in degrees Celsius (Centigrade) at which an element has a vapor pressure indicated by the headings of the columns. The values given in this table are from a variety of sources that are not always in agreement; for that reason, the table should be used only as a general guide. Source: from Dushman, S., Scientific Foundations of Vacuum Technique, John Wiley & Sons, New York, (1949) ©2001 CRC Press LLC 302 CRC Handbook of Materials Science & Engineering 6.5 Thermodynamics Page 303 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 80. VAPOR PRESSURE OF THE ELEMENTS AT MODERATE PRESSURES (SHEET 1 OF 3) Pressure (mm Hg) Element Symbol 1 10 100 400 760 Aluminum Antimony Arsenic Barium Al Sb As Ba 1540 1780 960 440 1050 2080 1280 510 1300 2320 1570 580 1520 2467 1750 610 1640 Beryllium Bismuth Boron Bromine Be Bi B Br 1520 1860 1060 3030 –30 2300 1280 3460 +9 2770 1450 3810 39 2970 1560 4000 59 Cadmium Calcium Cesium Chlorine Cd Ca Cl Cl 486 970 373 –101 610 1200 513 –71 710 1390 624 –46 765 1490 690 –34 Chromium Cobalt Copper Fluorine Cr Co Cu F 1610 1910 1840 2170 1870 2140 2500 2190 –203 2360 2760 2440 –193 2480 2870 2600 –188 Gallium Germanium Gold Indium Ca Ge Au In 1350 1570 2080 2160 1850 2440 2520 2060 2710 2800 1960 2180 2830 2940 2080 380 860 2660 –60 393 800 –123 1880 To convert mm Hg (torr) to N/m2, divide by 133.3 To convert atm to MN/m2, divide by 0.1013 This table lists the temperature in degrees Celsius (Centigrade) at which an element has a vapor pressure indicated by the headings of the columns. The values given in this table are from a variety of sources that are not always in agreement; for that reason, the table should be used only as a general guide. Source: from Dushman, S., Scientific Foundations of Vacuum Technique, John Wiley & Sons, New York, (1949) ©2001 CRC Press LLC Shackelford & Alexander 303 6.5 Thermodynamics Page 304 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 80. VAPOR PRESSURE OF THE ELEMENTS AT MODERATE PRESSURES (SHEET 2 OF 3) Pressure (mm Hg) Element Symbol 1 10 100 400 760 Iodine Iridium Iron Lanthanum I Ir Fe La 40 2830 1780 72 3170 2040 115 3630 2370 160 3960 2620 3230 185 4130 2750 3420 Lead Lithium Magnesium Manganese Pb Li Mg Mn 970 750 620 1160 890 740 1510 1420 1080 900 1810 1630 1240 1040 2050 1740 1310 1110 2100 Mercury Molybdenum Neodymium Nickel Hg Mo Nd Ni 3300 3770 260 4200 1800 2090 2370 330 4580 2870 2620 356.9 4830 3100 2730 Palladium Phosphorus Platinum Polonium Pd P Pt Po 1470 2290 127 2940 587 2670 199 3360 752 2950 253 3650 890 3140 283 3830 960 Potassium Rhodium Rubidium Selenium K Rh Rb Se 2850 390 429 590 3260 527 547 710 3590 640 640 770 3760 700 685 2600 472 2530 To convert mm Hg (torr) to N/m2, divide by 133.3 To convert atm to MN/m2, divide by 0.1013 This table lists the temperature in degrees Celsius (Centigrade) at which an element has a vapor pressure indicated by the headings of the columns. The values given in this table are from a variety of sources that are not always in agreement; for that reason, the table should be used only as a general guide. Source: from Dushman, S., Scientific Foundations of Vacuum Technique, John Wiley & Sons, New York, (1949) ©2001 CRC Press LLC 304 CRC Handbook of Materials Science & Engineering 6.5 Thermodynamics Page 305 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 80. VAPOR PRESSURE OF THE ELEMENTS AT MODERATE PRESSURES (SHEET 3 OF 3) Pressure (mm Hg) Element Symbol 1 10 100 400 760 Silver Sodium Strontium Sulfur Ag Na Sr S 1310 440 740 1540 546 900 246 1850 700 1100 333 2060 830 1280 407 2210 890 1380 445 Tellurium Thallium Tin Titanium Te Tl Sn Ti 520 633 1000 1890 2480 792 1210 2270 2860 900 1370 2580 3100 962 1470 2750 3260 Tungsten Uranium Vanadium Zinc W U V Zn 4490 2800 2570 590 5160 3270 2950 730 5470 3620 3220 840 5940 3800 3380 907 1610 2180 3980 2450 2290 To convert mm Hg (torr) to N/m2, divide by 133.3 To convert atm to MN/m2, divide by 0.1013 This table lists the temperature in degrees Celsius (Centigrade) at which an element has a vapor pressure indicated by the headings of the columns. The values given in this table are from a variety of sources that are not always in agreement; for that reason, the table should be used only as a general guide. Source: from Dushman, S., Scientific Foundations of Vacuum Technique, John Wiley & Sons, New York, (1949) ©2001 CRC Press LLC Shackelford & Alexander 305 6.5 Thermodynamics Page 306 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 81. VAPOR PRESSURE OF THE ELEMENTS AT HIGH PRESSURES (SHEET 1 OF 3) Pressure (atm) Element Symbol 2 5 10 20 40 Aluminum Antimony Arsenic Barium Al Sb As Ba 2610 1960 2850 2490 3050 3270 3530 1790 2030 2230 Beryllium Bismuth Boron Bromine Be Bi B Br 3240 1660 3730 1850 4110 2000 4720 2180 5610 78 110 Cadmium Calcium Cesium Chlorine Cd Ca Cl Cl 830 1630 930 1850 1030 2020 1120 2290 1240 –17 +9 30 55 97 Chromium Cobalt Copper Fluorine Cr Co Cu F 2630 3040 2760 –180.7 2850 3270 3010 –169.1 3010 3180 3500 –159.6 3460 Gallium Germanium Gold Indium Ca Ge Au In 2320 2970 3120 2230 2560 3200 3490 2440 2730 3430 3630 2600 Iodine Iridium Iron Lanthanum I Ir Fe La 216 4310 2900 3620 265 4650 3150 3960 3360 4270 3740 3890 3570 To convert atm to MN/m2 divide by 0.1013 This table lists the temperature in degrees Celsius (Centigrade) at which an element has a vapor pressure indicated by the headings of the columns. Source: from Loebel, R., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, (1974) ©2001 CRC Press LLC 306 CRC Handbook of Materials Science & Engineering 6.5 Thermodynamics Page 307 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 81. VAPOR PRESSURE OF THE ELEMENTS AT HIGH PRESSURES (SHEET 2 OF 3) Pressure (atm) Element Symbol 2 5 10 20 40 Lead Lithium Magnesium Manganese Pb Li Mg Mn 1880 1420 1190 2360 2140 1518 1330 2580 2320 2620 1430 2850 1560 Mercury Molybdenum Neodymium Nickel Hg Mo Nd Ni 398 5050 3300 2880 465 5340 3680 3120 517 5680 3990 3300 581 5980 Palladium Phosphorus Platinum Polonium Pd P Pt Po 3270 319 4000 1060 3560 3840 4310 1200 4570 1340 4860 Potassium Rhodium Rubidium Selenium K Rh Rb Se 850 3930 950 4230 1110 4440 1240 1420 750 850 920 1010 1120 Silver Sodium Strontium Sulfur Ag Na Sr S 2360 980 1480 493 2600 1120 1670 574 2850 1230 1850 640 3050 1370 2030 720 3300 Tellurium Thallium Tin Titanium Te Tl Sn Ti 1030 1560 2950 3400 1160 1750 3270 3650 1250 1900 3540 3800 2050 3890 2260 657 3310 To convert atm to MN/m2 divide by 0.1013 This table lists the temperature in degrees Celsius (Centigrade) at which an element has a vapor pressure indicated by the headings of the columns. Source: from Loebel, R., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, (1974) ©2001 CRC Press LLC Shackelford & Alexander 307 6.5 Thermodynamics Page 308 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 81. VAPOR PRESSURE OF THE ELEMENTS AT HIGH PRESSURES (SHEET 3 OF 3) Pressure (atm) Element Symbol 2 5 10 20 Tungsten Uranium Vanadium Zinc W U V Zn 6260 4040 3540 970 6670 4420 3800 1090 7250 7670 1180 1290 40 To convert atm to MN/m2 divide by 0.1013 This table lists the temperature in degrees Celsius (Centigrade) at which an element has a vapor pressure indicated by the headings of the columns. Source: from Loebel, R., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, (1974) ©2001 CRC Press LLC 308 CRC Handbook of Materials Science & Engineering 6.5 Thermodynamics Page 309 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 82. VAPOR PRESSURE OF ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 1 OF 5) Formula a b Temperature. Range of Validity ˚C Al2O3 540000 31211 90208 83486 14.22 9.9974 9.9404 10.0164 1840 to 2200 liq. –127 to –78 sol. 250 to 400 sol. 100 to 400 sol. 41484 95730 46025 189000 9.978 10.2700 10.7500 9.051 7 to 17 sol. 300 to 400 sol. 6 to 40 sol. 1070 to 1325 liq. 7814.5 6826 47100 133000 7.5741 6.9605 6.692 10.800 –208 to –189 sol. –189 to –183 liq. 800 to 860 liq. 440 to 815 sol. As2O3 111350 52120 12.127 6.513 100 to 315 sol. 315 to 490 liq. Ba Bi 350000 200000 13125 15.765 8.876 2.681 930 to 1130 liq. 1210 to 1420 liq. 91 to 213 sol. Cd 10900 99900 8.564 7.897 150 to 320.9 sol.. 500 to 840 liq Cadimium Iodide CdI2 122200 9.269 385 to 450 liq. Cesium Cesium Chloride Calcium Carbon Cs CsCl Ca C 73400 163200 370000 540000 6.949 8.340 16.240 9.596 200 to 350 liq. 986 to 1295 liq. 960 to 1110 liq. 3880 to 4430 liq. Carbon Dioxide Carbon Monooxide Chlorine Cobalt CO2 26179.3 6354 29293 309000 9.9082 6.976 9.950 7.571 –135 to –56.7 liq. –220 to –206 liq. –154 to –103 liq. 2375 liq. Compound Aluminum Oxide Ammonia Ammonium Bromide Ammonium Chloride Ammonium Cyanide Ammonium Iodide Ammonium Sulfhydrate Antimony NH3 NH4Br NH4Cl NH4CN NH4I NH4HS Sb Argon Ar Arsenic As Arsenous Oxide Barium Bismuth Bismuth Trichloride Cadimium BiCl3 CO Cl Co Source: data compiled by J.S. Park from CRC Handbook of Chemistry and Physics, David R. Lide, Ed., CRC Press, Boca Raton, (1990). ©2001 CRC Press LLC Shackelford & Alexander 309 6.5 Thermodynamics Page 310 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 82. VAPOR PRESSURE OF ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 2 OF 5) Compound Formula a b Temperature. Range of Validity ˚C Cu 468000 80700 12.344 5.454 2100 to 2310 liq. 878 to 1369 liq. Copper Cuprous Chloride Cu2Cl2 Cyanogen (CN)2 32437 23750 9.6539 7.808 –72 to –28 sol. –32 to –6 liq. Ferrous Chloride Gold FeCl2 135200 385000 8.33 9.853 700 to 390 sol. 2315 to 2500 liq. HI 24160 21580 8.259 7.630 –97 to –51 sol. –50 to –34 liq. Hydrobromic Acid HBr 22420 17960 8.734 7.427 –114 to –86 sol. –86 ot –66 liq. Hydrochloric Acid Hydrocyanic Acid Hydrofluoric Acid Hydrogen Peroxide HCl HCN HF H2O2 19588 27830 25180 48530 8.4430 7.7446 7.370 8.853 –158 to –110 sol. –8 to 27 liq. –83 to 48 liq. 10 to 90 liq. Hydrogen Sulfide Iron H2S 20690 309000 7.880 7.482 –110 to –83 sol. 2220 to 2450 liq. Krypton Kr 10065 9377 7.1770 6.92387 –189 to –169 sol. –169 to –150 liq. Pb LiBr 188500 118000 141900 152700 7.827 7.827 8.961 8.068 525 to 1325 liq. 735 to 918 liq. 500 to 950 liq. 1010 to 1265 liq. LiCl LiF LiI 155900 218400 143600 7.939 8.753 8.011 1045 to 1325 liq. 1398 to 1666 liq. 940 to 1140 liq. Hydriodic Acid Lead Lead Bromide Lead Chloride Lithium Bromide Lithium Chloride Lithium Fluoride Lithium Iodide Au Fe PbBr2 PbCl2 Source: data compiled by J.S. Park from CRC Handbook of Chemistry and Physics, David R. Lide, Ed., CRC Press, Boca Raton, (1990). ©2001 CRC Press LLC 310 CRC Handbook of Materials Science & Engineering 6.5 Thermodynamics Page 311 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 82. VAPOR PRESSURE OF ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 3 OF 5) Formula a b Temperature. Range of Validity ˚C Mg Mn 260000 267000 12.993 9.300 900 to 1070 liq. 1510 to 1900 liq. Mercuric Bromide HgBr2 79800 61250 10.181 8.284 111 to 235 sol. 238 to 331 lig. Mercuric Chloride HgCl2 85030 78850 61020 10.888 10.094 8.409 60 to 130 sol. 130 to 270 sol. 275 to 309 liq. Mercuric Iodide HgI2 82340 62770 10.057 8.115 100 to 250 sol. 266 to 360 liq. Mercury Hg 73000 58700 10.383 7.752 –80 to –38.87 sol. 400 to 1300 liq. Molybdenum Nitrogen Mo 680000 6881.3 10.844 7.66558 1800 to 2240 sol. –215 to –210 sol. Nitrogen Dioxide NO 16423 13040 10.048 8.440 –200 to –161 sol. –163.7 to –148 liq. Nitrogen Monoxide N2O 23590 16440 9.579 7.535 –144 to –90 sol. –90.1 to –88.7 liq. Nitrogen Pentoxide N2O5 57180 12.647 –30 to 30 sol. Nitrogen Tetroxide N2O4 55160 45440 33430 13.400 11.214 8.814 –100 to –40 sol. –40 to –10 sol. –8 to 43.2 liq. Nitrogen Trioxide Phosphorus (White) Phosphorus (Violet) Platinum Potassium N2O3 39400 63123 108510 486000 84900 10.30 9.6511 11.0842 7.786 7.183 –25 to 0 liq. 20 to 44.1 sol. 380 to 590 sol. 1425 to 1765 sol. 260 to 760 liq. Compound Magnesium Magnase N2 P P Pt K Source: data compiled by J.S. Park from CRC Handbook of Chemistry and Physics, David R. Lide, Ed., CRC Press, Boca Raton, (1990). ©2001 CRC Press LLC Shackelford & Alexander 311 6.5 Thermodynamics Page 312 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 82. VAPOR PRESSURE OF ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 4 OF 5) Formula a b Temperature. Range of Validity ˚C Potassium Bromide KBr 168100 163800 8.2470 7.936 906 to 1063 liq. 1095 to 1375 liq. Potassium Chloride KCl 174500 169700 8.3526 8.130 906 to 1105 liq. 1116 to 1428 liq. KF KOH 207500 136000 9.000 7.330 1278 to 1500 liq. 1170 to 1327 liq. KI 157600 155700 8.0957 7.949 843 to 1028 liq. 1063 to 1333 liq. Rubidium Rubidium Chloride Silicon Silicon Dioxide Rb RbCl Si SiO2 76000 198600 170000 506000 6.976 9.111 5.950 13.43 250 to 370 liq. 1142 to 1395 liq. 1200 to 1320 sol. 1860 to 2230 liq. Silver Silver Chloride Sodium Sodium Bromide Ag AgCl Na NaBr 250000 185500 103300 161600 8.762 8.179 7.553 7.948 1650 to 1950 liq. 1255 to 1442 liq. 180 to 883 liq. 1138 to 1394 liq. Sodium Chloride NaCl Sodium Cyanide Sodium Fluoride NaCN NaF 180300 185800 155520 218200 8.3297 8.548 7.472 8.640 976 to 1155 liq. 1156 to 1430 liq. 800 to 1360 liq. 1562 to 1701 liq. Sodium Hydroxide Sodium Iodide Stannic Chloride Stronium NaOH NaI 132000 165100 46740 360000 7.030 8.371 9.824 16.056 1010 to 1042 liq. 1063 to 1307 liq. –52 to –38 liq. 940 to 1140 liq. Compound Potassium Flouride Potassium Hydroxide Potassium Iodide SnCl4 Sr Source: data compiled by J.S. Park from CRC Handbook of Chemistry and Physics, David R. Lide, Ed., CRC Press, Boca Raton, (1990). ©2001 CRC Press LLC 312 CRC Handbook of Materials Science & Engineering 6.5 Thermodynamics Page 313 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 82. VAPOR PRESSURE OF ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 5 OF 5) Formula a b Temperature. Range of Validity ˚C SO2 Tl TlCl 35827 43450 120000 105200 10.5916 10.022 6.140 7.947 –95 to –75 liq. 24 to 48 liq. 950 to 1200 liq. 665 to 807 liq. Tin Tungsten Sn W 328000 897000 9.643 9.920 1950 to 2270 liq. 2230 to 2770 liq. Zinc Zn 133000 118000 9.200 8.108 250 to 491.4 sol. 600 to 985 liq. Compound Sulfur Dioxide Sulfur Trioxide Thallium Thallium Chloride SO3 Source: data compiled by J.S. Park from CRC Handbook of Chemistry and Physics, David R. Lide, Ed., CRC Press, Boca Raton, (1990). * The vapor pressure with respect to temperature may be represented by the following equation: log10 p = –0.05223a/T + b where p is the pressure in mm of mercury of the saturated vapor at the absolute temperature T. (T = t˚C + 273.1) The values obtained by the use of the equation given above are valid within the temperature ranges indicated for each of the compounds. ©2001 CRC Press LLC Shackelford & Alexander 313 6.5 Thermodynamics Page 314 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 83. VALUES OF THE ERROR (SHEET 1 OF 2) FUNCTION z erf (z) 0.00 0.01 0.02 0.03 0.0000 0.0113 0.0226 0.0338 0.04 0.05 0.10 0.15 0.0451 0.0564 0.1125 0.1680 0.20 0.25 0.30 0.35 0.2227 0.2763 0.3286 0.3794 0.40 0.45 0.50 0.55 0.4284 0.4755 0.5205 0.5633 0.60 0.65 0.70 0.75 0.6039 0.6420 0.6778 0.7112 0.80 0.85 0.90 0.95 0.7421 0.7707 0.7969 0.8209 1.00 1.10 1.20 1.30 0.8427 0.8802 0.9103 0.9340 Source: from: Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegun, eds., National Bureau of Standards, Applied Mathematics Series 55, Washington, D.C., 1972. ©2001 CRC Press LLC 314 CRC Handbook of Materials Science & Engineering 6.5 Thermodynamics Page 315 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 83. VALUES OF THE ERROR (SHEET 2 OF 2) FUNCTION z erf (z) 1.40 1.50 1.60 1.70 0.9523 0.9661 0.9763 0.9838 1.80 1.90 2.00 0.9891 0.9928 0.9953 Source: from: Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegun, eds., National Bureau of Standards, Applied Mathematics Series 55, Washington, D.C., 1972. ©2001 CRC Press LLC Shackelford & Alexander 315 Table 84. DIFFUSION IN METALLIC (SHEET 1 OF 34) Metal Tracer Aluminum Ag110 Al27 Au198 Cd115 Ce141 60 Co Cr51 Cu64 Fe59 Ga72 Ge71 In114 SYSTEMS * Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 99.999 99.999 371–655 450–650 423–609 441–631 27.83 34.0 27.0 29.7 0.118 1.71 0.077 1.04 P S S S 99.995 99.999 99.999 99.999 450–630 369–655 422–654 433–652 26.60 27.79 41.74 32.27 1.9 x 10–6 0.131 464 0.647 S S S P 99.99 99.999 99.999 99.99 550–636 406–652 401–653 400–600 46.0 29.24 28.98 27.6 135 0.49 0.481 0.123 Crystalline Form Purity (%) S S S S 99.999 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) Table 84. DIFFUSION IN METALLIC (SHEET 2 OF 34) SYSTEMS * Crystalline Form Purity (%) Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o Nb 99.995 99.99 99.995 99.95 500–630 450–650 400–630 350–480 27.0 28.8 13.1 19.65 1.4 x 10–6 0.22 95 P P P P Nd147 Ni63 Pd103 Pr142 P P P P 99.995 99.99 99.995 99.995 450–630 360–630 400–630 520–630 25.0 15.7 20.2 23.87 Sb124 Sm153 P P P P 448–620 450–630 400–600 400–630 29.1 22.88 28.5 19.6 Metal Tracer Aluminum (con’t) La140 Mn54 Mo99 113 Sn V48 99.995 99.995 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 1.04 x 10–9 1.66 x 10–7 4.8 x 10–7 2.9 x 10–8 1.92 x 10–7 3.58 x 10–7 0.09 3.45 x 10–7 0.245 6.05 x 10–8 Table 84. DIFFUSION IN METALLIC (SHEET 3 OF 34) SYSTEMS * Activation energy, Q (kcal • mol–1) Frequency factor, D o Metal Tracer Crystalline Form Purity (%) Temperature Range (˚C) Aluminum (con’t) Zn65 S 99.999 357–653 28.86 0.259 Beryllium Ag110 S⊥c 99.75 650–900 43.2 1.76 Ag110 S||c S⊥c 99.75 99.75 650–900 565–1065 39.3 37.6 0.43 0.52 S||c S P 99.75 99.75 565–1065 700–1076 800–1250 39.4 51.6 58.0 0.62 0.67 0.2 S S S 99.99 99.95 99.99 180–300 110–283 180–300 25.4 19.3 19.0 2.21 0.14 0.0016 Be7 Be7 Fe59 Ni63 Cadmium Ag110 Cd115 Zn65 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) Table 84. DIFFUSION IN METALLIC (SHEET 4 OF 34) Metal Tracer Calcium C14 Ca45 Fe59 Purity (%) Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 99.95 99.95 99.95 99.95 99.95 550–800 500–800 500–800 550–800 500–700 29.8 38.5 23.3 28.9 34.8 3.2 x 10–5 8.3 ⊥c ||c 750–1050 2000–2200 540–920 750–1060 64.3 163 47.2 53.3 9280 5 102 2.2 ⊥c ||c ⊥c ||c 1400–2200 1800–2200 140~2200 1400 1820 145.4 114.7 115.0 129.5 1.33 x 10–5 2.48 6760 385 Crystalline Form 63 Ni U235 Carbon Ag110 C14 Ni63 Ni 63 Th228 228 Th U232 U232 SYSTEMS * ⊥c Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 2.7 x 10–3 1.0 x 10–6 l.l x 10–5 Table 84. DIFFUSION IN METALLIC (SHEET 5 OF 34) Metal Tracer Chromium C14 Cr51 Fe59 Mo99 Cobalt C14 Co60 Fe59 Ni63 S35 Copper Ag110 76 As Au193 Cd115 Crystalline Form P P P P P P P P P S, P P S, P S SYSTEMS * Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 120–1500 1030–1545 980–1420 1100–1420 26.5 73.7 79.3 58.0 9.0 x 10–3 0.2 0.47 99.99 600–1400 1100–1405 1104–1303 1192–1297 1150–1250 34.0 67.7 62.7 60.2 5.4 0.21 0.83 0.21 0.10 1.3 99.98 580–980 810–1075 400–1050 725–950 46.5 42.13 42.6 45.7 0.61 0.20 0.03 0.935 Purity (%) 99.98 99.8 99.82 99.9 99.9 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 2.7 x 10–3 Table 84. DIFFUSION IN METALLIC (SHEET 6 OF 34) Metal Tracer Copper (Con’t) Ce141 Cr51 Co60 Cu67 Eu152 59 Fe Ga72 Ge68 Hg203 Lu177 54 Mn Nb95 Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 766–947 800–1070 701–1077 698–1061 27.6 53.5 54.1 50.5 2.17 x 10–3 1.02 1.93 0.78 99.998 750–970 460–1070 _ 653–1015 26.85 52.0 45.90 44.76 1.17 x 10–7 1.36 0.55 0.397 44.0 26.15 91.4 60.06 0.35 99.999 99.99 99.999 _ 857–1010 754–950 807–906 Crystalline Form Purity (%) P S, P S S 99.999 P S. P 99.999 S P P S P SYSTEMS * 99.998 99.999 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 4.3 x 10–9 107 2.04 Table 84. DIFFUSION IN METALLIC (SHEET 7 OF 34) Metal Tracer Copper (Con’t) Ni63 Pd102 Pm147 195 Pt S35 124 Sb Sn113 Tb160 Tl204 Tm170 Zn65 Crystalline Form P S P P Purity (%) 99.999 99.999 SYSTEMS * Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 620–1080 807–1056 720–955 843–997 53.8 54.37 27.5 37.5 1.1 1.71 49.2 42.0 45.0 27.45 8.96 x 10–9 43.3 24.15 47.50 7.28 x 10–9 0.73 S S P P 99.999 99.999 99.999 800–1000 600–1000 680–910 770–980 S P P 99.999 99.999 99.999 785–996 705–950 890–1000 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 3.62 x 10–8 4.8 x 10–4 23 0.34 0.11 0.71 Table 84. DIFFUSION IN METALLIC (SHEET 8 OF 34) Metal Tracer Germanium Cd115 Fe59 Ge71 In114 Sb124 125 Te Tl204 Gold Ag110 198 Au Co60 Fe59 SYSTEMS * Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o S S S S 750–950 775–930 766–928 600–920 102.0 24.8 68.5 39.9 1.75 x 109 0.13 7.8 S S S 720–900 770–900 800–930 50.2 56.0 78.4 0.22 2.0 1700 699–1007 850–1050 702–948 701–948 40.2 42.26 41.6 41.6 0.072 0.107 0.068 0.082 Crystalline Form S S P P Purity (%) 99.99 99.97 99.93 99.93 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 2.9 x 10–4 Table 84. DIFFUSION IN METALLIC (SHEET 9 OF 34) SYSTEMS * Activation energy, Q (kcal • mol–1) Frequency factor, D o Metal Tracer Crystalline Form Purity (%) Temperature Range (˚C) Gold (Con’t) Hg203 Ni63 Pt195 S P P, S 99.994 99.96 99.98 600–1027 880–940 800–1060 37.38 46.0 60.9 0.116 0.30 7.6 β–Hafnium Hf181 P 97.9 1795–1995 38.7 1.2 x10–3 Indium Ag110 Ag110 Au198 S⊥c S||c S 99.99 99.99 99.99 25–140 25–140 25–140 12.8 11.5 6.7 0.52 0.11 9 x 10–3 In114 S⊥c S||c S 99.99 99.99 99.99 44–144 44–144 49–157 18.7 18.7 15.5 3.7 2.7 0.049 114 In Tl204 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) Table 84. DIFFUSION IN METALLIC (SHEET 10 OF 34) Metal Tracer α-Iron Ag110 Au198 C14 Co60 Cr51 64 Cu Fe55 K42 Mn54 Mo99 Ni63 P32 SYSTEMS * Crystalline Form Purity (%) Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o P P P P 99.999 99.98 99.995 748–888 800–900 616–844 638–768 69.0 62.4 29.3 62.2 1950 31 2.2 7.19 P P P P 99.95 99.9 99.92 99.92 775–875 800 1050 809–889 500–800 57.5 57.0 60.3 42.3 2.53 0.57 5.4 0.036 P P P P 99.97 800–900 750–875 680–800 860–900 52.5 73.0 56.0 55.0 0.35 7800 1.3 2.9 99.97 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) Table 84. DIFFUSION IN METALLIC (SHEET 11 OF 34) Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 800–900 755–875 755–875 66.6 55.4 55.1 1100 1.43 0.29 Metal Tracer Crystalline Form α-Iron (Con’t) Sb124 V48 W185 P P P γ-Iron Be7 C14 P P P P 99.9 99.34 99.98 99.99 1100–1350 800–1400 1138–1340 950–1400 57.6 34.0 72.9 69.7 0.1 0.15 1.25 10.8 P P P P 99.98 99.99 99.97 99.97 1171–1361 1110–1360 920–1280 930–2050 67.86 97.3 62.5 67.0 0.49 3600 0.16 0.77 Co60 Cr51 Fe59 181 Hf Mn54 Ni63 Purity (%) SYSTEMS * Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) Table 84. DIFFUSION IN METALLIC (SHEET 12 OF 34) Metal γ-Iron (Con’t) δ-Iron Purity (%) Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o Tracer Crystalline Form P32 P 99.99 950–1200 43.7 0.01 35 S V48 W185 P P P 99.99 99.5 900–1250 1120–1380 1050–1250 53.0 69.3 90.0 1.7 0.28 1000 Co60 Fe59 P P P 99.995 99.95 99.99 1428–1521 1428–1492 1370–1460 61.4 57.5 55.0 6.38 2.01 2.9 P P 99.97 99.97 600–800 690–850 45.1 18.1 2.2 x 10–2 P S S 99.9 99.999 99.999 200–310 190–320 150–320 14.4 10.0 21.23 P32 Lanthanum Au198 La140 Lead SYSTEMS * Ag110 Au198 115 Cd Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 1.5 0.064 8.7 x 10–3 0.409 Table 84. DIFFUSION IN METALLIC (SHEET 13 OF 34) SYSTEMS * Purity (%) Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 14.44 25.52 24.33 0.046 0.887 0.511 0.37 0.21 Metal Tracer Crystalline Form Lead (Con’t) Cu64 Pb204 Tl205 S S P 99.999 99.999 150–320 150–320 207–322 Ag110 Au195 Bi P P P P 92.5 92.5 99.95 92.5 65–161 47–153 141–177 80–174 12.83 10.49 47.3 16.05 5.3 x 1013 2.35 P P P P 99.98 99.98 99.98 92.5 51–120 58–173 58–173 80–175 9.22 12.9 14.18 15.87 0.47 0.21 1.04 0.39 Lithium Cd115 Cu64 72 Ga Hg203 In114 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) Table 84. DIFFUSION IN METALLIC (SHEET 14 OF 34) Metal Tracer Lithium (Con’t) Li6 Na22 Pb204 Sb124 Sn113 65 Zn Magnesium Ag110 Fe59 In114 Mg28 SYSTEMS * Crystalline Form Purity (%) Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o P P P P 99.98 92.5 99.95 99.95 35–178 52–176 129–169 141–176 12.60 12.61 25.2 41.5 0.14 0.41 160 1.6 x 1010 P P 99.95 92.5 108–174 60–175 15.0 12.98 0.62 0.57 P P P S⊥c 99.9 99.95 99.9 476–621 400–600 472–610 467–635 28.50 21.2 28.4 32.5 4 x 10–6 5.2 x 10–2 1.5 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 0.34 Table 84. DIFFUSION IN METALLIC (SHEET 15 OF 34) Metal Tracer Magnesium (Con’t) Mg28 Ni63 U235 Zn65 Molybdenum C14 60 Co Cr51 Cs134 K42 Mo99 Na24 Nb95 Crystalline Form S||c P P P P P P S S P S P SYSTEMS * Purity (%) Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 32.2 22.9 27.4 28.6 1.0 99.95 99.95 99.9 467–635 400 600 500–620 467–620 41.0 106.7 54.0 28.0 2.04 x 10–2 18 2.5 x 10–4 99.99 1200–1600 1850–2350 1000–1500 1000–1470 25.04 96.9 21.25 108.1 5.5 x 10–9 0.5 99.98 800–1100 1850–2350 800–1100 1850–2350 99.98 99.98 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 1.2 x 10–5 1.6 x 10–5 0.41 8.7 x 10–11 2.95 x 10–9 14 Table 84. DIFFUSION IN METALLIC (SHEET 16 OF 34) Activation energy, Q (kcal • mol–1) Frequency factor, D o 2000–2200 1700–2100 2220–2470 1700–2150 80.5 94.7 101.0 83.0 0.19 0.097 320 3.5 x 10–4 99.98 99.98 1500–2000 1700–2260 76.4 110 7.6 x 10–3 1.7 99.999 99.9 99.86 99.97 700–1075 1020–1400 600–1400 1149–1390 55.0 46.2 34.0 65.9 0.02 0.019 0.012 1.39 Purity (%) 99.97 Ta182 P P S P U235 Wl85 P P Au198 S,P P P P Tracer Molybdenum (Con’t) P32 Re186 S35 Nickel Temperature Range (˚C) Crystalline Form Metal Be7 Cl4 Co60 SYSTEMS * 99.97 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) Table 84. DIFFUSION IN METALLIC (SHEET 17 OF 34) SYSTEMS * Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 1100–1270 1050–1360 1020–1263 900–1200 65.1 61.7 58.6 51.0 1.1 0.57 0.074 68.0 51.0 27.0 58.0 1.8 x 10–5 0.83 66.5 71.5 0.87 2.0 Crystalline Form Purity (%) P P P P 99.95 99.95 99.95 Sn113 P P P P 99.97 99.8 1042–1404 1025–1125 1020–1220 700–1350 V48 W185 P P 99.99 99.95 800–1300 1100–1300 Metal Tracer Nickel (Con’t) Cr51 Cu64 Fe59 Mo99 Ni63 Pu238 Sb124 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 1.6 x 10–3 1.9 0.5 Table 84. DIFFUSION IN METALLIC (SHEET 18 OF 34) Metal Tracer Niobium C14 Co60 Cr51 Fe51 K42 95 Nb P32 S35 Sn113 Ta182 Crystalline Form P P S P S P, S P S P P, S SYSTEMS * Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 99.85 800–1250 1500–2100 943–1435 1400–2100 32.0 70.5 83.5 77.7 1.09 x 10–5 0.74 0.30 1.5 99.99 99.0 99.9 99.85 99.997 900–1100 878–2395 1300–1800 1100–1500 1850–2400 878–2395 22.10 96.0 51.5 73.1 78.9 99.3 2.38 x 10–7 1.1 Purity (%) 99.85 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 5.1 x 10–2 2600 0.14 1.0 Table 84. DIFFUSION IN METALLIC (SHEET 19 OF 34) Purity (%) SYSTEMS * Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 994–1492 86.9 0.099 Metal Tracer Crystalline Form Niobium (Cont) Ti44 S U235 V48 W185 P S P 99.55 99.99 99.8 1500–2000 1000–1400 1800–2200 76.8 85.0 91.7 8.9 x10–3 2.21 Palladium Pd103 S 99.999 1060–1500 63.6 0.205 Phosphorus P32 P 0–44 9.4 1.07 x 10–3 Platinum Co60 Cu64 Pt195 P P P 900–1050 1098–1375 1325–1600 74.2 59.5 68.2 19.6 0.074 0.33 99.99 99.99 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 5 x 10–4 Table 84. DIFFUSION IN METALLIC (SHEET 20 OF 34) SYSTEMS * Crystalline Form Purity (%) Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o Rb86 P S P P 99.95 99.7 99.7 99.95 5.6–52.5 –52–61 0–62 0.1–59.9 3.23 9.36 7.45 8.78 1.29 x10–3 0.16 0.058 0.090 γ–Plutonium Pu238 P 190–310 16.7 2.1 x 10–5 δ–Plutonium Pu238 P 350–440 23.8 4.5 x 10–3 ε-Plutonium Pu238 P 500–612 18.5 2.0 x 10–2 α-Praseodymium Ag110 Au195 Co60 Zn65 P P P P 610–730 650–780 660–780 766–603 25.4 19.7 16.4 24.8 0.14 Metal Tracer Potassium Au198 K42 Na22 99.93 99.93 99.93 99.96 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 4.3 x 10–2 4.7 x 10–2 0.18 Table 84. DIFFUSION IN METALLIC (SHEET 21 OF 34) Metal Tracer β-Praseodymium Ag110 Au195 Ho166 In114 La140 Pr142 Zn65 Selenium Fe59 Activation energy, Q (kcal • mol–1) Frequency factor, D o Crystalline Form Purity (%) Temperature Range (˚C) P P P P 99.93 99.93 99.96 99.96 800–900 800–910 800–930 800–930 21.5 20.1 26.3 28.9 3.2 x 10–2 3.3 x 10–2 9.5 9.6 P P P 99.96 99.93 99.96 800–930 800–900 822–921 25.7 29.4 27.0 1.8 8.7 0.63 99.996 40–100 25–100 60–90 8.88 1.2 29.9 — — 1700 60–90 35–140 15.6 11.7 1100 Hg S35 P P S⊥c S35 Se75 S||c P 203 SYSTEMS * Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 1.4 x 10–4 Table 84. DIFFUSION IN METALLIC (SHEET 22 OF 34) Metal Tracer Silicon Au198 C14 Cu64 59 Fe Ni63 32 P Sb124 Si31 Silver Au198 Ag110 Cd115 Co60 SYSTEMS * Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o S P P S 700–1300 1070–1400 800–1100 1000–1200 47.0 67.2 23.0 20.0 2.75 x 10–3 0.33 P S S S 99.99999 450–800 1100–1250 1190–1398 1225–1400 97.5 41.5 91.7 110.0 1000 – 12.9 1800 P S S S 99.99 99.999 99.99 99.999 718–942 640–955 592–937 700–940 48.28 45.2 41.69 48.75 0.85 0.67 0.44 1.9 Crystalline Form Purity (%) Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 4 x 10–2 6.2 x 10–3 Table 84. DIFFUSION IN METALLIC (SHEET 23 OF 34) Metal Tracer Silver (Con’t) Cu64 Fe59 Ge77 Hg203 In114 Ni63 Pb210 Pd102 Ru103 S35 Sb124 Sn113 SYSTEMS * Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 717–945 720–930 640–870 653–948 46.1 49.04 36.5 38.1 1.23 2.42 0.084 0.079 40.80 54.8 38.1 56.75 0.41 21.9 0.22 9.56 65.8 40.0 39.07 39.30 180 1.65 0.234 0.255 Crystalline Form Purity (%) P S P P 99.99 99.99 S S P S 99.99 99.99 99.999 592–937 749–950 700–865 736–939 S S P S 99.99 99.999 99.999 99.99 793–945 600–900 780–950 592–937 99.99 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) Table 84. DIFFUSION IN METALLIC (SHEET 24 OF 34) SYSTEMS * Purity (%) Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 38.90 37.9 41.7 0.47 0.15 0.54 Metal Tracer Crystalline Form Silver (Con’t) Te125 Tl204 Zn65 P P S 99.99 770–940 640–870 640–925 Au198 K42 P P P P 99.99 99.99 99.99 99.99 1.0–77 0–91 0–98 0–85 2.21 8.43 10.09 8.49 3.34 x l0–4 0.08 0.145 0.15 1450–2200 930–1240 1750–2220 40.3 71.4 81.0 1.2 x 10–2 0.505 921–2484 1970–2110 1250–2200 98.7 70.0 98.7 0.23 100 1.24 Sodium Na22 Rb86 Tantalum C14 Fe59 Mo99 P P P Nb95 S35 Ta182 P, S P P, S 99.996 99.0 99.996 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 1.8 x 10–3 Table 84. DIFFUSION IN METALLIC (SHEET 25 OF 34) Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 270–440 320–440 360–430 18.7 28.6 41.0 3.14 x 10–5 2.6 x 10–2 320 Metal Tracer Crystalline Form Tellurium Hg203 Se75 Tl204 P P P Te127 Te127 S⊥c S||c 99.9999 99.9999 300–400 300–400 46.7 35.5 3.91 x 104 130 Ag110 Ag110 Au198 P⊥c P||c P⊥c 99.999 99.999 99.999 80–250 80–250 110–260 11.8 11.2 2.8 3.8 x 10–2 2.7 x 10–2 Au198 Tl204 P||c S⊥c S||c 99.999 99.9 99.9 110–260 135–230 135–230 5.2 22.6 22.9 5.3 x 10–4 0.4 0.4 α-Thallium Tl204 Purity (%) SYSTEMS * Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 2.0 x 10–5 Table 84. DIFFUSION IN METALLIC (SHEET 26 OF 34) SYSTEMS * Purity (%) Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o Metal Tracer Crystalline Form β-Thallium Ag110 Au198 Tl204 P P S 99.999 99.999 99.9 230–310 230–310 230–280 11.9 6.0 20.7 4.2 x 10–2 5.2 x 10–4 0.7 α-Thorium Pa231 Th228 P P P 99.85 99.85 99.85 770–910 720–880 700–880 74.7 716 79.3 126 395 2210 135–225 135–225 135–225 135–225 18.4 12.3 17.7 11.0 7.1 x 10–3 0.16 140–217 181–221 22.0 25.8 5.5 34.1 U233 Tin Ag110 Au198 Au198 S⊥c S||c S⊥c S||c Co60 In114 S,P S⊥c Ag110 99.998 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 0.18 5.8 x 10–3 Table 84. DIFFUSION IN METALLIC (SHEET 27 OF 34) SYSTEMS * Activation energy, Q (kcal • mol–1) Frequency factor, D o 12.2 10.7 7.7 Crystalline Form Purity (%) Temperature Range (˚C) Tl204 S||c S⊥c S||c P 99.998 99.999 99.999 99.999 181–221 160–226 160–226 137–216 25.6 25.1 25.6 14.7 1.2 x 10–3 α-Titanium Ti44 P 99.99 700–850 35.9 8.6 x 10–6 β-Titanium Ag110 Be7 C14 99.95 99.96 99.62 99.7 940 1570 915–1300 1100–1600 950–1600 43.2 40.2 20.0 35.1 3 x 10–3 0.8 51 P P P P Co60 Fe59 Mo99 Mn54 P P P P 99.7 99.7 99.7 99.7 900–1600 900–1600 900–1600 900–1600 30.6 31.6 43.0 33.7 Metal Tracer Tin (Con’t) In114 Sn113 Sn113 Cr Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 3.02 x 10–3 5 x 10–3 1.2 x 10–2 7.8 x 10–3 8.0 x 10–3 6.1 x 10–3 Table 84. DIFFUSION IN METALLIC (SHEET 28 OF 34) SYSTEMS * Purity (%) Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 5.0 x 10–3 9.2 x 10–3 Metal Tracer Crystalline Form β-Titanium (Con’t) Nb95 Ni63 P32 Sc46 P P P P 99.7 99.7 99.7 99.95 1000–1600 925–1600 950–1600 940–1590 39.3 29.6 24.1 32.4 3.62x10–3 4.0 x 10–3 Sn113 Ti44 U235 P P P 99.7 99.95 99.9 950–1600 900–1540 900–400 31.6 31.2 29.3 3.8 x 10–4 3.58 x 10–4 5.1 x 10–4 V48 W185 Zr95 P P P 99.95 99.94 98.94 900–1545 900–1250 920–1500 32.2 43.9 35.4 3.1 x 10–4 3.6 x 10–3 4.7 x 10–3 C14 Fe59 Mo99 P P P 99.51 1200–1600 940–1240 1700–2100 53.5 66.0 101.0 8.91 x 10–3 1.4 x 10–2 0.3 Tungsten Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) Table 84. DIFFUSION IN METALLIC (SHEET 29 OF 34) SYSTEMS * Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 1305–2367 2100–2400 1305–2375 1800–2403 137.6 141.0 139.9 140.3 3.01 19.5 3.05 1.88 580–650 40.0 2 x 10–3 Crystalline Form Purity (%) 99.99 185 W P S P P α–Uranium U234 P β–Uranium Co60 U235 P P 99.999 692–763 690–750 27.45 44.2 1.5 x 10–2 2.8 x10–3 γ-Uranium Au195 Co60 Cr51 Cu64 P P P P 99.99 99.99 99.99 99.99 785–1007 783–989 797–1037 787–1039 30.4 12.57 24.46 24.06 4.86 x 10–3 3.51 x 10–4 5.37 X 10–3 1.96 x 10–3 Metal Tracer Tungsten (Con’t) Nb95 Re186 Ta182 99.99 99.99 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) Table 84. DIFFUSION IN METALLIC (SHEET 30 OF 34) SYSTEMS * Purity (%) Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o Metal Tracer Crystalline Form γ-Uranium (Con’t) Fe55 Mn54 Nb95 Ni63 P P P P 99.99 99.99 99.99 99.99 787–990 787–939 791–1102 787–1039 12.0 13.88 39.65 15.66 2.69 x 10–4 1.81 x 10–4 U233 Zr95 P P 99.99 800–1070 800–1000 28.5 16.5 2.33 x 10–3 3.9 x 10–4 C14 99.7 99.8 99.8 845–1130 960–1200 960–1350 1200–1450 27.3 64.6 71.0 49.8 4.9 x 10–3 Fe59 P32 P P P P 2.45 x l0–2 S35 V48 V48 P S,P S,P 99.8 99.99 99.99 1320–1520 880–1360 1360–1830 34.0 73.65 94.14 3.1 x l0–2 0.36 214.0 Vanadium Cr51 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 4.87 x 10–2 5.36 x10–4 9.54 x10–3 0.373 Table 84. DIFFUSION IN METALLIC (SHEET 31 OF 34) Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 900–1300 900–1300 67.1 60.3 5.2 0.82 Metal Tracer Crystalline Form Yttrium Y90 Y90 S⊥c S||c Zinc Ag110 S⊥c S||c S⊥c S||c 99.999 99.999 99.999 99.999 271–413 271–413 315–415 315–415 27.6 26.0 29.72 29.73 0.45 0.32 0.29 0.97 S⊥c S||c S⊥c S||c 99.999 99.999 99.999 99.999 225–416 225–416 338–415 338–415 20.12 20.54 ~20 29.53 0.117 0.114 ~2 2.22 110 Ag Au198 Au198 Cd115 Cd115 Cu64 Cu64 Purity (%) SYSTEMS * Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) Table 84. DIFFUSION IN METALLIC (SHEET 32 OF 34) SYSTEMS * Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o S⊥c S||c S⊥c S||c 240–403 240 403 260–413 260–413 18.15 18.4 20.18 19.70 0.018 0.016 0.073 0.056 In Sn113 Sn113 S⊥c S||c S⊥c S||c 271–413 271–413 298–400 298–400 19.60 19.10 18.4 19.4 0.14 0.062 0.13 0.15 Zn65 Zn65 S⊥c S||c 240–418 240–418 23.0 21.9 0.18 0.13 Metal Tracer Zinc (Con’t) Ga72 Ga72 Hg203 Hg203 In114 114 Crystalline Form Purity (%) 99.999 99.999 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) Table 84. DIFFUSION IN METALLIC (SHEET 33 OF 34) Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 18.0 48.0 24.76 31.5 1.19 x 10–8 2.5 x 10–2 99.99 700–850 750–840 600–850 740–857 99.6 99.99 99.95 300–700 700–800 600–850 750–850 22.0 70.0 22.9 45.5 1.0 x 10–8 100 915–1300 1100–1600 880–1600 920–1600 31.1 34.2 41.4 21.82 Metal Tracer Crystalline Form Purity (%) α-Zirconium Cr51 Fe55 Mo99 Nb95 P P P P 99.9 Sn113 Ta182 V48 Zr95 P P P P Be7 C14 Ce141 Co60 P P P P β–Zirconium SYSTEMS * 99.7 96.6 99.99 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 6.22 x 10–8 6.6 x 10–6 1.12 x 10–8 5.6 x 10–4 8.33 x 10–2 3.57 x 10–2 3.16 3.26 x 10–3 Table 84. DIFFUSION IN METALLIC (SHEET 34 OF 34) Metal Tracer Crystalline Form β–Zirconium (Con’t) Cr51 Fe55 Mo99 Nb95 P P P P 99.9 P32 P P P P 99.94 P P P P 99.99 99.99 99.7 113 Sn Ta182 U235 V48 V48 W185 Zr95 Purity (%) 99.6 SYSTEMS * Temperature Range (˚C) Activation energy, Q (kcal • mol–1) Frequency factor, D o 700–850 750–840 900–1635 1230–1635 18.0 48.0 35.2 36.6 1.19 x 10–8 2.5 x 10–2 950–1200 300–700 900–1200 900–1065 33.3 22.0 27.0 30.5 0.33 870–1200 1200–1400 900–1250 1100–1500 45.8 57.7 55.8 30.1 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC (cm2 • s–1) 1.99 x 10–6 7.8 x 10–4 1 x 10–8 5.5 x 10–5 5.7 x 10–4 7.59 x 10–3 0.32 0.41 2.4 x 10–4 * The diffusion coefficient DT at a temperature T(K) is given by the following: DT =Do e–Q/RT For activation energy in KJ/mol, multiply values in Kcal/mol by 4.184. For frequency factor in m2/s, multiply values in cm2/s by 10–4. Abbreviations: P= polycrystalline S = single crystal ⊥ c = perpendicular to c direction || c = parallel to c direction ©2001 CRC Press LLC 6.7 Thermodynamics Page 351 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 85. DIFFUSION OF METALS INTO (SHEET 1 OF 11) METALS Diffusion Temperature (˚C) Coefficient (cm2 • hr–1) Al 466 500 573 6.84–8.1 x10–7 7.2–3.96 x 10–8 1.26 x 10–5 Pb 220 250 285 5.40 x 10–5 Sn 500 1.73 x 10–1 Al Cu 500 850 6.12 x 10–9 7.92 x 10–6 As Si Au Ag Diffusing Metal Matrix Metal Ag 1.08 x 10–4 3.29 x 10–4 0.32 e–82,000⁄RT 456 491 585 601 1.76 x 10–9 0.92–2.38 x 10–13 3.6 x 10–8 3.96 x 10–8 624 717 729 767 2.5–5 x 10–11 1.04–2.25 x 10–9 1.76 x 10–9 1.15 x 10–6 For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55. ©2001 CRC Press LLC Shackelford & Alexander 351 6.7 Thermodynamics Page 352 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 85. DIFFUSION OF METALS INTO (SHEET 2 OF 11) Diffusing Metal Au (Con’t) Diffusion Temperature (˚C) Coefficient (cm2 • hr–1) 847 858 861 874 2.30 x 10–6 3.63 x 10–8 3.92 x 10–8 3.92 x 10–8 916 1040 1120 1189 5.40 x 10–6 1.17 x 10–6 2.29 x 10–5 5.42 x 10–6 800 900 1020 1.17 x 10–8 Bi Cu Hg 500 970 11 1.88 x 10–1 5.04 x 10–6 3 x10–2 Pb 100 150 200 240 8.28 x 10–8 1.80 x 10–4 3.10 x 10–4 1.58 x 10–3 300 500 5.40 x 10–3 Matrix Metal Ag (Con’t) Au Sn B METALS Si 500 9 x 10–8 5.4 x 10–7 1.33 x 10–1 0.001e–25,000⁄RT 1.94 x 10–1 10.5 e–85,000⁄RT For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55. ©2001 CRC Press LLC 352 CRC Handbook of Materials Science & Engineering 6.7 Thermodynamics Page 353 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 85. DIFFUSION OF METALS INTO (SHEET 3 OF 11) METALS Diffusing Metal Matrix Metal Diffusion Temperature (˚C) Coefficient (cm2 • hr–1) Ba Hg 7.8 2.17 x 10–2 Bi Si Pb 220 250 285 1030e–107,000⁄RT 1.73 x 10–7 1.33 x 10–6 1.58 x 10–6 C W Fe 1700 930 1.87 x 10–3 7.51–9.18 x 10–9 Ca Hg 10.2 2.25 x 10–2 Cd Ag 650 800 900 9.36 x 10–7 8.7 15 20 99.1 6.05 x 10–2 6.51 x 10–2 5.47 x 10–2 Pb 200 252 4.59 x 10–7 3.10 x 10–6 Cd, 1 atom% Pb 167 1.66 x 10–7 Ce W 1727 3.42 x 10–6 Hg 4.68 x 10–6 2.23 x 10–5 1.23 x 10–1 For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55. ©2001 CRC Press LLC Shackelford & Alexander 353 6.7 Thermodynamics Page 354 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 85. DIFFUSION OF METALS INTO (SHEET 4 OF 11) METALS Diffusing Metal Matrix Metal Diffusion Temperature (˚C) Coefficient (cm2 • hr–1) Cs Hg 7.3 1.88 x 10–2 W 27 227 427 540 4.32 x 10–3 5.40 x 10–4 2.88 x 10–2 Al 440 457 540 565 1.8 x 10–7 2.88 x 10–7 5.04 x 10–6 4.68–5.00 x 10–4 Ag 650 760 895 1.04 x 10–6 1.30 x 10–6 3.38 x 10–6 Au 301 443 560 5.40 x 10–10 8.64 x 10–9 604 616 740 5.10 x 10–7 7.92 x 10–7 3.35 x 10–6 650 750 830 1.15 x 10–5 Cu Cu 1.44 x 10–1 3.38 x 10–7 2.34 x 10–8 1 .44 x 10–7 For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55. ©2001 CRC Press LLC 354 CRC Handbook of Materials Science & Engineering 6.7 Thermodynamics Page 355 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 85. DIFFUSION OF METALS INTO (SHEET 5 OF 11) Diffusion Temperature (˚C) Coefficient (cm2 • hr–1) Cu (Con’t) 850 950 1030 9.36 x 10–7 2.30 x 10–6 1.01 x 10–5 Ge 700–900 1.01± 0.1 x 10–1 Pt 1041 1213 1401 7.83–9 x 10–8 5.04 x 10–7 6.12 x 10–6 Au 753 1003 1.94 x 10–6 2.70 x 10–5 Diffusing Metal Matrix Metal Cu (Con’t) Fe METALS 0.0062 e–20,000⁄RT 3.6 e–81,000⁄RT Ga Si Ge Al 630 3.31 x 10–1 Au 529 563 1.84 x 10–1 2.80 x 10–1 Ge 766–928 1060–1200•K 7.8 e–68,509⁄RT 87 e–73,000⁄RT Cd 156 176 202 9.36 x 10–7 2.55 x 10–6 9 x 10–6 Pb 177 197 8.34 x 10–8 2.09 x 10–5 Hg For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55. ©2001 CRC Press LLC Shackelford & Alexander 355 6.7 Thermodynamics Page 356 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 85. DIFFUSION OF METALS INTO (SHEET 6 OF 11) Diffusion Temperature (˚C) METALS Coefficient (cm2 • hr–1) Diffusing Metal Matrix Metal In Ag 650 800 895 1.04 x 10–6 6.84 x 10–6 4.68 x 10–5 16.5 e–90,000⁄RT K Hg 10.5 2.21 x 10–2 W 207 317 507 2.05 x 10–2 3.6 x 10–1 1.1 x 10+1 Li Hg 8.2 2.75 x 10–2 Mg Al 365 3.96 x 10–8 395 420 440 1.98–2.41 x 10–7 2.38–2.74 x 10–7 1.19 x 10–7 447 450 500 577 9.36 x 10–7 6.84 x 10–6 3.96–7.56 x 10–6 1.58 x 10–5 Pb 220 4.32 x 10–7 Cu 400 850 7.2 x 10–10 Mn 4.68 x 10–7 For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55. ©2001 CRC Press LLC 356 CRC Handbook of Materials Science & Engineering 6.7 Thermodynamics Page 357 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 85. DIFFUSION OF METALS INTO (SHEET 7 OF 11) METALS Diffusion Temperature (˚C) Coefficient (cm2 • hr–1) W 1533 1770 2010 2260 9.36 x 10–10 4.32 x 10–9 7.92 x 10–8 2.81 x 10–7 Na W 20 227 417 527 2.88 x 10–2 1.80 9.72 1.19 x 10–1 Ni Au 800 1003 2.77 x 10–6 2.48 x 10–5 Cu 550 950 320 2.56 x 10–9 Pt 1043 1241 1401 1.81 x 10–8 1.73 x 10–6 5.40 x 10–6 Ni, 1 atom % Pb 285 8.34 x 10–7 Ni, 3 atom% Pb 252 1.25 x 10–7 Pb Cd 252 2.88 x 10–8 Pb 250 285 5.42 x 10–8 2.92 x 10–7 Sn 500 1.33 x 10–1 Diffusing Metal Matrix Metal Mo 7.56 x 10–7 1.26 x 10–6 For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55. ©2001 CRC Press LLC Shackelford & Alexander 357 6.7 Thermodynamics Page 358 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 85. DIFFUSION OF METALS INTO (SHEET 8 OF 11) Diffusion Temperature (˚C) Coefficient (cm2 • hr–1) Hg 9.4 15.6 99.2 6.46 x 10–9 5.71 x 10–2 8 x 10–2 Ag 444 571 642 917 4.68 x 10–9 1.33 x 10–7 4.32 x 10–7 4.32 x 10–6 Au 727 970 2.09 x 10–8 1.15 x 10–6 Cu 490 950 3.24 x 10–9 9.0–10.44 x 10–7 Au 470 4.59 x 10–11 Al 20 500 1.08 x 10–9 1.80 x 10–7 Bi 150 200 1.80 x 10–7 1.80 x 10–6 Pb 150 200 310 4.59 x 10–11 4.59 x 10–9 5.41 x 10–7 Au 740 986 1.69 x 10–8 6.12–10.08 x 10–7 Diffusing Metal Matrix Metal Pb, 2 atom % Pd Po Pt METALS For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55. ©2001 CRC Press LLC 358 CRC Handbook of Materials Science & Engineering 6.7 Thermodynamics Page 359 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 85. DIFFUSION OF METALS INTO (SHEET 9 OF 11) METALS Diffusion Temperature (˚C) Coefficient (cm2 • hr–1) Cu 490 960 2.01 x 10–9 3.96–8.28 x 10–7 Pb 490 7.04 x 10–2 Au 470 1.42 x 10–8 Pt 470 3.42 x 10–8 Ra(β+γ) Ag 470 1.57 x 10–8 Rb Hg 7.3 1.92 x 10–9 Rh Pb 500 1.27 x 10–1 Sb Ag 650 760 895 1.37 x 10–6 5.40 x 10–6 Diffusing Metal Matrix Metal Pt (Con’t) Ra Si Sn 1.55 x 10–5 5.6 e–91,000⁄RT 465 510 600 1.22 x 10–6 7.2 x 10–6 3.35 x 10–5 667 697 1.44 x 10–1 3.13 x 10–1 Fe+C* 1400–1600 3.24–5.4 x 10–2 Ag 650 895 2.23 x 10–6 2.63 x 10–6 Al For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55. ©2001 CRC Press LLC Shackelford & Alexander 359 6.7 Thermodynamics Page 360 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 85. DIFFUSION OF METALS INTO (SHEET 10 OF 11) METALS Diffusion Temperature (˚C) Coefficient (cm2 • hr–1) Cu 400 650 850 1.69 x 10–9 2.48 x 10–7 1.40 x 10–5 Hg 10.7 6.38 x 10–2 Pb 245 250 285 1.12 x 10–7 1.83 x 10–7 5.76 x 10–7 Sr Hg 9.4 1.96 x 10–2 Th Mo 1615 2000 1.30 x 10–6 Tl 285 8.76 x 10–7 W 1782 2027 2127 2227 3.96 x 10–7 4.03 x 10–6 1 .29 x 10–5 165 2.54 x 10–12 260 324 2.54 x 10–8 5.84 x 10–6 11.5 3.63 x 10–2 Diffusing Metal Matrix Metal Sn (Con’t) Th (β) Tl Pb Hg 3.60 x 10–3 2.45 x 10–5 For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55. ©2001 CRC Press LLC 360 CRC Handbook of Materials Science & Engineering 6.7 Thermodynamics Page 361 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 85. DIFFUSION OF METALS INTO (SHEET 11 OF 11) Diffusing Metal Matrix Metal Tl (Con’t) Pb METALS Diffusion Temperature (˚C) Coefficient (cm2 • hr–1) 220 250 270 1.01 x 10–7 7.92 x 10–7 3.96 x 10–7 285 315 1.12 x 10–6 2.09 x 10–6 16.5 e–85,000⁄RT U W 1727 4.68 x 10–8 Y W 1727 6.55 x 10–5 Zn Ag 750 850 1.66 x 10–5 Al 415 473 500 555 9 x 10–7 1.91 x 10–6 7.2–13.68 x 10–6 1.8 x 10–5 Hg 11.5 15 99.2 9.09 x 10–2 8.72 x 10–2 1.20 x 10–1 Pb 285 5.84 W 1727 1.17 x 10–5 Zr 4.37 x 10–5 For diffusion coefficients in m2/s, multiply values in cm2/hr by 2.778 x 10–8. Source: data from Loebel, R., in Handbook of Chemistry and Physics, 51st ed., Weast, R. C., Ed., Chemical Rubber, Cleveland, 1970, F-55. * Saturated FeC Alloy. ©2001 CRC Press LLC Shackelford & Alexander 361 6.7 Thermodynamics Page 362 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 86. DIFFUSION IN SEMICONDUCTORS (SHEET 1 OF 8) Semiconductor Diffusing Element Aluminum antimonide (AlSb) Al Cu Sb Zn Cadmium selenide (CdSe) Do 2 (cm • s–1) ∆E (eV) * Temperature Range of Validity (˚C) ~1.8 –3 150–500 0.33±.15 0.36 ~1.5 1.93±0.04 Se 2.6x10–3 1.55 700–1800 Cadmium sulfide (CdS) Ag Cd Cu 2.5x10+1 3.4 1.5x10–3 1.2 2.0 0.76 250–500 750–1000 450–750 Cadmium telluride (CdTe) Au 6.7x10+1 2.0 600–1000 In 4.1x10–1 1.6 450–1000 Ca 30 3.7 Fe 0.4 3.1 α-Calcium metasilicate (CaSiO3) Ca 7.4x10+4 4.8 Gallium antimonide (GaSb) Ga 3.2x10+3 3.15 650–700 In 1.2x10–7 0.53 400–650 Sb 3.4x10+4 8.7x10+2 3.44 1.13 650–700 470–570 Sn 2.4x10–5 Te –4 0.80 1.2 320–570 400–650 Calcium ferrate (III) (CaFe2O4) 3.5x10 3.8x10 660–860 Source: from Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 251. ©2001 CRC Press LLC 362 CRC Handbook of Materials Science & Engineering 6.7 Thermodynamics Page 363 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 86. DIFFUSION IN SEMICONDUCTORS (SHEET 2 OF 8) Semiconductor Gallium arsenide (GaAs) Do * Temperature Range Diffusing Element (cm2 • s–1) ∆E (eV) Ag 2.5x10–3 1.5 4x10–4 0.8±0.05 500–1160 As 4x1021 Au 10–3 10.2±1.2 1.0±0.2 1200–1250 740–1024 Cd 0.05±0.04 b50x10–2 2.43±0.06 2.8a 868–1149 Cu Ga Li 0.03 1x10+7 0.53 0.52 5.60±0.32 1.0 100–600 1125–1250 250–400 Mg 1.4x10–4 2.3x10–2 1.89 2.6 740–1024 b –2 2.6x10 b6.5x10–1 8.5x10–3 S 1.2x10–4 b1.6x10–5 2.6x10–5 4x103 3x103 Se Sn b –2 3.8x10 6x10–4 of Validity (˚C) a 2.7 2.49a 1.7 740–1024 1.8 1.63a 1.86 4.04±0.15 4.16±0.16 2.7 2.5 1000–1200 1000–1200 1069–1215 Source: from Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 251. ©2001 CRC Press LLC Shackelford & Alexander 363 6.7 Thermodynamics Page 364 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 86. DIFFUSION IN SEMICONDUCTORS (SHEET 3 OF 8) Semiconductor Gallium arsenide (GaAs) (Con’t) Diffusing Element Zn Do (cm2 • s–1) b ∆E (eV) * Temperature Range of Validity (˚C) 2.5x10–1 3.0a 3.0x10–7 6.0x10–7 15±7 1.0 0.6 2.49±0.05 800 Gallium phosphide (GaP) Zn 1.0 2.1 700–1300 Germanium (Ge) Ag As Au B 4.4x10–2 6.3 2.2x10–2 1.0 2.4 2.5 4.6 700–900 600–850 Cu Fe 1.9x10–4 1.3x10–1 Ga Ge 4.0x10+1 8.7x10+1 0.18 1.1 3.1 3.2 600–850 750–850 600–850 750–920 He 6.1x10–3 750–850 600–850 200–600 700–875 1.6x10–9 600–850 In Li 3x10 1.3x10-4 Ni 8x10–1 0.69 2.4 0.47 0.9 P Pb Sb Sn 2.5 – 4.0 1.7x10–2 2.5 3.6 2.4 1.9 600–850 600–850 600–850 600–850 Zn 1.0x10+1 2.5 600–850 –2 Source: from Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 251. ©2001 CRC Press LLC 364 CRC Handbook of Materials Science & Engineering 6.7 Thermodynamics Page 365 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 86. DIFFUSION IN SEMICONDUCTORS (SHEET 4 OF 8) Semiconductor Indium antimonide (InSb) Do * Temperature Range Diffusing Element (cm2 • s–1) ∆E (eV) Ag 1.0x10–7 0.25 Au b 7x10–4 0.32a 140–510 b1.0x10–5 1.1a 0.52 1.75 1.2 250–500 442–519 Cd –9 1.23x10 1.26 1.3x10–4 Co 2.7x10–11 –7 Cu 10 3.0x10–5 b 0.39 0.25 0.37 9.0x10–4 1.08a of Validity (˚C) 360–500 440–510 10–7 0.25 b4.0x10–6 1.17a 0.05 1.8x10–9 1.81 0.28 450–500 Ni Sb 10–7 0.05 1.4x10–6 0.25 1.94 0.75 440–510 450–500 Sn Te Zn 5.5x10–8 0.5 1.6x10–6 5.5 0.75 0.57 1.35 2.3±0.3 1.6 390–512 300–500 360–500 360–500 360–500 1.7x10–7 5.3x10+7 0.85 2.61 390–512 Fe Hb In (Polycrystal) 1.7x10–7 b 440–510 Source: from Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 251. ©2001 CRC Press LLC Shackelford & Alexander 365 6.7 Thermodynamics Page 366 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 86. DIFFUSION IN SEMICONDUCTORS (SHEET 5 OF 8) Semiconductor Indium antimonide (InSb) (Con’t) Do Diffusing Element (cm2 • s–1) ∆E (eV) Zinc (con’t) (High concentration) 6.3x10+8 2.61 b * Temperature Range of Validity (˚C) 3.7x10–10 0.7a 9.0x10–10 ~0 1.4x10–7 0.86 390–512 Cd Cu 4.35x10–4 1.17 0.52a 600–900 Ge 3.74x10–6 Mg –6 1.98x10 1.17 1.17 600–900 600–900 S Se 6.78 12.55 2.20 2.20 600–900 600–900 Sn 1.49x10–6 Te Zn –5 3.43x10 3.11x10–3 1.17 1.28 1.17 600–900 600–900 600–900 In 1x10+5 3.85 850–1000 p 7x10+10 5.65 850–1000 Iron oxide (Fe3O4) Fe 5.2 2.4 Lead metasilicate (PbSiO3) Pb 85 2.6 Lead orthosilicate (PbSiO4) Pb 8.2 2.0 (Conc. = 2.2 x 1020 cm–3) (Single crystal) Indium arsenide (InAs) Indium phosphide (InP) Source: from Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 251. ©2001 CRC Press LLC 366 CRC Handbook of Materials Science & Engineering 6.7 Thermodynamics Page 367 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 86. DIFFUSION IN SEMICONDUCTORS (SHEET 6 OF 8) Do * Temperature Range Diffusing Element (cm2 • s–1) ∆E (eV) Mercury selenide (HgSe) Sb 6.3x10–5 0.85 Nickel aluminate (NiAl2O4) Cr 1.17x10–3 2.2 Fe 1.33 3.5 Cr 0.74 3.1 Cr Fe Ni 2.03x10–5 1.35x10–3 0.85 1.9 2.6 3.2 Fe 1.1x10–5 0.38 300–400 Ge 9.4x10–6 In –6 5.2x10 0.39 0.32 300–400 300–400 Sb 2.8x10–8 Se Sn –10 7.6x10 4.8x10–8 0.29 0.14 0.39 300–400 300–400 300–400 Te 5.4x10–6 Tl Zn –6 1.4x10 3.8x10–7 0.53 0.35 0.29 300–400 300–400 300–400 Al Ag 8.0 2x10–3 3.2x10–1 1.1x10–3 3.5 1.6 3.5 1.1 1100–1400 1100–1350 1100–1350 800–1200 Semiconductor Nickel chromate (III) (NiCr2O4) Selenium (Se) (amorphous) Silicon (Si) As Au of Validity (˚C) 540–630 Source: from Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 251. ©2001 CRC Press LLC Shackelford & Alexander 367 6.7 Thermodynamics Page 368 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 86. DIFFUSION IN SEMICONDUCTORS (SHEET 7 OF 8) Semiconductor Silicon (Si) (Con’t) Do Diffusing Element (cm2 • s–1) B Bi 1.0x10+1 1.04x10+3 Cu Fe ∆E (eV) * Temperature Range of Validity (˚C) 4x10–1 6.2x10–3 3.7 4.6 1.0 0.86 950–1200 1100–1350 800–1100 1000–1200 Ga Hl He In 3.6 9.4x10–3 1.1x10–1 1.65x10+1 3.5 0.47 0.86 3.9 1150–1350 1000–1200 1000–1200 1100–1350 Li P Sb Tl 9.4x10–3 1.0x10+1 5.6 1.65x10+1 0.78 3.7 3.9 3.9 100–800 1100–1350 1100–1350 1100–1350 Al B 2.0x10–1 1.6x10+1 Cr 2.3x10–1 4.9 5.6 4.8 1800–2250 1850–2250 1700–1900 Sulfur (S) S 2.8x10+13 2.0 >100 Tin zinc oxide (SnZn2O4) Sn 2x10+5 4.7 Zn 37 3.3 Zinc aluminate (ZnAl2O4) Zn 2.5x10+2 3.4 Zinc chromate (III) (ZnCr2O4) Cr 8.5 3.5 Zn 60 3.7 Silicon carbide (SiC) Source: from Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 251. ©2001 CRC Press LLC 368 CRC Handbook of Materials Science & Engineering 6.7 Thermodynamics Page 369 Wednesday, December 31, 1969 17:00 Thermodynamic and Kinetic Data Table 86. DIFFUSION IN SEMICONDUCTORS (SHEET 8 OF 8) Do * Temperature Range Diffusing Element (cm2 • s–1) ∆E (eV) Fe 8.5x10+2 3.5 Zn 8.8x10+2 3.7 Zinc selenide (ZnSe) Cu 1.7x10–5 0.56 200–570 Zinc sulfide (ZnS) Zn 1.0x10+16 6.50 3.25 1.52 >1030 940–1030 <940 Semiconductor Zinc ferrate (III) (ZnFe2O4) 1.5x10+4 3.0x10–4 of Validity (˚C) Source: from Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 251. * The diffusion coefficient D at a temperature T(K) is given by the following: D=Doe-∆E/kT For Do in m2/s, multiply values in cm2/s by 10–4. a Values obtained at the low concentration limit. ©2001 CRC Press LLC Shackelford & Alexander 369 Shackelford, James F. & Alexander, W. “Thermal Properties of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford and W. Alexander Boca Raton: CRC Press LLC, 2001 7.00 Thermal Page 371 Wednesday, December 31, 1969 17:00 CHAPTER 5 List of Tables Thermal Properties of Materials Specific Heat & Heat Capacity Specific Heat of the Elements at 25 ˚C Heat Capacity of Ceramics Specific Heat of Polymers Specific Heat of Fiberglass Reinforced Plastics Thermal Conductivity Thermal Conductivity of Metals (Part 1) Thermal Conductivity of Metals (Part 2) Thermal Conductivity of Metals (Part 3) Thermal Conductivity of Metals (Part 4) Thermal Conductivity of Alloy Cast Irons Thermal Conductivity of Iron and Iron Alloys Thermal Conductivity of Aluminum and aluminum alloys Thermal Conductivity of Copper and Copper Alloys Thermal Conductivity of Magnesium and Magnesium Alloys Thermal Conductivity of Nickel and Nickel Alloys Thermal Conductivity of Lead and Lead Alloys Thermal Conductivity of Tin, Titanium, Zinc and their Alloys Thermal Conductivity of Pure Metals (Continued) ©2001 CRC Press LLC 371 7.00 Thermal Page 372 Wednesday, December 31, 1969 17:00 Thermal Properties List of Tables Thermal Conductivity of Ceramics (Continued) Thermal Conductivity of Glasses Thermal Conductivity of Cryogenic Insulation Thermal Conductivity of Cryogenic Supports Thermal Conductivity of Special Concretes Thermal Conductivity of SiC-Whisker-Reinforced Ceramics Thermal Conductivity of Polymers Thermal Conductivity of Fiberglass Reinforced Plastics Thermal Expansion Thermal Expansion of Wrought Stainless Steels Thermal Expansion of Wrought Titanium Alloys Thermal Expansion of Graphite Magnesium Castings Linear Thermal Expansion of Metals and Alloys Thermal Expansion of Ceramics Thermal Expansion of SiC-Whisker-Reinforced Ceramics Thermal Expansion of Glasses Thermal Expansion of Polymers Thermal Expansion Coefficients of Materials for Integrated Circuits Thermal Expansion of Silicon Carbide SCS–2–Al Tempering & Softening ASTM B 601 Temper Designation Codes for Copper and Copper Alloys Temper Designation System for Aluminum Alloys Tool Steel Softening After 100 Hours Thermoplastic Polyester Softening with Temperature Heat-Deflection Temperature of Carbon- and Glass-Reinforced Engineering Thermoplastics ©2001 CRC Press LLC Shackelford & Alexander 372 7.01 Thermal Page 373 Wednesday, December 31, 1969 17:00 Thermal Properties Table 87. SPECIFIC HEAT OF THE ELEMENTS AT 25 ˚C (SHEET 1 OF 4) Cp Element (cal • g-l • K–1) Aluminum Antimony Argon Arsenic 0.215 0.049 0.124 0.0785 Barium Beryllium Bismuth Boron 0.046 0.436 0.0296 0.245 Bromine (Br2) Cadmium Calcium Carbon, diamond 0.113 0.0555 0.156 0.124 Carbon, graphite Cerium Cesium Chlorine (Cl2) 0.170 0.049 0.057 0.114 Chromium Cobalt Columbium (see Niobium) Copper 0.107 0.109 Dysprosium Erbium Europium Fluorine (F2) 0.0414 0.0401 0.0421 0.197 Gadolinium Gallium Germanium Gold 0.055 0.089 0.077 0.0308 0.092 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-144., Kelly, K. K., Bulletin 592, Bureau of Mines, Washington, D. C., 1961.and Hultgren, R., Orr, R L., Anderson, P. D., and Kelly, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, New York, (1963). ©2001 CRC Press LLC Shackelford & Alexander 373 7.01 Thermal Page 374 Wednesday, December 31, 1969 17:00 Thermal Properties Table 87. SPECIFIC HEAT OF THE ELEMENTS AT 25 ˚C (SHEET 2 OF 4) Cp Element (cal • g-l • K–1) Hafnium Helium Hollnium Hydrogen (H2) 0.035 1.24 0.0393 3.41 Indium lodine (I2) Iridium Iron (α) 0.056 0.102 0.0317 0.106 Krypton Lanthanum Lead Lithium 0.059 0.047 0.038 0.85 Lutetium Magnesium Manganese, α Manganese, β 0.037 0.243 0.114 1.119 Mercury Molybdenum Neodymium Neon 0.0331 0.599 0.049 0.246 Nickel Niobium Nitrogen (N2) Osmium 0.106 0.064 0.249 0.03127 Oxygen (O2) Palladium Phosphorus, white Phosphorus, red, triclinic 0.219 0.0584 0.181 0.160 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-144., Kelly, K. K., Bulletin 592, Bureau of Mines, Washington, D. C., 1961.and Hultgren, R., Orr, R L., Anderson, P. D., and Kelly, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, New York, (1963). ©2001 CRC Press LLC 374 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 375 Wednesday, December 31, 1969 17:00 Thermal Properties Table 87. SPECIFIC HEAT OF THE ELEMENTS AT 25 ˚C (SHEET 3 OF 4) Cp Element (cal • g-l • K–1) Platinum Polonium Potassium Praseodymium 0.0317 0.030 0.180 0.046 Promethium Protactinium Radium Radon 0.0442 0.029 0.0288 0.0224 Rhenium Rhodium Rubidium Ruthenium 0.0329 0.0583 0.0861 0.057 Samarium Scandium Selenium (Se2) Silicon 0.043 0.133 0.0767 0.168 Silver Sodium Strontium Sulfur, yellow 0.0566 0.293 0.0719 0.175 Tantalum Technetium Tellurium Terbium 0.0334 0.058 0.0481 0.0437 Thallium Thorium Thulium Tin (α) 0.0307 0.0271 0.0382 0.0510 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-144., Kelly, K. K., Bulletin 592, Bureau of Mines, Washington, D. C., 1961.and Hultgren, R., Orr, R L., Anderson, P. D., and Kelly, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, New York, (1963). ©2001 CRC Press LLC Shackelford & Alexander 375 7.01 Thermal Page 376 Wednesday, December 31, 1969 17:00 Thermal Properties Table 87. SPECIFIC HEAT OF THE ELEMENTS AT 25 ˚C (SHEET 4 OF 4) Cp Element (cal • g-l • K–1) Tin (β) Titanium Tungsten Uranium 0.0530 0.125 0.0317 0.0276 Vanadium Xenon Ytterbium Yttrium 0.116 0.0378 0.0346 0.068 Zinc Zirconium 0.0928 0.0671 Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-144., Kelly, K. K., Bulletin 592, Bureau of Mines, Washington, D. C., 1961.and Hultgren, R., Orr, R L., Anderson, P. D., and Kelly, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, New York, (1963). ©2001 CRC Press LLC 376 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 377 Wednesday, December 31, 1969 17:00 Thermal Properties Table 88. HEAT CAPACITY OF CERAMICS (SHEET 1 OF 2) Heat Capacity, C p (cal/mole/K) Class Borides Ceramic Chromium Diboride (CrB2) 9.61 + 10.72x10-3T cal/mole at 494-1010K Hafnium Diboride (HfB2) 9.61 + 10.72x10-3T cal/mole at 494-1010K Tantalum Diboride (TaB2) 0.04 cal/g˚C Titanium Diboride (TiB2) 10.93 + 7.08x10-3T cal/mole at 420-1180 K Zirconium Diboride (ZrB2) Carbides Hafnium Monocarbide (HfC) Silicon Carbide (SiC) Titanium MonoCarbide (TiC) 15.81T + 4.20x10-3T - 3.52x105T–2 for 429-1171K 0.05 at room temp. 15 ± 0.15 at 925˚C 16 ± 0.16 at 1525˚C 0.26 at 540˚C 0.27 at 700˚C 0.30 at 1000˚C 0.32 at 1200˚C 0.33 at 1350˚C 0.35 at 1550˚C 0.150-0.170 cal/g at 150˚C 0.170-0.187 cal/g at 300˚C 0.183-0.196 cal/g at 450˚C 0.192-0.201 cal/g at 600˚C 0.20-0.207 cal/g at 750˚C 0.209 cal/g at 900˚C 0.210 cal/g at 1000˚C 0.211 cal/g at 1100˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); SmithellsBrandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 377 7.01 Thermal Page 378 Wednesday, December 31, 1969 17:00 Thermal Properties Table 88. HEAT CAPACITY OF CERAMICS (SHEET 2 OF 2) Heat Capacity, C p (cal/mole/K) Class Nitrides Ceramic Aluminum Nitride (AlN) Trisilicon tetranitride (Si3N4) Oxides Cerium Dioxide (CeO2) Silicides Molybdenum Disilicide (MoSi2) Tungsten Disilicide (WSi2) 0.1961 cal/g/˚C ; 0-100˚C 0.2277 cal/g/˚C ; 0-420˚C 0.2399 cal/g/˚C ; 0-598˚C 0.17 cal/g/˚C 14.24T + 5.62x10-3T 491-1140K 10-14 cal/g/˚C; 425-1000˚C 8 cal/g/˚C; 425-1450˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); SmithellsBrandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 378 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 379 Wednesday, December 31, 1969 17:00 Thermal Properties Table 89. SPECIFIC HEAT OF (SHEET 1 OF 4) Polymer Class POLYMERS Polymer Subclass Specific heat (Btu/lb/°F) ABS Resins; Molded, Extruded Medium impact High impact Very high impact Low temperature impact Heat resistant 0.36—0.38 0.36—0.38 0.36—0.38 0.35—0.38 0.37—0.39 Acrylics; Cast, Molded, Extruded Cast Resin Sheets, Rods: General purpose, type I General purpose, type II 0.35 0.35 Moldings: Grades 5, 6, 8 High impact grade 0.35 0.34 Thermoset Carbonate Allyl diglycol carbonate 0.3 Cellulose Acetate; Molded, Extruded ASTM Grade: H6—1 H4—1 H2—1 MH—1, MH—2 MS—1, MS—2 S2—1 Cellulose Acetate Butyrate; Molded, Extruded ASTM Grade: H4 MH S2 Cellusose Acetate Propionate; Molded, Extruded 0.3—0.42 0.3—0.42 0.3—0.42 0.3—0.42 0.3—0.42 0.3—0.42 0.3—0.4 0.3—0.4 0.3—0.4 ASTM Grade: 1 3 6 0.3—0.4 0.3—0.4 0.3—0.4 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 379 7.01 Thermal Page 380 Wednesday, December 31, 1969 17:00 Thermal Properties Table 89. SPECIFIC HEAT OF (SHEET 2 OF 4) Polymer Class Chlorinated polyvinyl chloride POLYMERS Polymer Subclass Chlorinated polyvinyl chloride Polycarbonate Fluorocarbons; Molded,Extruded Epoxies; Cast, Molded, Reinforced Nylons; Molded, Extruded Nylons; Molded, Extruded Specific heat (Btu/lb/°F) 0.3 0.3 Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid High strength laminate Filament wound composite 0.22 0.25 0.28 0.33 0.4-0.5 0.21 0.24 Type 6 General purpose Cast 0.4 0.4 Type 8 Type 11 Type 12 0.4 0.58 0.28 6/6 Nylon General purpose molding General purpose extrusion 0.3—0.5 0.3—0.5 6/10 Nylon General purpose 0.3—0.5 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 380 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 381 Wednesday, December 31, 1969 17:00 Thermal Properties Table 89. SPECIFIC HEAT OF (SHEET 3 OF 4) Polymer Class Phenolics; Molded Phenolics: Molded POLYMERS Polymer Subclass Type and filler: General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber Arc resistant—mineral Rubber phenolic—woodflour or flock PVC—Acrylic Alloy PVC—acrylic sheet Polymides Unreinforced Unreinforced 2nd value Glass reinforced Polyacetals Standard Copolymer: Standard High flow Polyesters: Thermosets Cast polyyester Rigid Reinforced polyester moldings High strength (glass fibers) Sheet molding compounds, general purpose Phenylene oxides (Noryl) Standard Polypropylene: General purpose High impact Polyphenylene sulfide: Standard Specific heat (Btu/lb/°F) 0.35—0.40 — 0.30—0.35 0.28—0.32 0.27—0.37 0.33 0.293 0.31 0.25—0.35 0.15—0.27 0.35 0.35 0.35 0.30—0.55 0.25—0.35 0.20—0.25 0.24 0.45 0.45—0.48 0.26 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 381 7.01 Thermal Page 382 Wednesday, December 31, 1969 17:00 Thermal Properties Table 89. SPECIFIC HEAT OF (SHEET 4 OF 4) Polymer Class Polyethylenes; Molded, Extruded Polystyrenes; Molded POLYMERS Polymer Subclass Specific heat (Btu/lb/°F) Type I—lower density (0.910— 0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200 0.53—0.55 0.53—0.55 0.53—0.55 Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9 0.53—0.55 0.53—0.55 Type III—higher density (0.941— 0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 0.46—0.55 0.46—0.55 0.46—0.55 Polystyrenes General purpose Medium impact High impact Glass fiber -30% reinforced Styrene acrylonitrile (SAN) 0.30—0.35 0.30—0.35 0.30—0.35 0.256 0.33 Polyvinyl Chloride And Copolymers; Molded, Extruded Vinylidene chloride 0.32 Silicones; Molded, Laminated Woven glass fabric/ silicone laminate 0.246 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 382 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 383 Wednesday, December 31, 1969 17:00 Thermal Properties Table 90. SPECIFIC HEAT OF FIBERGLASS REINFORCED PLASTICS Class Material Glass fiber content (wt%) Glass fiber reinforced thermosets Sheet molding compound (SMC) 15 to 30 0.30 to 0.35 Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester 15 to 35 25 to 50 20 to 30 0.30 to 0.35 0.30 to 0.33 0.30 to 0.33 Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic 30 to 50 30 to 80 40 to 80 5 to 25 0.30 to 0.34 0.23 to 0.25 0.22 to 0.25 0.20 to 0.30 Nylon 6 to 60 0.30 to 0.35 Polystyrene 20 to 35 0.23 to 0.35 Glass–fiber–reinforced thermoplastics Specific heat (Btu/lb–˚F) Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994). ©2001 CRC Press LLC Shackelford & Alexander 383 7.01 Thermal Page 384 Wednesday, December 31, 1969 17:00 Thermal Properties Table 91. THERMAL CONDUCTIVITY OF METALS (PART 1) (SHEET 1 OF 2) T (K) Aluminum Cadmium Chromium Copper Gold 1 2 3 4 5 7.8 15.5 23.2 30.8 38.1 48.7 89.3 104 92.0 69.0 0.401 0.802 1.20 1.60 1.99 28.7 57.3 85.5 113 138 4.4 8.9 13.1 17.1 20.7 6 7 8 9 10 45.1 51.5 57.3 62.2 66.1 44.2 28.0 18.0 12.2 8.87 2.38 2.77 3.14 3.50 3.85 159 177 189 195 196 23.7 26.0 27.5 28.2 28.2 11 12 13 14 15 69.0 70.8 71.5 71.3 70.2 6.91 5.56 4.67 4.01 3.55 4.18 4.49 4.78 5.04 5.27 193 185 176 166 156 27.7 26.7 25.5 24.1 22.6 16 18 20 25 30 68.4 63.5 56.5 40.0 28.5 3.16 2.62 2.26 1.79 1.56 5.48 5.81 6.01 6.07 5.58 145 124 105 68 43 20.9 17.7 15.0 10.2 7.6 35 40 45 50 60 21.0 16.0 12.5 10.0 6.7 1.41 1.32 1.25 1.20 1.13 5.03 4.30 3.67 3.17 2.48 29 20.5 15.3 12.2 8.5 6.1 5.2 4.6 4.2 3.8 Values are in watt • cm-1 • K-1. Note: Values in parentheses are for liquid state These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate. Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 384 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 385 Wednesday, December 31, 1969 17:00 Thermal Properties Table 91. THERMAL CONDUCTIVITY OF METALS (PART 1) (SHEET 2 OF 2) T (K) Aluminum Cadmium Chromium Copper Gold 70 80 90 100 5.0 4.0 3.4 3.0 1.08 1.06 1.04 1.03 2.08 1.82 1.68 1.58 6.7 5.7 5.14 4.83 3.58 3.52 3.48 3.45 200 273 300 400 2.37 2.36 2.37 2.4 0.993 0.975 0.968 0.947 1.11 0.948 0.903 0.873 4.13 4.01 3.98 3.92 3.27 3.18 3.15 3.12 500 600 700 800 2.37 2.32 2.26 2.2 0.92 (0.42) (0.49) (0.559) 0.848 0.805 0.757 0.713 3.88 3.83 3.77 3.71 3.09 3.04 2.98 2.92 900 1000 1100 1200 2.13 (0.93) (0.96) (0.99) 0.678 0.653 0.636 0.624 3.64 3.57 3.5 3.42 2.85 2.78 2.71 2.62 1400 0.611 Values are in watt • cm-1 • K-1. Note: Values in parentheses are for liquid state These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate. Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 385 7.01 Thermal Page 386 Wednesday, December 31, 1969 17:00 Thermal Properties Table 92. THERMAL CONDUCTIVITY OF METALS (PART 2) (SHEET 1 OF 2) T (K) Iron Lead Magnesium Mercury Molybdenum 1 2 3 4 5 0.75 1.49 2.24 2.97 3.71 27.7 42.4 34.0 22.4 13.8 1.30 2.59 3.88 5.15 6.39 0.146 0.292 0.438 0.584 0.730 6 7 8 9 10 4.42 5.13 5.80 6.45 7.05 8.2 4.9 3.2 2.3 1.78 7.60 8.75 9.83 10.8 11.7 0.876 1.02 1.17 1.31 1.45 11 12 13 14 15 7.62 8.13 8.58 8.97 9.30 1.46 1.23 1.07 0.94 0.84 12.5 13.1 13.6 14.0 14.3 1.60 1.74 1.88 2.01 2.15 16 18 20 25 30 9.56 9.88 9.97 9.36 8.14 0.77 0.66 0.59 0.507 0.477 14.4 14.3 13.9 12.0 9.5 2.28 2.53 2.77 3.25 3.55 35 40 45 50 60 6.81 5.55 4.50 3.72 2.65 0.462 0.451 0.442 0.435 0.424 7.4 5.7 4.57 3.75 2.74 3.62 3.51 3.26 3.00 2.60 70 80 2.04 1.68 0.415 0.407 2.23 1.95 2.30 2.09 Values are in watt • cm-1 • K-1. Note: Values in parentheses are for liquid state These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate. ©2001 CRC Press LLC 386 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 387 Wednesday, December 31, 1969 17:00 Thermal Properties Table 92. THERMAL CONDUCTIVITY OF METALS (PART 2) (SHEET 2 OF 2) T (K) Iron Lead Magnesium 90 100 1.46 1.32 0.401 0.396 1.78 1.69 200 273 300 400 0.94 0.835 0.803 0.694 0.366 0.355 0.352 0.338 1.59 1.57 1.56 1.53 (0.078) (0.084) (0.098) 1.43 1.39 1.38 1.34 500 600 700 800 0.613 0.547 0.487 0.433 0.325 0.312 (0.174) (0.19) 1.51 1.49 1.47 1.46 (0.109) (0.12) (0.127) (0.13) 1.3 1.26 1.22 1.18 900 1000 1100 1200 0.38 0.326 0.297 0.282 (0.203) (0.215) 1.45 (0.84) (0.91) (0.98) 1400 1600 1800 2000 0.309 0.327 2200 2600 Mercury Molybdenum 1.92 1.79 1.15 1.12 1.08 1.05 0.996 0.946 0.907 0.88 0.858 0.825 Values are in watt • cm-1 • K-1. Note: Values in parentheses are for liquid state These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate. ©2001 CRC Press LLC Shackelford & Alexander 387 7.01 Thermal Page 388 Wednesday, December 31, 1969 17:00 Thermal Properties Table 93. THERMAL CONDUCTIVITY OF METALS (PART 3) (SHEET 1 OF 2) T (K) Nickel Niobium Platinum Silver Tantalum 1 2 3 4 5 0.64 1.27 1.91 2.54 3.16 0.251 0.501 0.749 0.993 1.23 2.31 4.60 6.79 8.8 10.5 39.4 78.3 115 147 172 0.115 0.230 0.345 0.459 0.571 6 7 8 9 10 3.77 4.36 4.94 5.49 6.00 1.46 1.67 1.86 2.04 2.18 11.8 12.6 12.9 12.8 12.3 187 193 190 181 168 0.681 0.788 0.891 0.989 1.08 11 12 13 14 15 6.48 6.91 7.30 7.64 7.92 2.30 2.39 2.46 2.49 2.50 11.7 10.9 10.1 9.3 8.4 154 139 124 109 96 1.16 1.24 1.30 1.36 1.40 16 18 20 25 30 8.15 8.45 8.56 8.15 6.95 2.49 2.42 2.29 1.87 1.45 7.6 6.1 4.9 3.15 2.28 85 66 51 29.5 19.3 1.44 1.47 1.47 1.36 1.16 35 40 45 50 60 5.62 4.63 3.91 3.36 2.63 1.16 0.97 0.84 0.76 0.66 1.80 1.51 1.32 1.18 1.01 13.7 10.5 8.4 7.0 5.5 0.99 0.87 0.78 0.72 0.651 Values are in watt • cm-1 • K-1. Note: Values in parentheses are for liquid state These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate. ©2001 CRC Press LLC 388 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 389 Wednesday, December 31, 1969 17:00 Thermal Properties Table 93. THERMAL CONDUCTIVITY OF METALS (PART 3) (SHEET 2 OF 2) T (K) Nickel Niobium Platinum Silver Tantalum 70 80 90 100 2.21 1.93 1.72 1.58 0.61 0.58 0.563 0.552 0.90 0.84 0.81 0.79 4.97 4.71 4.60 4.50 0.616 0.603 0.596 0.592 200 273 300 400 1.06 0.94 0.905 0.801 0.526 0.533 0.537 0.552 0.748 0.734 0.73 0.722 4.3 4.28 4.27 4.2 0.575 0.574 0.575 0.578 500 600 700 800 0.721 0.655 0.653 0.674 0.567 0.582 0.598 0.613 0.719 0.72 0.723 0.729 4.13 4.05 3.97 3.89 0.582 0.586 0.59 0.594 900 1000 1100 1200 0.696 0.718 0.739 0.761 0.629 0.644 0.659 0.675 0.737 0.748 0.76 0.775 3.82 3.74 3.66 3.58 0.598 0.602 0.606 0.610 1400 1600 1800 2000 0.804 0.705 0.735 0.764 0.791 0.807 0.842 0.877 0.913 2200 2600 3000 0.815 0.618 0.626 0.634 0.640 0.647 0.658 0.665 Values are in watt • cm-1 • K-1. Note: Values in parentheses are for liquid state These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate. ©2001 CRC Press LLC Shackelford & Alexander 389 7.01 Thermal Page 390 Wednesday, December 31, 1969 17:00 Thermal Properties Table 94. THERMAL CONDUCTIVITY OF METALS (PART 4) (SHEET 1 OF 2) T (K) Tin Titanium Tungsten Zinc Zirconium 1 2 3 4 5 297 181 117 0.0144 0.0288 0.0432 0.0576 0.0719 14.4 28.7 42.6 55.6 67.1 19.0 37.9 55.5 69.7 77.8 0.111 0.223 0.333 0.442 0.549 6 7 8 9 10 76 52 36 26 19.3 0.0863 0.101 0.115 0.129 0.144 76.2 82.4 85.3 85.1 82.4 78.0 71.7 61.8 51.9 43.2 0.652 0.748 0.837 0.916 0.984 11 12 13 14 15 14.8 11.6 9.3 7.6 6.3 0.158 0.172 0.186 0.200 0.214 77.9 72.4 66.4 60.4 54.8 36.4 30.8 26.1 22.4 19.4 1.04 1.08 1.11 1.13 1.13 16 18 20 25 30 5.3 4.0 3.2 2.22 1.76 0.227 0.254 0.279 0.337 0.382 49.3 40.0 32.6 20.4 13.1 16.9 13.3 10.7 6.9 4.9 1.12 1.08 1.01 0.85 0.74 35 40 45 50 60 1.50 1.35 1.23 1.15 1.04 0.411 0.422 0.416 0.401 0.377 8.9 6.5 5.07 4.17 3.18 3.72 2.97 2.48 2.13 1.71 0.65 0.58 0.535 0.497 0.442 Values are in watt • cm-1 • K-1. Note: Values in parentheses are for liquid state These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate. ©2001 CRC Press LLC 390 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 391 Wednesday, December 31, 1969 17:00 Thermal Properties Table 94. THERMAL CONDUCTIVITY OF METALS (PART 4) (SHEET 2 OF 2) T (K) Tin Titanium Tungsten Zinc Zirconium 70 80 90 100 0.96 0.91 0.88 0.85 0.356 0.339 0.324 0.312 2.76 2.56 2.44 2.35 1.48 1.38 1.34 1.32 0.403 0.373 0.350 0.332 200 273 300 400 0.733 0.682 0.666 0.622 0.245 0.224 0.219 0.204 1.97 1.82 1.78 1.62 1.26 1.22 1.21 1.16 0.252 0.232 0.227 0.216 500 600 700 800 0.596 (0.323) (0.343) (0.364) 0.197 0.194 0.194 0.197 1.49 1.39 1.33 1.28 1.11 1.05 (0.499) (0.557) 0.210 0.207 0.209 0.216 900 1000 1100 1200 (0.384) (0.405) (0.425) (0.446) 0.202 0.207 0.213 0.220 1.24 1.21 1.18 1.15 (0.615) (0.673) (0.73) 0.226 0.237 0.248 0.257 1400 1600 1800 2000 (0.487) 0.236 0.253 0.271 1.11 1.07 1.03 1.00 2200 2600 3000 0.275 0.290 0.302 0.313 0.98 0.94 0.915 Values are in watt • cm-1 • K-1. Note: Values in parentheses are for liquid state These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate. ©2001 CRC Press LLC Shackelford & Alexander 391 7.01 Thermal Page 392 Wednesday, December 31, 1969 17:00 Thermal Properties Table 95. THERMAL CONDUCTIVITY OF ALLOY CAST IRONS Thermal Conductivity W/(m • K) Description Description Abrasion–Resistant White Irons Low–C white iron Martensitic nickel–chromium iron 22 Corrosion–Resistant Irons High–nickel gray iron High–nickel ductile iron 38 to 40 13.4 Heat–Resistant Gray Irons Medium–silicon iron High–chromium iron High–nickel iron Nickel–chromium–silicon iron 37 20 37 to 40 30 Heat–Resistant Ductile Iron High–nickel ductile (20 Ni) 13 30 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p172, (1984). ©2001 CRC Press LLC 392 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 393 Wednesday, December 31, 1969 17:00 Thermal Properties Table 96. THERMAL CONDUCTIVITY OF IRON AND IRON ALLOYS Metal or alloy Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C) Pure iron Cast iron (3.16C, 1.54Si, 0.57Mn) Carbon steel(0.23C, 0.64Mn) Carbon steel(1.22 C, 0.35 Mn) 0.178 0.112 0.124 0.108 Alloy steel (0.34 C, 0.55 Mn, 0.78 Cr, 3.53 Ni, 0.39 Mo, 0.05 Cu) Type 410 Type 304 T1 tool steel 0.079 0.057 0.036 0.058 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993). ©2001 CRC Press LLC Shackelford & Alexander 393 7.01 Thermal Page 394 Wednesday, December 31, 1969 17:00 Thermal Properties Table 97. THERMAL CONDUCTIVITY OF ALUMINUM AND ALUMINUM ALLOYS (SHEET 1 OF 2) Metal or alloy Designation Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C) Wrought alloys EC(O) 1060(O) 1100 2011(T3) 0.57 0.56 0.53 0.34 2014(O) 2024(O) 2218(T72) 3003(O) 0.46 0.45 0.37 0.46 4032(O) 5005 5050(O) 5052(O) 0.37 0.48 0.46 0.33 5056(O) 5083 5086 5154 0.28 0.28 0.30 0.30 5357 5456 6061(O) 6063(O) 0.40 0.28 0.41 0.52 6101(T6) 6151(O) 7075(T6) 7079(T6) 0.52 0.49 0.29 0.29 7178 0.29 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993). ©2001 CRC Press LLC 394 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 395 Wednesday, December 31, 1969 17:00 Thermal Properties Table 97. THERMAL CONDUCTIVITY OF ALUMINUM AND ALUMINUM ALLOYS (SHEET 2 OF 2) Metal or alloy Designation Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C) Casting alloys A13 43(F) 108(F) A108 0.29 0.34 0.29 0.34 A132(T551) D132(T5) F132 138 0.28 0.25 0.25 0.24 142 (T21, sand) 195 (T4, T62) B195 (T4, T6) 214 0.40 0.33 0.31 0.33 200(T4) 319 355(T51, sand) 356(T51, sand) 0.21 0.26 0.40 0.40 360 380 750 40E 0.35 0.23 0.44 0.33 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993). ©2001 CRC Press LLC Shackelford & Alexander 395 7.01 Thermal Page 396 Wednesday, December 31, 1969 17:00 Thermal Properties Table 98. THERMAL CONDUCTIVITY OF COPPER AND COPPER ALLOYS (SHEET 1 OF 3) Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C) Metal or alloy Designation Wrought coppers Pure Copper Electrolytic tough pitch copper (ETP) Deoxidized copper high residual phosphorus (DHP) 0.941 0.934 Free–machining copper (0.5% Te) Free–machining copper (1% Pb) 0.88 0.92 Gilding, 95% Commercial bronze, 90% Jewelry bronze, 87.5% Red brass, 85% 0.56 0.45 0.41 0.38 Low brass, 80% Cartridge brass, 70% Yellow brass Muntz metal 0.33 0.29 0.28 0.29 Leaded commercial bronze Low–leaded brass (tube) Medium leaded brass High–leaded brass (tube) 0.43 0.28 0.28 0.28 High–leaded brass Extra–high–leaded brass Leaded Muntz metal Forging brass 0.28 0.28 0.29 0.28 Architectual bronze Inhibited admiralty Naval brass 0.29 0.26 0.28 Wrought alloys 0.81 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993). ©2001 CRC Press LLC 396 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 397 Wednesday, December 31, 1969 17:00 Thermal Properties Table 98. THERMAL CONDUCTIVITY OF COPPER AND COPPER ALLOYS (SHEET 2 OF 3) Metal or alloy Designation Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C) Wrought alloys (Con’t) Leaded naval brass 0.28 Manganese bronze Phosphor bronze,5% Pbosphor bronze, 8% 0.26 0.17 0.15 Phosphor bronze, 10% Phosphor bronze, 1.25% Free cutting phosphor bronze Cupro-nickel,30% 0.12 0.49 0.18 0.07 Cupro-nickel,10% Nickel silver, 65–18 Nickel silver, 55–18 Nickel silver, 65–12 0.095 0.08 0.07 0.10 High–silicon bronze Low–silicon bronze Aluminum bronze, 5%Al Aluminum bronze 0.09 0.14 0.198 0.18 Aluminum–silicon bronze Aluminum bronze Aluminum bronze Beryllium copper 0.108 0.144 0.091 0.20 Chromium copper (1% Cr) 89cu–11Sn 88Cu–6Sn–1.5Pb–4.5Zn 87Cu–8Sn–1Pb–4Zn 0.4 0.121 18% of Cu 12% of Cu 87Cu–10Sn–1Pb–2Zn 80Cu–10Sn–10Pb Manganese bronze, 110 ksi 12% of Cu 12% of Cu 9.05% of Cu Casting alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993). ©2001 CRC Press LLC Shackelford & Alexander 397 7.01 Thermal Page 398 Wednesday, December 31, 1969 17:00 Thermal Properties Table 98. THERMAL CONDUCTIVITY OF COPPER AND COPPER ALLOYS (SHEET 3 OF 3) Metal or alloy Designation Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C) Casting alloys (Con’t) Aluminum bronze, Alloy 9A 15% of Cu Aluminum bronze, Alloy 9B Aluminum bronze, Alloy 9C Aluminum bronze, Alloy 9D 16% of Cu 18% of Cu 12% of Cu Propeller bronze Nickel silver, 12% Ni Nickel silver, 16% Ni Nickel silver, 20% Ni 11% of Cu 7% of Cu 7% of Cu 6% of Cu Nickel silver. 25% Ni Silicon bronze 6.5% of Cu 7% of Cu Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993). ©2001 CRC Press LLC 398 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 399 Wednesday, December 31, 1969 17:00 Thermal Properties Table 99. THERMAL CONDUCTIVITY OF MAGNESIUM AND MAGNESIUM ALLOYS Metal or alloy Designation Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C) Pure Magnesium (99.8%) 0.367 Casting alloys AM100A AZ63A AZ81A(T4) 0.17 0.18 0.12 AZ91A, B, C AZ92A HK31A (T6, sand cast) 0.17 0.17 0.22 HZ32A ZH42 ZH62A ZK51A 0.26 0.27 0.26 0.26 ZE41A(T5) EZ33A EK30A EK41A(T5) 0.27 0.24 0.26 0.24 M1A AZ31B AZ61A AZ80A 0.33 0.23 0.19 0.18 ZK60A,B(F) ZE10A(O) HM21A(O) HM31A 0.28 0.33 0.33 0.25 Wrought alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993). ©2001 CRC Press LLC Shackelford & Alexander 399 7.01 Thermal Page 400 Wednesday, December 31, 1969 17:00 Thermal Properties Table 100. THERMAL CONDUCTIVITY OF NICKEL AND NICKEL ALLOYS Metal or alloy Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C) Nickel (99.95% Ni + Co) “A” nickel “D” nickel Monel 0.22 0.145 0.115 0.062 “K” Monel Inconel Hastelloy B Hastelloy C 0.045 0.036 0.027 0.03 Hastelloy D Illium G Illium R 60Ni–24Fe–16Cr 0.05 0.029 0.031 0.032 35Ni–45Fe–20Cr Constantan 0.031 0.051 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993). ©2001 CRC Press LLC 400 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 401 Wednesday, December 31, 1969 17:00 Thermal Properties Table 101. THERMAL CONDUCTIVITY OF LEAD AND LEAD ALLOYS Metal or alloy Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C) Corroding lead (99.73 + % Pb) 5–95 solder 20–80 solder 50-50 solder 0.083 0.085 0.089 0.111 1% antimonial lead Hard lead (96Pb-4Sb) Hard lead (94Pb–6Sb) 8% antimonial lead 0.080 0.073 0.069 0.065 9% antimonial lead Lead-base babbitt (SAE 14) Lead-base babbitt (alloy 8) 0.064 0.057 0.058 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993). ©2001 CRC Press LLC Shackelford & Alexander 401 7.01 Thermal Page 402 Wednesday, December 31, 1969 17:00 Thermal Properties Table 102. THERMAL CONDUCTIVITY OF TIN, TITANIUM , ZINC AND THEIR ALLOYS Metal or alloy Designation Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C) Tin and Tin Alloys Pure tin Soft solder (63Sn–37Pb) Tin foil (92Sn–8Zn) 0.15 0.12 0.14 Titanium and Titanium Alloys Titanium(99.0%) Ti–5Al–2.5Sn Ti–2Fe-2Cr–2Mo Ti–8Mn 0.043 0.019 0.028 0.026 Zinc and Zinc Alloys Pure zinc AG40A alloy AC41A alloy Commercial rolled zinc 0.08 Pb 0.27 0.27 0.26 0.257 Commercial rolled zinc 0.06 Pb, 0.06 Cd Rolled zinc alloy (1 CU, 0.010 Mg) Zn-Cu–Ti alloy (0.8 Cu, 0.15 Ti) 0.257 0.25 0.25 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993). ©2001 CRC Press LLC 402 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 403 Wednesday, December 31, 1969 17:00 Thermal Properties Table 103. THERMAL CONDUCTIVITY OF PURE METALS Metal or alloy Thermal Conductivity near room temperature (cal / cm2 • cm • s • °C) Beryllium Cadmium Chromium Cobalt 0.35 0.22 0.16 0.165 Germanium Gold Indium Iridium 0.14 0.71 0.057 0.14 Lithium Molybdenum Niobium Palladium 0.17 0.34 0.13 0.168 Platinum Plutonium Rhenium Rhodium 0.165 0.020 0.17 0.21 Silicon Silver Sodium Tantalum 0.20 1.0 0.32 0.130 Thallium Thorium Tungsten Uranium 0.093 0.090 0.397 0.071 Vanadium Yttrium 0.074 0.035 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p156, (1993). ©2001 CRC Press LLC Shackelford & Alexander 403 7.01 Thermal Page 404 Wednesday, December 31, 1969 17:00 Thermal Properties Table 104. THERMAL CONDUCTIVITY OF CERAMICS (SHEET 1 OF 12) Class Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Borides Chromium Diboride (CrB2) Hafnium Diboride (HfB2) 0.049-0.076 at room temp. 0.015 at room temp. Tantalum Diboride (TaB2) 0.026 at room temp. 0.033 at 200 oC. Titanium Diboride (TiB2) 0.058-0.062 at room temp. 0.063 at 200 oC Carbides Zirconium Diboride (ZrB2) 0.055-0.058 at room temp. Boron Carbide (B4C) 0.055-0.060 at 200 oC 0.065-0.069 at room temp. 0.198 at 425 oC Hafnium Monocarbide (HfC) 0.053 at room temp. 0.15 + 1.20x10 T watts cm-1 K-1 from 1000-2000K Silicon Carbide (SiC) (with 1 wt% Be addictive) (with 1 wt% B addictive) (with 1 wt% Al addictive) 0.621 0.406 0.143 (with 2 wt% BN addictive) (with 1.6 wt% BeO addictive) (with 3.2 wt% BeO addictive) 0.263 0.645 at room temp. 0.645 at room temp. 0.098-0.10 at 20oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 404 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 405 Wednesday, December 31, 1969 17:00 Thermal Properties Table 104. THERMAL CONDUCTIVITY OF CERAMICS (SHEET 2 OF 12) Class Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) (cubic, CVD) 0.289 at 127oC 0.049-0.080 at 600oC 0.061 at 800oC 0.051 at 1000oC 0.0059 at 1250oC 0.0827 at 1327oC 0.0032 at 1530oC Tantalum Monocarbide (TaC) 0.053 at room temp. Titanium Monocarbide (TiC) 0.041-0.074 at room temp. 0.0135 at 1000 oC Trichromium Dicarbide (Cr3C2) 0.454 Tungsten Monocarbide (WC) (6% Co, 1-3µm grain size) (12% Co, 1-3µm grain size) (24% Co, 1-3µm grain size) 0.201 at 20 oC 0.239 0.251 0.239 (6% Co, 2-4µm grain size) (6% Co, 3-6µm grain size) 0.251 0.256 Zirconium Monocarbide (ZrC) 0.049 at room temp. 0.098 at 50oC 0.069 at 150oC 0.065 at 188oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 405 7.01 Thermal Page 406 Wednesday, December 31, 1969 17:00 Thermal Properties Table 104. THERMAL CONDUCTIVITY OF CERAMICS (SHEET 3 OF 12) Class Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 0.061 at 288oC 0.080 at 600oC 0.083 at 800oC 0.086 at 1000oC 0.089 at 1200oC 0.092 at 1400oC 0.096 at 1600oC 0.099 at 1800oC 0.103 at 2000oC 0.105 at 2200oC Nitrides Aluminum Nitride (AlN) 0.072 at 25oC 0.060 at 200oC 0.053 at 400oC 0.048 at 600oC 0.042 at 800oC Boron Nitride (BN) parallel to c axis 0.0687 at 300oC 0.0646 at 700oC 0.0637 at 1000oC parallel to a axis 0.0362 at 300oC 0.0318 at 700oC 0.0295 at 1000oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 406 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 407 Wednesday, December 31, 1969 17:00 Thermal Properties Table 104. THERMAL CONDUCTIVITY OF CERAMICS (SHEET 4 OF 12) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Titanium Mononitride (TiN) 0.069 at 25 oC Class 0.057 at 127 oC 0.040 at 200 oC 0.027 at 650 oC 0.020 at 1000 oC 0.162 at 1500 oC 0.136 at 2300 oC Trisilicon tetranitride (Si3N4) (pressureless sintered) 0.072 at room temp. 0.022-0.072 at 127 oC 0.041 at 200-750 oC 0.036-0.042 at 500 oC (pressureless sintered) 0.038 at 1000 oC 0.033-0.034 at 1200 oC Zirconium Mononitride (ZrN) 0.040 at 200 oC 0.025 at 425 oC 0.018 at 650 oC 0.016 at 875 oC 0.015 at 1100 oC Oxides Aluminum Oxide (Al2O3) 0.06 at room temp. 0.04-0.069 at 100oC 0.03-0.064 at 200oC 0.037 at 315oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 407 7.01 Thermal Page 408 Wednesday, December 31, 1969 17:00 Thermal Properties Table 104. THERMAL CONDUCTIVITY OF CERAMICS (SHEET 5 OF 12) Class Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Ceramic 0.02-0.031 at 400oC 0.035 at 500oC 0.021-0.022 at 600oC 0.015-0.017 at 800oC 0.014-0.016 at 1000oC 0.013-0.015 at 1200oC 0.013 at 1400oC 0.014 at 1600oC 0.017 at 1800oC Aluminum Oxide (Al2O3) (single crystal) 0.103 at 20oC 0.047 at 300oC 0.029 at 800oC Beryllium Oxide (BeO) 0.038-0.47 at 20oC 0.032-0.34 at 100oC 0.14-0.16 at 400oC 0.089-0.1137 at 600oC 0.060-0.093 at 800oC 0.043 at 1100oC 0.041-0.054 at 1200oC 0.038 at 1300oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 408 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 409 Wednesday, December 31, 1969 17:00 Thermal Properties Table 104. THERMAL CONDUCTIVITY OF CERAMICS (SHEET 6 OF 12) Class Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 0.036 at 1400oC 0.034 at 1500oC 0.033-0.039 at 1600oC 0.033 at 1700oC 0.036 at 1800oC 0.036 at 1900oC 0.036 at 2000oC Calcium Oxide (CaO) 0.037 at 100oC 0.027 at 200oC 0.022 at 400oC 0.020 at 600oC 0.019 at 800oC 0.0186-0.019 at 1000oC Cerium Dioxide (CeO2) 0.0229 at 400K 0.00287 at 1400K Dichromium Trioxide (Cr2O3) 0.0239-0.0788 Hafnium Dioxide (HfO2) 0.0273 at 25-425oC Magnesium Oxide (MgO) 0.097 at room temp. 0.078-0.082 at 100oC 0.064-0.065 at 200oC 0.038-0.045 at 400oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 409 7.01 Thermal Page 410 Wednesday, December 31, 1969 17:00 Thermal Properties Table 104. THERMAL CONDUCTIVITY OF CERAMICS (SHEET 7 OF 12) Class Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 0.0198-0.026 at 800oC 0.016-0.020 at 1000oC 0.0139-0.0148 at 1200oC 0.012-0.014 at 1400oC 0.0108-0.016 at 1600oC 0.0096-0.0191 at 1800oC Nickel monoxide (NiO) (0% porosity) 0.029 at 100oC (0% porosity) 0.024 at 200oC (0% porosity) 0.017 at 400oC (0% porosity) 0.012 at 800oC (0% porosity) 0.011 at 1000oC Silicon Dioxide (SiO2) 0.0025 at 200oC 0.003 at 400oC 0.004 at 800oC 0.005 at 1200oC 0.006 at 1600oC Thorium Dioxide (ThO2) (0% porosity) (0% porosity) 0.024 at room temp. (0% porosity) 0.019 at 200oC (0% porosity) 0.014 at 400oC (0% porosity) 0.010 at 600oC (0% porosity) 0.008 at 800oC 0.020 at 100oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 410 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 411 Wednesday, December 31, 1969 17:00 Thermal Properties Table 104. THERMAL CONDUCTIVITY OF CERAMICS (SHEET 8 OF 12) Class Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) (0% porosity) 0.007-0.0074 at 1000oC (0% porosity) 0.006-0.0076 at 1200oC (0% porosity) 0.006 at 1400oC Titanium Oxide (TiO2) (0% porosity) 0.016 at 100oC (0% porosity) 0.012 at 200oC (0% porosity) 0.009 at 400oC (0% porosity) 0.008 at 600oC (0% porosity) 0.008 at 800oC (0% porosity) 0.008 at 1000oC (0% porosity) 0.008 at 1200oC Uranium Dioxide (UO2) (0% porosity) 0.025 at 100oC (0% porosity) 0.020 at 200oC (0% porosity) 0.015 at 400oC (0% porosity) 0.010 at 600oC (0% porosity) 0.009 at 800oC (0% porosity) 0.008 at 1000oC 0.018 at 100oC 0.012 at 400oC 0.008 at 600oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 411 7.01 Thermal Page 412 Wednesday, December 31, 1969 17:00 Thermal Properties Table 104. THERMAL CONDUCTIVITY OF CERAMICS (SHEET 9 OF 12) Class Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Ceramic 0.008 at 700oC 0.006 at 1000oC 0.006 at 1200oC Zirconium Oxide (ZrO2) (stabilized, 0% porosity) 0.005 at 100oC (stabilized, 0% porosity) 0.005 at 200oC (stabilized, 0% porosity) 0.005 at 400oC (stabilized, 0% porosity) 0.0055 at 800oC (stabilized, 0% porosity) 0.006 at 1200oC (stabilized, 0% porosity) 0.0065 at 1400oC (stabilized) 0.004 at 100oC (stabilized) 0.0044 at 500oC (stabilized) 0.0048-0.0055 at 1000oC (stabilized) 0.0049-0.0050 at 1200oC (MgO stabilized) (MgO stabilized) 0.0076 at room temp. (Y2O3 stabilized) 0.0055 at room temp. (Y2O3 stabilized) 0.0053 at 800oC (plasma sprayed) (plasma sprayed) 0.0019-0.0031 at room temp. (plasma sprayed and coated with Cr2O3) 0.0033 at room temp. (plasma sprayed and coated with Cr2O3) 0.0033 at 800oC 0.0057 at 800oC 0.0019-0.0022 at 800oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 412 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 413 Wednesday, December 31, 1969 17:00 Thermal Properties Table 104. THERMAL CONDUCTIVITY OF CERAMICS (SHEET 10 OF 12) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) (5-10% CaO stabilized) 0.0045 at 400oC (5-10% CaO stabilized) 0.0049 at 800oC (5-10% CaO stabilized) 0.0057 at 1200oC Class Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) 0.0077 at 20oC ρ=2.3g/cm3) ( 0.0062 at 300oC (ρ=2.3g/cm3) 0.0055 at 500oC (ρ=2.3g/cm3) 0.0055 at 800oC (ρ=2.1g/cm3) 0.0043 at 20oC (ρ=2.1g/cm3) 0.0041 at 300oC ρ=2.1g/cm3) 0.0040 at 500oC ρ=2.1g/cm3) 0.0038 at 800oC ( ( Mullite (3Al2O3 2SiO2) (0% porosity) 0.0145 at 100oC (0% porosity) 0.013 at 200oC (0% porosity) 0.011 at 400oC (0% porosity) 0.010 at 600oC (0% porosity) 0.0095 at 800oC (0% porosity) 0.009 at 1000oC (0% porosity) 0.009 at 1200oC (0% porosity) 0.009 at 1400oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 413 7.01 Thermal Page 414 Wednesday, December 31, 1969 17:00 Thermal Properties Table 104. THERMAL CONDUCTIVITY OF CERAMICS (SHEET 11 OF 12) Class Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Sillimanite (Al2O3 SiO2) (0% porosity) 0.0042 at 100oC (0% porosity) 0.004 at 400oC (0% porosity) 0.0035 at 800oC (0% porosity) 0.0035 at 1200oC (0% porosity) 0.003 at 1500oC Spinel (Al2O3 MgO) (0% porosity) 0.035 at 100oC (0% porosity) 0.031 at 200oC (0% porosity) 0.024 at 400oC (0% porosity) 0.019 at 600oC (0% porosity) 0.015 at 800oC (0% porosity) 0.013-0.0138 at 1000oC (0% porosity) 0.013 at 1200oC Zircon (SiO2 ZrO2) (0% porosity) 0.0145 at 100oC (0% porosity) 0.0135 at 200oC (0% porosity) 0.012 at 400oC (0% porosity) 0.010 at 800oC (0% porosity) 0.0095 at 1200oC (0% porosity) 0.0095 at 1400oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 414 CRC Handbook of Materials Science & Engineering 7.01 Thermal Page 415 Wednesday, December 31, 1969 17:00 Thermal Properties Table 104. THERMAL CONDUCTIVITY OF CERAMICS (SHEET 12 OF 12) Class Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Silicides Molybdenum Disilicide (MoSi2) 0.129 at 150oC 0.074 at 425oC 0.053 at 540oC 0.057 at 650oC 0.046 at 875oC 0.041 at 1100oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 415 7.02 Thermal L Page 416 Wednesday, December 31, 1969 17:00 Table 105. THERMAL CONDUCTIVITY OF GLASSES (SHEET 1 OF 5) Glass SiO2 glass Description Thermal Conductivity Units Temperature Range of Validity 0.00329 0.59 0.67 0.88 cal/cm s K W/m K W/m K W/m K 20˚C 80˚C 100˚C 150˚C 1.10 1.28 1.32 1.36 W/m K W/m K W/m K W/m K 200˚C 250˚C 273.1˚C 300˚C 1.43 1.50 1.62 W/m K W/m K W/m K 350˚C 400˚C 500˚C 1.72 1.80 W/m K W/m K 600˚C 700˚C Source: compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.02 Thermal L Page 417 Wednesday, December 31, 1969 17:00 Table 105. THERMAL CONDUCTIVITY OF GLASSES (SHEET 2 OF 5) Thermal Conductivity Units Temperature Range of Validity (22% mol Na2O) (22% mol Na2O) (22% mol Na2O) (22% mol Na2O) (22% mol Na2O) 0.70 kcal/m hr K 450˚C 0.90 1.20 1.55 2.25 kcal/m hr K kcal/m hr K kcal/m hr K kcal/m hr K 850˚C 1050˚C 1250˚C 1500˚C (25% mol Na2O) 0.15 0.25 0.40 0.50 W/m K W/m K W/m K W/m K 35 K 60 K 80 K 100 K 0.60 0.65 0.80 0.85 W/m K W/m K W/m K W/m K 140 K 150 K 190 K 240 K Glass Description SiO2-Na2O glass (25% mol Na2O) (25% mol Na2O) (25% mol Na2O) (25% mol Na2O) (25% mol Na2O) (25% mol Na2O) (25% mol Na2O) Source: compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.02 Thermal L Page 418 Wednesday, December 31, 1969 17:00 Table 105. THERMAL CONDUCTIVITY OF GLASSES (SHEET 3 OF 5) Thermal Conductivity Units Temperature Range of Validity 0.90 0.95 W/m K W/m K 280 K 300 K (27% mol Na2O) (27% mol Na2O) (27% mol Na2O) 0.68 kcal/m hr K 450˚C 0.85 1.10 kcal/m hr K kcal/m hr K 850˚C 1050˚C (27% mol Na2O) (27% mol Na2O) 1.45 kcal/m hr K 1250˚C 1.80 kcal/m hr K 1500˚C (34.05% mol Na2O) (34.05% mol Na2O) (34.05% mol Na2O) 0.5 kcal/m hr K 450˚C 0.75 0.75 kcal/m hr K kcal/m hr K 850˚C 1050˚C 1.20 kcal/m hr K 1250˚C 1.5 kcal/m hr K 1500˚C Glass Description SiO2-Na2O glass (Con’t) (25% mol Na2O) (25% mol Na2O) (34.05% mol Na2O) (34.05% mol Na2O) Source: compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.02 Thermal L Page 419 Wednesday, December 31, 1969 17:00 Table 105. THERMAL CONDUCTIVITY OF GLASSES (SHEET 4 OF 5) Glass Description Thermal Conductivity Units Temperature Range of Validity SiO2-PbO glass (51.9% mol PbO) (51.9% mol PbO) (51.9% mol PbO) (51.9% mol PbO) 0.00089 0.00100 0.00111 0.00123 cal/cm s K cal/cm s K cal/cm s K cal/cm s K -150˚C -100˚C -50˚C 0˚C (51.9% mol PbO) (51.9% mol PbO) (49.3% mol PbO) (66.2% mol PbO) 0.00134 0.00146 0.00130 0.00112 cal/cm s K cal/cm s K cal/cm s K cal/cm s K 50˚C 100˚C 40˚C 40˚C 0.5 0.75 1.5 mW/cm K mW/cm K mW/cm K 2K 5K 20K 1.7 + 0.0054 (T-900) 1.5 + 0.0045 (T-900) 1.25 + 0.0037 (T-900) W/m K W/m K W/m K 1173-1373 K 1173-1373 K 1173-1373 K B2O3 glass B2O3-Na2O glass (3% mol Na2O) (7% mol Na2O) (11% mol Na2O) Source: compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.02 Thermal L Page 420 Wednesday, December 31, 1969 17:00 Table 105. THERMAL CONDUCTIVITY OF GLASSES (SHEET 5 OF 5) Thermal Conductivity Units Temperature Range of Validity (31% mol Na2O) 1.15 + 0.0020 (T-900) 1.0 + 0.0012 (T-900) 0.85 + 0.00075 (T-900) 0.9 + 0.00080 (T-900) W/m K W/m K W/m K W/m K 1173-1373 K 1173-1373 K 1173-1373 K 1173-1373 K (27.6% mol PbO) (31.9% mol PbO) (36.7% mol PbO) 0.522±0.022 0.483±0.016 0.464±0.010 W/m K W/m K W/m K 30˚C 30˚C 30˚C (42.1% mol PbO) (48.3% mol PbO) (55.5% mol PbO) (64.0% mol PbO) 0.433±0.018 0.406±0.020 0.381±0.015 0.351±0.011 W/m K W/m K W/m K W/m K 30˚C 30˚C 30˚C 30˚C Glass Description B2O3-Na2O glass (Con’t) (14% mol Na2O) (19% mol Na2O) (25% mol Na2O) B2O3-PbO glass Source: compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.03 Thermal Page 421 Wednesday, December 31, 1969 17:00 Thermal Properties z Table 106. THERMAL CONDUCTIVITY OF CRYOGENIC INSULATION Cryogenic Thermal Conductivity Range Interspace Pressure Class * Insulation (mW • m–1 • K–1) (mm Hg) 2 Multilayer 0.04—0.2 10–4 3 Opacified powder 0.26—0.7 10–4 4 Evacuated powder 1.0—2.0 10–4 5 Vacuum flask 5.0 10–6 6 7 8 Gas–filled powder Expanded foam Fiber blanket 1.7—7.0 5.0—35 35—45 760 760 760 To convert mm Hg to N • m–2 multiply by 133.32. Source: From Boltz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 529. * 1. Liquid and vapor shields – Very low–temperature, valuable, or dangerous liquids such as helium or fluorine are often shielded by an intermediate cryogenic liquid or vapor container that must in turn be insulated by one of the methods described below. 2. Multilayer reflecting shields – Foil or aluminized plastic alternated with paper-thin glass or plastic-fiber sheets; lowest conductivity, low density, and heat storage; good stability; minimum support structure. 3. Opacified evacuated powders - Contain metallic flakes to reduce radiation; conform to irregular shapes. 4. Evacuated dielectric powders - Very fine powders of low-conductivity adsorbent; moderate vacuum requirement; minimum fire hazard in oxygen. 5. Vacuum flasks (Dewar) - Tight shield-space with highly. reflecting walls and high vacuum; minimum heat capacity; rugged; small thickness. 6. Gas-filled powders – Same powders as Class 4 but with air or inert gas; low cost; easy application; no vacuum requirement. 7. Expanded foams – Very light foamed plastic; inexpensive; minimum weight but bulky; self supporting. 8. Porous fiber blankets – Blanket material of fine fibers, usually glass; minimum cost and easy installation but not an adequate insulation for most cryogenic applications. ©2001 CRC Press LLC Shackelford & Alexander 421 7.03 Thermal Page 422 Wednesday, December 31, 1969 17:00 Thermal Properties Table 107. THERMAL CONDUCTIVITY OF CRYOGENIC SUPPORTS Insulation Support Mean Thermal Conductivity * (W • m–1 • K–1) Aluminum alloy 86 “K” Monel® 17 Stainbss steel 9.3 Titanhm alloy Nylon Teflon 6.1 0.29 0.24 Source: From Boltz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, 529. *Range of Validity is 20–300 K. ©2001 CRC Press LLC 422 CRC Handbook of Materials Science & Engineering 7.03 Thermal Page 423 Wednesday, December 31, 1969 17:00 Thermal Properties Table 108. THERMAL CONDUCTIVITY OF SPECIAL CONCRETES * Description; type of aggregate Thermal Conductivity Btu / (hr • ft • ˚F) Frost resisting; 1% CaCl2; normal aggregates Frost-resisting porous;6% air entrainment Lightweight; with expanded shale or clay 1.0 0.85 0.25 Lightweight; with foamed slag Cinder concrete; fine and coarse Pulverized fuel ash 0.20 0.25 0.25 Lightweight refractory concrete with aluminous cement Lightweight; insulating, with perlite Lightweight; insulating, with expanded vermiculite 0.20 0.15 0.10 Source: from Bolz, R. E. and Tuve, C. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973, p.645. * A great many varieties of aggregates have been used for concrete, dependent largely on the materials available. In general, high density concretes have high strength and high thermal conductivity, although such variables as water/cement ratio, percentage of fines, and curing conditions may result in wide differences in properties with the same materials. ©2001 CRC Press LLC Shackelford & Alexander 423 7.03 Thermal Page 424 Wednesday, December 31, 1969 17:00 Thermal Properties Table 109. THERMAL CONDUCTIVITY OF SIC-WHISKER -REINFORCED CERAMICS Thermal Conductivity (W/m • K) Composite at 22 °C at 600 °C Alumina Alumina with 20 vol% SiC whiskers SiC Mullite with 20 vol% SiC whiskers 36 ± 5 32 95 7.2 12 ± 3 16 50 — Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p173,(1994). ©2001 CRC Press LLC 424 CRC Handbook of Materials Science & Engineering 7.04 Thermal L Page 425 Wednesday, December 31, 1969 17:00 Table 110. THERMAL CONDUCTIVITY OF POLYMERS (SHEET 1 OF 10) Class ABS Resins; Molded, Extruded Acrylics; Cast, Molded, Extruded Thermoset Carbonate Polymer Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F) Medium impact High impact 0.08—0.18 0.12—0.16 Very high impact Low temperature impact Heat resistant 0.01—0.14 0.08—0.14 0.12—0.20 Cast Resin Sheets, Rods: General purpose, type I 0.12 General purpose, type II Moldings: Grades 5, 6, 8 High impact grade 0.12 0.12 0.12 Allyl diglycol carbonate 1.45 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.04 Thermal L Page 426 Wednesday, December 31, 1969 17:00 Table 110. THERMAL CONDUCTIVITY OF POLYMERS (SHEET 2 OF 10) Class Polymer Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F) Alkyds; Molded Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts) 0.35—0.60 0.35—0.60 0.35—0.60 0.20—0.30 Cellulose Acetate; Molded, Extruded ASTM Grade: H6—1 H4—1 H2—1 0.10—0.19 0.10—0.19 0.10—0.19 MH—1, MH—2 MS—1, MS—2 S2—1 0.10—0.19 0.10—0.19 0.10—0.19 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.04 Thermal L Page 427 Wednesday, December 31, 1969 17:00 Table 110. THERMAL CONDUCTIVITY OF POLYMERS (SHEET 3 OF 10) Class Cellulose Acetate Butyrate; Molded, Extruded Cellulose Acetate Propionate; Molded, Extruded Polymer Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F) ASTM Grade: H4 MH S2 0.10—0.19 0.10—0.19 0.10—0.19 ASTM Grade: 1 3 6 0.10—0.19 0.10—0.19 0.10—0.19 Chlorinated Polymers Chlorinated polyether Chlorinated polyvinyl chloride 0.91 0.95 Polycarbonates Polycarbonate Polycarbonate (40% glass fiber reinforced) 0.11 0.13 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.04 Thermal L Page 428 Wednesday, December 31, 1969 17:00 Table 110. THERMAL CONDUCTIVITY OF POLYMERS (SHEET 4 OF 10) Class Polymer Fluorocarbons; Molded,Extruded Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) Epoxies; Cast, Molded, Reinforced Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Molded High strength laminate Melamines; Molded Nylons; Molded, Extruded Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F) 0.145 0.14 0.12 0.14 0.1—0.3 0.1—0.5 2.35 Filler & type Cellulose electrical Glass fiber 0.17—0.20 0.28 Type 6 General purpose Glass fiber (30%) reinforced Cast 1.2—1.69 1.69—3.27 1.2—1.7 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.04 Thermal L Page 429 Wednesday, December 31, 1969 17:00 Table 110. THERMAL CONDUCTIVITY OF POLYMERS (SHEET 5 OF 10) Class Nylons; Molded, Extruded (Con’t) Polymer Type 11 Type 12 6/6 Nylon General purpose molding Glass fiber reinforced General purpose extrusion 6/10 Nylon General purpose Glass fiber (30%) reinforced Phenolics; Molded Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F) 1.5 1.7 1.69—1.7 1.5— 3.3 1.7 1.5 3.5 0.097—0.3 0.1—0.16 0.097—0.170 0.2 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.04 Thermal L Page 430 Wednesday, December 31, 1969 17:00 Table 110. THERMAL CONDUCTIVITY OF POLYMERS (SHEET 6 OF 10) Class Phenolics: Molded Polymer Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F) Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos 0.24—0.34 0.12 0.05 0.04 ABS–Polycarbonate Alloy 2.46 (per ft) PVC–Acrylic Alloy PVC–acrylic sheet PVC–acrylic injection molded 1.01 0.98 Polymides Unreinforced Unreinforced 2nd value Glass reinforced 6.78 3.8 3.59 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.04 Thermal L Page 431 Wednesday, December 31, 1969 17:00 Table 110. THERMAL CONDUCTIVITY OF POLYMERS (SHEET 7 OF 10) Class Polyacetals Polyester; Thermoplastic Polyesters: Thermosets Phenylene Oxides Polymer Homopolymer: Standard Copolymer: Standard High flow Injection Moldings: General purpose grade Cast polyyester Rigid Reinforced polyester moldings High strength (glass fibers) SE—100 SE—1 Glass fiber reinforced Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F) 0.13 0.16 1.6 0.36—0.55 0.10—0.12 1.32—1.68 1.1 1.5 1.15,1.1 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.04 Thermal L Page 432 Wednesday, December 31, 1969 17:00 Table 110. THERMAL CONDUCTIVITY OF POLYMERS (SHEET 8 OF 10) Class Phenylene oxides (Noryl) Polypropylene: Polyethylenes; Molded, Extruded Polymer Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F) Standard 1.8 Polyarylsulfone 1.1 General purpose High impact Polyphenylene sulfide: Standard 40% glass reinforced Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200 1.21—1.36 1.72 2 2 0.19 0.19 0.19 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.04 Thermal L Page 433 Wednesday, December 31, 1969 17:00 Table 110. THERMAL CONDUCTIVITY OF POLYMERS (SHEET 9 OF 10) Class Polyethylenes; Molded, Extruded (Con’t) Polystyrenes; Molded Polymer Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F) Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9 0.19 0.19 Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight 0.19 0.19 0.19 0.19 Polystyrenes General purpose Medium impact High impact Glass fiber -30% reinforced 0.058—0.090 0.024—0.090 0.024—0.090 0.117 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.04 Thermal L Page 434 Wednesday, December 31, 1969 17:00 Table 110. THERMAL CONDUCTIVITY OF POLYMERS (SHEET 10 OF 10) Class Polyvinyl Chloride And Copolymers; Molded, Extruded Polymer Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F) Nonrigid—general 0.07—0.10 Nonrigid—electrical Rigid—normal impact 0.07—0.10 0.07—0.10 Vinylidene chloride 0.053 Silicones; Molded, Laminated Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate 0.18 0.25—0.5 0.075—0.125 Ureas; Molded Alpha—cellulose filled (ASTM Type l) 0.17—0.244 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.05 Thermal Page 435 Wednesday, December 31, 1969 17:00 Thermal Properties Table 111. THERMAL CONDUCTIVITY OF FIBERGLASS REINFORCED PLASTICS Thermal conductivity (Btu • in/ft 2 • h •˚F) Class Material Glass fiber content (wt%) Glass fiber reinforced thermosets Sheet molding compound (SMC) 15 to 30 1.3 to 1.7 Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester 15 to 35 25 to 50 20 to 30 1.3 to 1.7 1.3 to 1.8 1.3 to 1.8 Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic 30 to 50 30 to 80 40 to 80 5 to 25 1.2 to 1.6 1.92 to 2.28 1.92 to 2.28 1.1 to 2.0 Thermoplastic polyester 20 to 35 1.3 Glass–fiber–reinforced thermoplastic To convert (Btu • in/ft2 • h •˚F) to (W/m • K), multiply by 0.144 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994). ©2001 CRC Press LLC Shackelford & Alexander 435 7.05 Thermal Page 436 Wednesday, December 31, 1969 17:00 Thermal Properties Table 112. THERMAL EXPANSION OF WROUGHT STAINLESS STEELS * (SHEET 1 OF 2) Coefficient of Thermal Expansion (µm/m • °C) Type UNS Designation 0-100°C 100-315°C 0-538°C 201 202 205 301 S20100 S20200 S20500 S30100 15.7 17.5 — 17.0 17.5 18.4 17.9 17.2 18.4 19.2 19.1 18.2 302 302B 303 304 S30200 S30215 S30300 S30400 17.2 16.2 17.2 17.2 17.8 18.0 17.8 17.8 18.4 19.4 18.4 18.4 S30430 305 308 309 S30430 S30500 S30800 S30900 17.2 17.2 17.2 15.0 17.8 17.8 17.8 16.6 — 18.4 18.4 17.2 310 314 316 317 S31000 S31400 S31600 S31700 15.9 — 15.9 15.9 16.2 15.1 16.2 16.2 17.0 — 17.5 17.5 317L 321 330 347 S31703 S32100 N08330 S34700 16.5 16.6 14.4 16.6 — 17.2 16.0 17.2 18.1 18.6 16.7 18.6 384 405 409 410 S38400 S40500 S40900 S41000 17.2 10.8 11.7 9.9 17.8 11.6 — 11.4 18.4 12.1 — 11.6 414 416 420 S41400 S41600 S42000 10.4 9.9 10.3 11.0 11.0 10.8 12.1 11.6 11.7 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p360, (1993). ©2001 CRC Press LLC 436 CRC Handbook of Materials Science & Engineering 7.05 Thermal Page 437 Wednesday, December 31, 1969 17:00 Thermal Properties Table 112. THERMAL EXPANSION OF WROUGHT STAINLESS STEELS * (SHEET 2 OF 2) Coefficient of Thermal Expansion (µm/m • °C) Type UNS Designation 0-100°C 100-315°C 0-538°C 422 429 430 430F S42200 S42900 S43000 S43020 11.2 10.3 10.4 10.4 11.4 — 11.0 11.0 11.9 — 11.4 11.4 431 434 436 440A S43100 S43400 S43600 S44002 10.2 10.4 9.3 10.2 12.1 11.0 — — — 11.4 — — 440C 444 446 PH 13–8 Mo S44004 S44400 S44600 S13800 10.2 10.0 10.4 10.6 — 10.6 10.8 11.2 — 11.4 11.2 11.9 15–5 PH 17–4 PH 17–7 PH S15500 S17400 S17700 10.8 10.8 11.0 11.4 11.6 11.6 — — — Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p360, (1993). * Annealed Condition. ©2001 CRC Press LLC Shackelford & Alexander 437 7.06 Thermal L Page 438 Wednesday, December 31, 1969 17:00 Table 113. THERMAL EXPANSION OF WROUGHT TITANIUM ALLOYS (SHEET 1 OF 2) Coefficient of Linear Thermal Expansion (µm/m • K) Class Metal or Alloy 20-100 °C 20-205 °C 20-315 °C 20-425 °C 20-540 °C 20-650 °C 20-815 °C Commercially Pure 99.5Ti 99.2Ti 99.1Ti 8.6 8.6 8.6 — — — 9.2 9.2 9.2 — — — 9.7 9.7 9.7 10.1 10.1 10.1 10.1 10.1 10.1 99.0Ti 99.2 Ti–0.2Pd 8.6 8.6 — — 9.2 9.2 — — 9.7 9.7 10.1 10.1 10.1 10.1 Alpha Alloys Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2) 9.4 9.4 — — 9.5 9.5 — — 9.5 9.7 9.7 9.9 10.1 10.1 Near Alpha Alloys Ti-8Al-1Mo-1V Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Ti-6Al-2Sn-4Zr-2Mo 8.5 8.5 7.7 — — — 9.0 9.2 8.1 — — — 10.1 9.4 8.1 10.3 — — — — — Ti-5Al-5Sn-2Zr-2Mo-0.25Si Ti-6Al-2Nb-1Ta-1Mo — — — — — — — — — — — 9.0 10.3 — Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p511, (1993). ©2001 CRC Press LLC 7.06 Thermal L Page 439 Wednesday, December 31, 1969 17:00 Table 113. THERMAL EXPANSION OF WROUGHT TITANIUM ALLOYS (SHEET 2 OF 2) Coefficient of Linear Thermal Expansion (µm/m • K) Class Metal or Alloy 20-100 °C 20-205 °C 20-315 °C 20-425 °C 20-540 °C 20-650 °C 20-815 °C Alpha-Beta Alloys Ti-8Mn Ti-3Al-2.5V Ti-6Al-4V Ti-6Al-4V (low O2) 8.6 9.5 8.6 8.6 9.2 — 9.0 9.0 9.7 9.9 9.2 9.2 10.3 — 9.4 9.4 10.8 9.9 9.5 9.5 11.7 — 9.7 9.7 12.6 — — — Ti-6Al-6V-2Sn Ti-7Al-4Mo Ti-6Al-2Sn-4Zr-6Mo Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25Si 9.0 9.0 9.0 — — 9.2 9.2 — 9.4 9.4 9.4 9.2 — 9.7 9.5 — 9.5 10.1 9.5 — — 10.4 — — — 11.2 — — Ti-13V-11Cr-3Al Ti-8Mo-8V-2Fe-3Al 9.4 — — — 10.1 — 10.6 — — — — — Ti-3Al-8V-6Cr-4Mo-4Zr — — — — — 9.68 (to 900 •F) — — — Beta Alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p511, (1993). ©2001 CRC Press LLC 7.06 Thermal L Page 440 Wednesday, December 31, 1969 17:00 Table 114. THERMAL EXPANSION OF GRAPHITE MAGNESIUM CASTINGS * Fiber Type Fiber content Fiber orientation Casting Fiber Preform Method Coefficient of Thermal Expansion (10-6/K) P75 40% plus 9% 40% ±16° 90° ± 16° Hollow cylinder Hollow cylinder Hollow cylinder Filament wound Filament wound Filament wound 1.3 1.3 –0.07 40% 30% 10% 0° 0° plus 90° Plate Plate Plate Prepreg Prepreg Prepreg 2.3 4.5 4.5 P100 P55 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). * Pitch-base fibers ©2001 CRC Press LLC 7.07 Thermal Page 441 Wednesday, December 31, 1969 17:00 Thermal Properties Table 115. LINEAR THERMAL EXPANSION OF METALS AND ALLOYS (SHEET 1 OF 8) Coefficient of Thermal Expansion (µm/m • °C) Class Metal or Alloy Temperature (°C) Aluminum and Aluminum Alloys Aluminum (99.996%) 20 to 100 23.6 Wrought Alloys EC, 1060, 1100 2011, 2014 2024 2218 20 to 100 20 to 100 20 to 100 20 to 100 23.6 23.0 22.8 22.3 3003 4032 5005, 5050, 5052 5056 20 to 100 20 to 100 20 to 100 20 to 100 23.2 19.4 23.8 24.1 5083 5086 5154 5357 20 to 100 60 to 300 20 to 100 20 to 100 23.4 23.9 23.9 23.7 5456 6061, 6063 6101, 6151 20 to 100 20 to 100 20 to 100 23.9 23.4 23.0 7075 7079, 7178 20 to 100 20 to 100 23.2 23.4 A13 43 and 108 A108 A132 20 to 100 20 to 100 20 to 100 20 to 100 20.4 22.0 21.5 19.0 D132 F132 138 142 20 to 100 20 to 100 20 to 100 20 to 100 20.05 20.7 21.4 22.5 Casting Alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154-155, (1993). ©2001 CRC Press LLC Shackelford & Alexander 441 7.07 Thermal Page 442 Wednesday, December 31, 1969 17:00 Thermal Properties Table 115. LINEAR THERMAL EXPANSION OF METALS AND ALLOYS (SHEET 2 OF 8) Class Metal or Alloy Temperature (°C) Coefficient of Thermal Expansion (µm/m • °C) 195 B195 214 220 20 to 100 20 to 100 20 to 100 20 to 100 23.0 22.0 24.0 25.0 319 355 356 360 20 to 100 20 to 100 20 to 100 20 to 100 21.5 22.0 21.5 21.0 750 40E 20 to 100 21 to 93 23.1 24.7 Pure copper Electrolytic tough pitch copper (ETP) Deoxidized copper, high residual phosphorus (DHP) 20 16.5 20 to 100 16.8 20 to 300 17.7 Copper and Copper Alloys Wrought Coppers Wrought Alloys Oxygen-free copper Free machining copper, 0.5% Te or 1% Pb 20 to 300 17.7 20 to 300 17.7 Gilding, 95% Commercial bronze, 90% Jewelry bronze, 87.5% 20 to 300 20 to 300 20 to 300 18.1 18.4 18.6 Red brass, 85% Low brass, 80% Cartridge brass, 70% Yellow brass 20 to 300 20 to 300 20 to 300 20 to 300 18.7 19.1 19.9 20.3 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154-155, (1993). ©2001 CRC Press LLC 442 CRC Handbook of Materials Science & Engineering 7.07 Thermal Page 443 Wednesday, December 31, 1969 17:00 Thermal Properties Table 115. LINEAR THERMAL EXPANSION OF METALS AND ALLOYS (SHEET 3 OF 8) Class Metal or Alloy Temperature (°C) Coefficient of Thermal Expansion (µm/m • °C) Muntz metal Leaded commercial bronze Low-leaded brass Medium-leaded brass 20 to 300 20 to 300 20 to 300 20 to 300 20.8 18.4 20.2 20.3 High-leaded brass Extra-high-leaded brass Free-cutting brass Leaded Muntz metal 20 to 300 20 to 300 20 to 300 20 to 300 20.3 20.5 20.5 20.8 Forging brass Architectural bronze Inhibited admiralty Naval brass 20 to 300 20 to 300 20 to 300 20 to 300 20.7 20.9 20.2 21.2 Leaded naval brass Manganese bronze (longitudinal) Manganese bronze (transverse) 20 to 300 21.2 20 to 300 21.2 20 to 300 23.4 Phosphor bronze, 5% (longitudinal) Phosphor bronze, 5% (transverse) Phosphor bronze, 8% (longitudinal) Phosphor bronze, 8% (transverse) 20 to 300 17.8 20 to 300 23.4 20 to 300 18.2 20 to 300 19.4 Phosphor bronze, 10% (longitudinal) Phosphor bronze, 1.25% Free-cutting phosphor bronze 20 to300 18.4 20 to 300 17.8 20 to 300 17.3 Cupro-nickel, 30% Cupro-nickel, 10% 20 to 300 20 to 300 16.2 17.1 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154-155, (1993). ©2001 CRC Press LLC Shackelford & Alexander 443 7.07 Thermal Page 444 Wednesday, December 31, 1969 17:00 Thermal Properties Table 115. LINEAR THERMAL EXPANSION OF METALS AND ALLOYS (SHEET 4 OF 8) Class Casting Alloys Manganese bronze Metal or Alloy Temperature (°C) Coefficient of Thermal Expansion (µm/m • °C) Nickel silver, 65-18 Nickel silver, 55-18 Nickel silver, 65-12 20 to 300 20 to 300 20 to 300 16.2 16.7 16.2 High-silicon bronze (longitudinal) High-silicon bronze (transverse) Low-silicon bronze (longitudinal) Low-silicon bronze (transverse) 20 to 300 18.0 20 to 300 23.4 20 to 300 17.9 20 to 300 21.1 Aluminum bronze Aluminum-silicon bronze Aluminum bronze Beryllium copper 20 to 300 20 to 300 20 to 300 20 to 300 16.4 18.0 16.8 17.8 88Cu-8Sn-4Zn 89Cu-11Sn 88Cu-6Sn-1.5Pb-4 .5Zn 87Cu-8Sn-1Pb-4Zn 21 to 177 20 to 300 21 to 260 21 to 177 18.0 18.4 18.5 18.0 87Cu-10Sn-1Pb-2Zn 80Cu-10Sn-10Pb 78Cu-7Sn-15Pb 85Cu-5Sn-5Pb- 5Zn 21 to 177 21 to 204 21 to 204 21 to 204 18.0 18.5 18.5 18.1 72Cu-1Sn-3Pb-24Zn 67Cu-1Sn-3Pb-29Zn 61Cu-1Sn-1Pb-37Zn 21 to 93 21 to 93 21 to 260 20.7 20.2 21.6 Manganese bronze, 60 ksi Manganese bronze, 65 ksi Manganese bronze, 110 ksi 21 to 204 21 to 93 21 to 260 20.5 21.6 19.8 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154-155, (1993). ©2001 CRC Press LLC 444 CRC Handbook of Materials Science & Engineering 7.07 Thermal Page 445 Wednesday, December 31, 1969 17:00 Thermal Properties Table 115. LINEAR THERMAL EXPANSION OF METALS AND ALLOYS (SHEET 5 OF 8) Coefficient of Thermal Expansion (µm/m • °C) Class Metal or Alloy Temperature (°C) Iron and Iron Alloys Pure iron Fe-C alloy 0.06% C Fe-C alloy 0.22% C Fe-C alloy 0.40% C Fe-C alloy 0.56% C 20 20 to 100 20 to 100 20 to 100 20 to 100 11.7 11.7 11.7 11.3 11.0 Fe-C alloy 1.08% C Fe-C alloy 1.45% C Invar (36% Ni) 13Mn-1.2C 20 to 100 20 to 100 20 20 10.8 10.1 0-2 18.0 13Cr-0.35C 12.3Cr-0.4Ni-0.09C 17.7Cr-9.6Ni-0.06C 20 to 100 20 to 100 20 to 100 10.0 9.8 16.5 18W-4Cr-1V Gray cast iron Malleable iron (pearlitic) 0 to 100 0 to 100 20 to 400 11.2 10.5 12 Corroding lead (99.73 + % Pb) 5-95 solder 20-80 solder 50-50 solder 17 to 100 29.3 15 to 110 15 to 110 15 to 110 28.7 26.5 23.4 1% antimonial lead 8% antimonial lead 9% antimonial lead 20 to 100 20 to 100 20 to 100 28.8 26.7 26.4 Hard lead(96Pb-4Sb) Hard lead(94Pb-6Sb) Lead-base babbitt SAE 14 Lead-base babbitt Alloy 8 20 to 100 20 to 100 20 to 100 20 to 100 27.8 27.2 19.6 24.0 Magnesium (99.8%) 20 25.2 Lead and Lead Alloys Magnesium and Magnesium Alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154-155, (1993). ©2001 CRC Press LLC Shackelford & Alexander 445 7.07 Thermal Page 446 Wednesday, December 31, 1969 17:00 Thermal Properties Table 115. LINEAR THERMAL EXPANSION OF METALS AND ALLOYS (SHEET 6 OF 8) Coefficient of Thermal Expansion (µm/m • °C) Class Metal or Alloy Temperature (°C) Casting alloys AM100A AZ63A AZ91A,B,C AZ92A 18 to 100 20 to 100 20 to 100 18 to 100 25.2 26.1 26 25.2 HZ32A ZH42 ZH62A ZK51A 20 to 200 20 to 200 20 to 200 20 26.7 27 27.1 26.1 EZ33A EK30A, EK41A 20 to 100 20 to 100 26.1 26.1 M1A, A3A AZ31B,PE AZ61A, Z80A 20 to 100 20 to 100 20 to 100 26 26 26 ZK60A, B HM31A 20 to 100 20 to 93 26 26.1 Nickel (99.95% Ni + Co) 0 to 100 13.3 Duranickel Monel Monel (cast) Inconel 0 to 100 0 to 100 25 to 100 20 to 100 13.0 14.0 12.9 11.5 Ni-o-nel Hastelloy B Hastelloy C Hastelloy D 27 to 93 0 to 100 0 to 100 0 to 100 12.9 10.0 11.3 11.0 Hastelloy F Hastelloy N Hastelloy W Hastelloy X 20 to 100 21 to 204 23 to 100 26 to 100 14.2 10.4 11.3 13.8 Wrought Alloys Nickel and Nickel Alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154-155, (1993). ©2001 CRC Press LLC 446 CRC Handbook of Materials Science & Engineering 7.07 Thermal Page 447 Wednesday, December 31, 1969 17:00 Thermal Properties Table 115. LINEAR THERMAL EXPANSION OF METALS AND ALLOYS (SHEET 7 OF 8) Class Tin and Tin Alloys Titanium and Titanium Alloys Zinc and Zinc Alloys Pure Metals Metal or Alloy Temperature (°C) Coefficient of Thermal Expansion (µm/m • °C) Illium G Illium R 80Ni-20Cr 60Ni-24Fc-l6Cr 0 to 100 0 to 100 20 to 1000 20 to 1000 12.19 12.02 17.3 17.0 35Ni-45Fe-20Cr Constantan 20 to 500 20 to 1000 15.8 18.8 Pure tin 0 to 100 23 Solder (70Sn-30Pb) Solder (63Sn-37Pb) 15 to 110 15 to 110 21.6 24.7 99.9% Ti 20 8.41 99.0% Ti Ti-5Al-2.5Sn Ti-8Mn 93 93 93 8.55 9.36 8.64 Pure zinc AG40A alloy AC41A alloy 20 to 250 20 to 100 20 to 100 39.7 27.4 27.4 Commercial rolled zinc 0.08 Pb Commercial rolled zinc 0.3 Pb, 0.3 Cd Rolled zinc alloy (1 Cu, 0.010 Mg) Zn-Cu-Ti alloy (0.8 Cu, 0.15 Ti) 20 to 40 32.5 20 to 98 33.9 20 to 100 34.8 20 to 100 24.9 25 to 100 20 0 to 400 20 11.6 29.8 22.3 6.2 Beryllium Cadmium Calcium Chromium Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154-155, (1993). ©2001 CRC Press LLC Shackelford & Alexander 447 7.07 Thermal Page 448 Wednesday, December 31, 1969 17:00 Thermal Properties Table 115. LINEAR THERMAL EXPANSION OF METALS AND ALLOYS (SHEET 8 OF 8) Class Metal or Alloy Temperature (°C) Coefficient of Thermal Expansion (µm/m • °C) Cobalt Gold Iridium Lithium 20 20 20 20 13.8 14.2 6.8 56 Manganese Palladium Platinum Rhenium 0 to 100 20 20 20 to 500 22 11.76 8.9 6.7 Rhodium Ruthenium Silicon Silver 20 to 100 20 0 to 1400 0 to 100 8.3 9.1 5 19.68 Tungsten Vanadium Zirconium 27 23 to 100 — 4.6 8.3 5.85 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154-155, (1993). ©2001 CRC Press LLC 448 CRC Handbook of Materials Science & Engineering 7.08 Thermal L Page 449 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 1 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Borides Chromium Diboride (CrB2) 4.6–11.1 x 10–6 for 20–1000˚C Hafnium Diboride (HfB2) 5.5 –5.54 x 10–6 for room temp.–1000˚C Tantalum Diboride (TaB2) 5.1 x 10–6 at room temp. Titanium Diboride (TiB2) 4.6–8.1 x 10–6 Zirconium Diboride (ZrB2) 5.69 x 10–6 for 25–500˚C 5.5–6.57 x 10–6 ˚C for 25–1000˚C 6.98 x 10–6 for 20–1500˚C Carbides Boron Carbide (B4C) 4.5 x 10–6 for room temp.–800˚C 4.78 x 10–6 for 25–500˚C 5.54 x 10–6 for 25–1000˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 450 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 2 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Carbides (Con’t) Boron Carbide (B4C) (Con’t) 6.02 x 10–6 for 25–1500˚C 6.53 x 10–6 for 25–2000˚C 7.08 x 10–6 for 25–2500˚C Hafnium Monocarbide (HfC) 6.27–6.59 x 10–6 for 25–650˚C 6.25 x 10–6 for 25–1000˚C Silicon Carbide (SiC) 4.63 x 10–6 for 25–500˚C 5.12 x 10–6 for 25–1000˚C 5.48 x 10–6 for 25–1500˚C 5.77 x 10–6 for 25–2000˚C 5.94 x 10–6 for 25–2500˚C 4.70 x 10–6 for 20–1500˚C 4.70 x 10–6 for 0–1700˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 451 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 3 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Carbides (Con’t) Tantalum Monocarbide (TaC) 6.29–6.32 x 10–6 for 25–500˚C 6.67 x 10–6 for 25–1000˚C 7.12 x 10–6 for 25–1500˚C 7.64 x 10–6 for 25–2000˚C 8.40 x 10–6 for 25–2500˚C 6.50 x 10–6 for 0–1000˚C 6.64 x 10–6 for 0–1200˚C Titanium Monocarbide (TiC) 6.52–7.15 x 10–6 for 25–500˚C 7.18–7.45 x 10–6 for 25–750˚C 7.40–8.82 x 10–6 for 25–1000˚C 9.32 x 10–6 for 25–1250˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 452 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 4 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Carbides (Con’t) Titanium Monocarbide (TiC) (Con’t) 8.15–9.45 x 10–6 for 25–1500˚C 8.81 x 10–6 for 25–2000˚C 7.90 x 10–6 for 0–2500˚C 7.08 x 10–6 for 0–750˚C 7.85–7.86 x 10–6 for 0–1000˚C 8.02 x 10–6 for 0–1275˚C 8.29 x 10–6 for 0–1400˚C 8.26 x 10–6 for 0–1525˚C 8.40 x 10–6 for 0–1775˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 453 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 5 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Carbides (Con’t) Trichromium Dicarbide (Cr3C2) 8.00 x 10–6 for 25–500˚C 9.95 x 10–6 for 25–500˚C 8.8 x 10–6 for 25–120˚C 10.9 x 10–6 for 150–980˚C Tungsten Monocarbide (WC) 4.42 x 10–6 for 25–500˚C 4.84–4.92 x 10–6 for 25–1000˚C 5.35–5.8 x 10–6 for 25–1500˚C 5.82–7.4 x 10–6 for 25–2000˚C Zirconium Monocarbide (ZrC) 6.10x 10–6 for 25–500˚C 6.65x 10–6 for 25–800˚C 6.56x 10–6 for 25–1000˚C 7.06x 10–6 for 25–1500˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 454 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 6 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Carbides (Con’t) Zirconium Monocarbide (ZrC) (Con’t) 7.65x 10–6 for 25–650˚C 6.10–6.73 x 10–6 for 25–650˚C 6.32x 10–6 for 0–750˚C 6.46–6.66x 10–6 for 0–1000˚C 6.68x 10–6 for 0–1275˚C 6.83x 10–6 for 0–1525˚C 6.98x 10–6 for 0–1775˚C 9.0x 10–6 for 1000–2000˚C Nitrides Aluminum Nitride (AlN) 4.03 x 10–6 for 25 to 200˚C 4.84 x 10–6 for 25 to 500˚C 4.83 x 10–6 for 25 to 600˚C 5.54–5.64 x 10–6 for 25 to 1000˚C 6.09 x 10–6 for 25 to 1350˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 455 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 7 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Nitrides (Con’t) Boron Nitride (BN) 12.2 x 10–6 for 25 to 500˚C 13.3 x 10–6 for 25 to 1000˚C parallel to c axis 10.15 x 10–6 for 25 to 350˚C 8.06 x 10–6 for 25 to 700˚C 7.15 x 10–6 for 25 to 1000˚C parallel to a axis 0.59 x 10–6 for 25 to 350˚C 0.89 x 10–6 for 25 to 700˚C 0.77 x 10–6 for 25 to 1000˚C Titanium Mononitride (TiN) 9.35 x 10–6 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 456 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 8 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Nitrides (Con’t) Trisilicon tetranitride (Si3N4) 2.11 x 10–6 for 25 to 500˚C 2.87 x 10–6 for 25 to 1000˚C 3.66 x 10–6 for 25 to 1500˚C (hot pressed) 3–3.9 x 10–6 for 20 to 1000˚C (sintered) 3.5 x 10–6 for 20 to 1000˚C (reaction sintered) 2.9 x 10–6 for 20 to 1000˚C (pressureless sintered) 3.7 x 10–6 for 40 to 1000˚C Zirconium Mononitride (TiN) 6.13 x 10–6 for 20–450˚C 7.03 x 10–6 for 20–680˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 457 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 9 OF 34) Class Ceramic Oxides Aluminum Oxide (Al2O3) parallel to c axis CERAMICS Thermal Expansion (˚C–1) 1.95 x 10–6 for 0 to –273˚C 3.01 x 10–6 for 0 to –173˚C 4.39 x 10–6 for 0 to –73˚C 5.31 x 10–6 for 0 to 27˚C 6.26 x 10–6 for 0 to 127˚C 6.86 x 10–6 for 0 to 227˚C 7.31 x 10–6 for 0 to 327˚C 7.68 x 10–6 for 0 to 427˚C 7.96 x 10–6 for 0 to 527˚C 8.19 x 10–6 for 0 to 627˚C 8.38 x 10–6 for 0 to 727˚C 8.52 x 10–6 for 0 to 827˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 458 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 10 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Aluminum Oxide (Al2O3) parallel to c axis (Con’t) 8.65 x 10–6 for 0 to 927˚C 8.75 x 10–6 for 0 to 1027˚C 8.84 x 10–6 for 0 to 1127˚C 8.92 x 10–6 for 0 to 1227˚C 8.98 x 10–6 for 0 to 1327˚C 9.02 x 10–6 for 0 to 1427˚C 9.08 x 10–6 for 0 to 1527˚C 9.13 x 10–6 for 0 to 1627˚C 9.18 x 10–6 for 0 to 1727˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 459 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 11 OF 34) Class Ceramic Oxides (Con’t) Aluminum Oxide (Al2O3) (single crystal) perpendicular to c axis CERAMICS Thermal Expansion (˚C–1) 1.65 x 10–6 for 0 to –273˚C 2.55 x 10–6 for 0 to –173˚C 3.75 x 10–6 for 0 to –73˚C 4.78 x 10–6 for 0 to 27˚C 5.51 x 10–6 for 0 to 127˚C 6.10 x 10–6 for 0 to 227˚C 6.52 x 10–6 for 0 to 327˚C 6.88 x 10–6 for 0 to 427˚C 7.15 x 10–6 for 0 to 527˚C 7.35 x 10–6 for 0 to 627˚C 7.53 x 10–6 for 0 to 727˚C 7.67 x 10–6 for 0 to 827˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 460 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 12 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Aluminum Oxide (Al2O3) (single crystal) (Con’t) 7.80 x 10–6 for 0 to 927˚C perpendicular to c axis (Con’t) 7.88 x 10–6 for 0 to 1027˚C 7.96 x 10–6 for 0 to 1127˚C 8.05 x 10–6 for 0 to 1227˚C 8.12 x 10–6 for 0 to 1327˚C 8.16 x 10–6 for 0 to 1427˚C 8.20 x 10–6 for 0 to 1527˚C 8.26 x 10–6 for 0 to 1627˚C 8.30 x 10–6 for 0 to 1727˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 461 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 13 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Aluminum Oxide (Al2O3) (Con’t) 1.89 x 10–6 for 0 to –273˚C (polycrystalline) 2.91 x 10–6 for 0 to –173˚C 4.10 x 10–6 for 0 to –73˚C 5.60 x 10–6 for 0 to 27˚C 6.03 x 10–6 for 0 to 127˚C 6.55 x 10–6 for 0 to 227˚C 6.93 x 10–6 for 0 to 327˚C 7.24 x 10–6 for 0 to 427˚C 7.50 x 10–6 for 0 to 527˚C 7.69 x 10–6 for 0 to 627˚C 7.83 x 10–6 for 0 to 727˚C 7.97 x 10–6 for 0 to 827˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 462 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 14 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Aluminum Oxide (Al2O3) (Con’t) 8.08 x 10–6 for 0 to 927˚C (polycrystalline) (Con’t) 8.18 x 10–6 for 0 to 1027˚C 8.25 x 10–6 for 0 to 1127˚C 8.32 x 10–6 for 0 to 1227˚C 8.39 x 10–6 for 0 to 1327˚C 8.45 x 10–6 for 0 to 1427˚C 8.49 x 10–6 for 0 to 1527˚C 8.53 x 10–6 for 0 to 1627˚C 8.58 x 10–6 for 0 to 1727˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 463 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 15 OF 34) Class Ceramic Oxides (Con’t) Beryllium Oxide (BeO) (single crystal) parallel to c axis CERAMICS Thermal Expansion (˚C–1) 6.3 x 10–6 for 28 to 252˚C 6.7 x 10–6 for 28 to 474˚C 7.8 x 10–6 for 28 to 749˚C 8.2 x 10–6 for 28 to 872˚C 8.9 x 10–6 for 28 to 1132˚C Beryllium Oxide (BeO) (single crystal) perpendicular to c axis 7.1 x 10–6 for 28 to 252˚C 7.8 x 10–6 for 28 to 474˚C 8.5 x 10–6 for 28 to 749˚C 9.2 x 10–6 for 28 to 872˚C 9.9 x 10–6 for 28 to 1132˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 464 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 16 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Beryllium Oxide (BeO) (single crystal) 6.83 x 10–6 for 28 to 252˚C average for (2a+c)/3 7.43 x 10–6 for 28 to 474˚C 8.27 x 10–6 for 28 to 749˚C 8.87 x 10–6 for 28 to 872˚C 9.57 x 10–6 for 28 to 1132˚C Beryllium Oxide (BeO) (polycrystalline) 2.4 x 10–6 for 25–200˚C 6.3–6.4 x 10–6 for 25–300˚C 7.59 x 10–6 for 25–500˚C 8.4–8.5 x 10–6 for 25–800˚C 9.03 x 10–6 for 25–1000˚C 9.18 x 10–6 for 25–1250˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 465 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 17 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Beryllium Oxide (BeO) (polycrystalline) (Con’t) 10.3 x 10–6 for 25–1500˚C 11.1 x 10–6 for 25–2000˚C 9.40 x 10–6 for 500–1200˚C Cerium Dioxide (CeO2) 8.22 x 10–6 for 25–500˚C 8.92 x 10–6 for 25–1000˚C 8.5 + 0.54T for 0–1000˚C Dichromium Trioxide (Cr2O3) 8.43 x 10–6 for 25–500˚C 8.62 x 10–6 for 25–1000˚C 8.82 x 10–6 for 25–1500˚C 9.55 x 10–6 for 20–1400˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 466 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 18 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Hafnium Dioxide (HfO2) (monoclinic single crystal) 6.8x10–6 for 28–262˚C parallel to a axis 6.2x10–6 for 28–494˚C 6.7x10–6 for 28–697˚C 7.5x10–6 for 28–903˚C 7.9x10–6 for 28–1098˚C parallel to b axis 0 for 28–262˚C 0.9x10–6 for 28–494˚C 1.3x10–6 for 28–697˚C 1.4x10–6 for 28–903˚C 2.1x10–6 for 28–1098˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 467 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 19 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Hafnium Dioxide (HfO2) (monoclinic single crystal) 11x10–6 for 28–262˚C parallel to c axis 11.4x10–6 for 28–494˚C 10.8x10–6 for 28–697˚C 11.9x10–6 for 28–903˚C 12.1x10–6 for 28–1098˚C Hafnium Dioxide (HfO2) 5.47 x 10–6 for 25–500˚C (monoclinic polycrystalline) 5.85 x 10–6 for 25–1000˚C 5.8 x 10–6 for 25–1300˚C 6.30 x 10–6 for 25–1500˚C 6.45 x 10–6 for 20–1700˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 468 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 20 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Hafnium Dioxide (HfO2) 1.31 x 10–6 for 25–1700˚C (tetragonal polycrystalline) 3.03 x 10–6 for 25–2000˚C Magnesium Oxide (MgO) 12.83 x 10–6 for 25–500˚C 13.63 x 10–6 for 25–1000˚C 15.11 x 10–6 for 25–1500˚C 15.89 x 10–6 for 25–1800˚C 14.0 x 10–6 for 20–1400˚C 14.2–14.9 x 10–6 for 20–1700˚C 13.3 x 10–6 for 20–1700˚C 13.90 x 10–6 for 0–1000˚C 14.46 x 10–6 for 0–1200˚C 15.06 x 10–6 for 0–1400˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 469 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 21 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Silicon Dioxide (SiO2) 19.35 x 10–6 for 25–500˚C α quartz 22.2 x 10–6 for 25–575˚C β quartz 27.8 x 10–6 for 25–575˚C 14.58 x 10–6 for 25–1000˚C α tridymite 18.5 x 10–6 for 25–117˚C β1 tridymite 25.0 x 10–6 for 25–117˚C 27.5 x 10–6 for 25–163˚C β2 tridymite 31.9 x 10–6 for 25–163˚C 19.35 x 10–6 for 25–500˚C 10.45 x 10–6 for 25–1000˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 470 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 22 OF 34) CERAMICS Thermal Expansion (˚C–1) Class Ceramic Oxides (Con’t) Silicon Dioxide (SiO2) (Con’t) 0.527 x 10–6 for 25–500˚C Vitreous 0.564 x 10–6 for 25–1000˚C 0.5 x 10–6 for 20–1250˚C Thorium Dioxide (ThO2) 3.67 x 10–6 for 0 to –273˚C 5.32 x 10–6 for 0 to –173˚C 6.47 x 10–6 for 0 to –73˚C 8.10 x 10–6 for 0 to 27˚C 8.06 x 10–6 for 0 to 127˚C 8.31 x 10–6 for 0 to 227˚C 8.53 x 10–6 for 0 to 327˚C 8.71 x 10–6 for 0 to 427˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 471 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 23 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Thorium Dioxide (ThO2) (Con’t) 8.87 x 10–6 for 0 to 527˚C 9.00 x 10–6 for 0 to 627˚C 9.14 x 10–6 for 0 to 727˚C 9.24 x 10–6 for 0 to 827˚C 9.34 x 10–6 for 0 to 927˚C 9.42 x 10–6 for 0 to 1027˚C 9.53 x 10–6 for 0 to 1127˚C 9.60 x 10–6 for 0 to 1227˚C 9.68 x 10–6 for 0 to 1327˚C 9.76 x 10–6 for 0 to 1427˚C 9.83 x 10–6 for 0 to 1527˚C 9.91 x 10–6 for 0 to 1627˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 472 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 24 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Thorium Dioxide (ThO2) (Con’t) 9.97 x 10–6 for 0 to 1727˚C 8.63 x 10–6 for 25 to 500˚C 9.44 x 10–6 for 25 to 1000˚C 10.17 x 10–6 for 25 to 1500˚C 10.43 x 10–6 for 25 to 1700˚C 9.55 x 10–6 for 20 to 800˚C 9.55 x 10–6 for 20 to 1400˚C 7.8 x 10–6 for 27 to 223˚C 8.7 x 10–6 for 27 to 498˚C 8.9 x 10–6 for 27 to 755˚C 9.2 x 10–6 for 27 to 994˚C 9.1 x 10–6 for 27 to 1087˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 473 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 25 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Thorium Dioxide (ThO2) (Con’t) 8.96 x 10–6 for 0 to 1000˚C 9.35 x 10–6 for 0 to 1200˚C 9.84 x 10–6 for 0 to 1400˚C αl (linear expansion coefficient) 0.6216x10–5 +3.541x10–9T–0.1124T–2 from 298–1073K αv (volume expansion coefficient) 1.85x10–5 +10.96x10–9T–0.3375T–2 from 298–1073K Titanium Oxide (TiO2) (polycrystalline) 8.22 x 10–6 for 25–500˚C 8.83 x 10–6 for 25–1000˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 474 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 26 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Titanium Oxide (TiO2) (polycrystalline) (Con’t) 9.50 x 10–6 for 25–1500˚C 7.8 x 10–6 for 20–600˚C 8.98 x 10–6 for 0–1000˚C Titanium Oxide (TiO2) (single crystal) parallel to c axis 9.8 x 10–6 for 26 to 240˚C 10.5 x 10–6 for 26 to 455˚C 10.6 x 10–6 for 26 to 670˚C 10.5 x 10–6 for 26 to 940˚C 10.8 x 10–6 for 26 to 1110˚C Titanium Oxide (TiO2) (single crystal)) 7.9 x 10–6 for 26 to 240˚C perpendicular to a axis 8.2 x 10–6 for 26 to 455˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 475 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 27 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Titanium Oxide (TiO2) (single crystal)) (Con’t) 8.1 x 10–6 for 26 to 670˚C perpendicular to a axis (Con’t) 8.2 x 10–6 for 26 to 940˚C 8.3 x 10–6 for 26 to 1110˚C Titanium Oxide (TiO2) (single crystal)) average for (2a+c)/3 8.53 x 10–6 for 26 to 240˚C 8.97 x 10–6 for 26 to 455˚C 8.93 x 10–6 for 26 to 670˚C 8.97 x 10–6 for 26 to 940˚C 9.13 x 10–6 for 26 to 1110˚C Uranium Dioxide (UO2) 9.47 x 10–6 for 25 to 500˚C 11.19 x 10–6 for 25 to 1000˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 476 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 28 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Uranium Dioxide (UO2) (Con’t) 12.19 x 10–6 for 25 to 1200˚C 11.15 x 10–6 for 25 to 1750˚C 9.18 x 10–6 for 27 to 400˚C (heating) 9.07 x 10–6 for 27 to 400˚C 11.1 x 10–6 for 400 to 800˚C 13.0 x 10–6 for 800 to 1200˚C (cooling) 9.28 x 10–6 for 27 to 400˚C 10.8 x 10–6 for 400 to 800˚C 10.8 x 10–6 for 400 to 800˚C 12.6 x 10–6 for 800 to 1250˚C 12.9 x 10–6 for 800 to 1200˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 477 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 29 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Zirconium Oxide (ZrO2) (monoclinic) 6.53 x 10–6 for 25 to 500˚C 7.59 x 10–6 for 25 to 1000˚C 7.72 x 10–6 for 25 to 1050˚C 8.0 x 10–6 for 25 to 1080˚C Zirconium Oxide (ZrO2) (tetragonal) –21.7 x 10–6 for 25 to 1050˚C –11.11 x 10–6 for 25 to 1500˚C –9.53 x 10–6 for 25 to 1600˚C 4.0 x 10–6 for 0 to 500˚C 10.5 x 10–6 for 0 to 1000˚C 10.52 x 10–6 for 0 to 1000˚C (MgO) 10.6 x 10–6 for 0 to 1200˚C (CaO) 5.0 x 10–6 for 0 to 1400˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 478 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 30 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Zirconium Oxide (ZrO2) (tetragonal) (Con’t) 11.0 x 10–6 for 0 to 1500˚C 5.5–5.58 x 10–6 for 20 to 1200˚C 7.2 x 10–6 for –10 to 1000˚C 8.64 x 10–6 for –20 to 600˚C Zirconium Oxide (ZrO2) (tetragonal, single crystal) 8.4 x 10–6 for 27 to 264˚C parallel to a axis 7.5 x 10–6 for 27 to 504˚C 6.8 x 10–6 for 27 to 759˚C 7.8 x 10–6 for 27 to 964˚C 8.7 x 10–6 for 27 to 1110˚C Zirconium Oxide (ZrO2) (tetragonal, single crystal) 3 x 10–6 for 27 to 264˚C parallel to b axis 2 x 10–6 for 27 to 504˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 479 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 31 OF 34) Class Oxides (Con’t) Ceramic CERAMICS Thermal Expansion (˚C–1) Zirconium Oxide (ZrO2) (tetragonal, single crystal) (Con’t) parallel to b axis 1.1 x 10–6 for 27 to 759˚C Zirconium Oxide (ZrO2) (tetragonal, single crystal) 14 x 10–6 for 27 to 264˚C 13 x 10–6 for 27 to 504˚C parallel to c axis 1.5 x 10–6 for 27 to 964˚C 1.9 x 10–6 for 27 to 1110˚C 11.9 x 10–6 for 27 to 759˚C 12.8 x 10–6 for 27 to 964˚C 13.6 x 10–6 for 27 to 1110˚C Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.51g/cm3) 2.7 x 10–6 for 25 to 1100˚C (ρ=2.3g/cm3) 2.3 x 10–6 for 25 to 400˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 480 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 32 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) (ρ=2.3g/cm3) (ρ=2.3g/cm3) 3.3 x 10–6 for 25 to 700˚C 3.7 x 10–6 for 25 to 900˚C (ρ=2.1g/cm3) 2.2 x 10–6 for 25 to 400˚C (ρ=2.1g/cm3) (ρ=2.1g/cm3) 2.8 x 10–6 for 25 to 700˚C 2.8 x 10–6 for 25 to 900˚C (ρ=1.8g/cm3) 0.6 x 10–6 for 25 to 400˚C (ρ=1.8g/cm3) (ρ=1.8g/cm3) 1.5 x 10–6 for 25 to 700˚C 1.7 x 10–6 for 25 to 900˚C (glass) 3.7–3.8 x 10–6 for 25 to 900˚C Mullite (3Al2O3 2SiO2) 4.5 x 10–6 for 20 to 1325˚C 4.63 x 10–6 for 25 to 500˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 481 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 33 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Oxides (Con’t) Mullite (3Al2O3 2SiO2) (Con’t) 5.0 x 10–6 for 25 to 800˚C 5.13 x 10–6 for 25 to 1000˚C 5.62 x 10–6 for 20 to 1500˚C Sillimanite (Al2O3 SiO2) 6.58 x 10–6 at 20˚C Spinel (Al2O3 MgO) 7.79 x 10–6 for 25 to 500˚C 8.41 x 10–6 for 25 to 1000˚C 9.17 x 10–6 for 25 to 1500˚C 9.0 x 10–6 for 20 to 1250˚C Zircon (SiO2 ZrO2) 5.5 x 10–6 for 20 to 1200˚C 3.79 x 10–6 for 25 to 500˚C 4.62 x 10–6 for 25 to 1000˚C 5.63 x 10–6 for 20 to 1500˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.08 Thermal L Page 482 Wednesday, December 31, 1969 17:00 Table 116. THERMAL EXPANSION OF (SHEET 34 OF 34) CERAMICS Class Ceramic Thermal Expansion (˚C–1) Silicides Molybdenum Disilicide (MoSi2) Molybdenum Disilicide (MoSi2) 7.79 x 10–6 for 25–500˚C 8.51 x 10–6 for 25–1000˚C 9.00–9.18 x 10–6 for 25–1500˚C 8.41 x 10–6 for 0–1000˚C 8.56 x 10–6 for 0–1400˚C Tungsten Disilicide (WSi2) 7.79 x 10–6 for 25–500˚C 8.31 x 10–6 for 25–1000˚C 8.21 x 10–6 for 0–1000˚C 8.81 x 10–6 for 0–1400˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 7.09 Thermal Page 483 Wednesday, December 31, 1969 17:00 Thermal Properties Table 117. THERMAL EXPANSION OF SIC-WHISKER -REINFORCED CERAMICS Composite Linear Coefficient of Thermal Expansion at 22 to 1100 °C (10-6/K) Alumina Alumina with 20 vol% SiC whiskers Alumina with 30 vol% SiC whiskers Alumina with 60 vol% SiC whiskers 7.8 to 8.2 7.35 6.70 5.82 SiC Mullite with 20 vol% SiC whiskers 4.8 5.60 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p173,(1994). ©2001 CRC Press LLC Shackelford & Alexander 483 7.10 Thermal L Page 484 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 1 OF 21) GLASSES Glass Composition Thermal Expansion Temperature Range of Validity SiO2 glass Pure 3.50x10–7/K –60—20˚C 3.80x10–7/K 4.00x10–7/K –40—20˚C –20—20˚C 4.30x10–7/K 0–20˚C 5.35x10–7/K 5.75x10–7/K 5.85x10–7/K 20–100˚C 20–150˚C 5.92x10–7/K 20–250˚C –7 5.94x10 /K 5.90x10–7/K 20–200˚C 20–300˚C 20–350˚C Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 485 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 2 OF 21) Glass Composition SiO2–B2O3 glass (39.2% mol B2O3 ) (39.2% mol B2O3 ) (39.2% mol B2O3 ) (44.2% mol B2O3 ) (44.2% mol B2O3 ) (44.2% mol B2O3 ) (50.8% mol B2O3 ) (50.8% mol B2O3 ) (50.8% mol B2O3 ) (58.4% mol B2O3 ) (58.4% mol B2O3 ) (58.4% mol B2O3 ) GLASSES Thermal Expansion Temperature Range of Validity 47.5x10–7/K 44.9x10–7/K 301x10–7/K 0–100˚C 100–200˚C 390–410˚C 49.8x10–7/K 50.8x10–7/K 450x10–7/K 0–100˚C 100–200˚C 380–400˚C 57.6x10–7/K 54.8x10–7/K 579x10–7/K 0–100˚C 100–200˚C 350–370˚C 71.9x10–7/K 70.1x10–7/K 694x10–7/K 0–100˚C 100–200˚C 320–340˚C Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 486 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 3 OF 21) Glass Composition SiO2–B2O3 glass (Con’t) (72.7% mol B2O3 ) (72.7% mol B2O3 ) (72.7% mol B2O3 ) (83.2% mol B2O3 ) (83.2% mol B2O3 ) (83.2% mol B2O3 ) (88.6% mol B2O3 ) (88.6% mol B2O3 ) (88.6% mol B2O3 ) (94.0% mol B2O3 ) (94.0% mol B2O3 ) (94.0% mol B2O3 ) GLASSES Thermal Expansion Temperature Range of Validity 87.0x10–7/K 89.7x10–7/K 899x10–7/K 0–100˚C 100–200˚C 300–320˚C 111.4x10–7/K 116.6x10–7/K 970x10–7/K 0–100˚C 100–200˚C 280–300˚C 118.1x10–7/K 126.0x10–7/K 1023x10–7/K 0–100˚C 100–200˚C 280–300˚C 131.7x10–7/K 141.9x10–7/K 1200x10–7/K 0–100˚C 100–200˚C 270–290˚C Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 487 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 4 OF 21) Glass SiO2–Al2O3 glass GLASSES Thermal Expansion Temperature Range of Validity for 115 hr) 22.7x10–7/K 20–900˚C (13.9% mol Al2O3, water quenching) 17.2x10–7/K 20–600˚C (17.4% mol Al2O3, 1000˚C for 115 hr) (17.4% mol Al2O3, water quenching) 28.3x10–7/K 20–800˚C 20.7x10–7/K 20–700˚C for 115 hr) 6.2x10–7/K 20–980˚C (3.1% mol Al2O3, water quenching) 6.2x10–7/K 20–980˚C 12.2x10–7/K 20–350˚C Composition (13.9% mol Al2O3, 1000˚C (3.1% mol Al2O3, 1000˚C (5.4% mol Al2O3, 1130˚C for 20 hr) Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 488 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 5 OF 21) Glass SiO2–Al2O3 glass SiO2–CaO glass GLASSES Thermal Expansion Temperature Range of Validity for 115 hr) 14.5x10–7/K 20–950˚C (8.2% mol Al2O3, water quenching) 8.8x10–7/K 20–800˚C (30% mol CaO) 66±5x10–6/K 1700˚C (35% mol CaO) (40% mol CaO) (42.5% mol CaO) 53±5x10–6/K 64±4x10–6/K 76±4x10–6/K 1700˚C 1700˚C (45% mol CaO) 85–100±4x10–6/K 1700˚C (47.5% mol CaO) (50% mol CaO) 76±4x10–6/K 84–85±4x10–6/K (52.5% mol CaO) 76–107±4x10–6/K 1700˚C 1700˚C 1700˚C Composition (8.2% mol Al2O3, 1000˚C 1700˚C Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 489 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 6 OF 21) GLASSES Glass Composition Thermal Expansion Temperature Range of Validity SiO2–CaO glass (55% mol CaO) 94–95±4x10–6/K 1700˚C (57.5% mol CaO) (60% mol CaO) 95±4x10–6/K 103±4x10–6/K 1700˚C 1700˚C (25.7% mol PbO) 51.45–52.23x10–7/K 20–170˚C (30.0% mol PbO) (32.5% mol PbO) (33.2% mol PbO) 57.68–59.08x10–7/K 60.62–62.31x10–7/K 61.58–63.33x10–7/K 20–170˚C 20–170˚C (35.0% mol PbO) 63.99–66.17x10–7/K 20–170˚C SiO2–PbO glass –7 (37.5% mol PbO) (42.6% mol PbO) 68.75–71.44x10 /K 75.16–78.58x10–7/K (45.8% mol PbO) 78.85–82.60x10–7/K 20–170˚C 20–170˚C 20–170˚C 20–170˚C Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 490 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 7 OF 21) GLASSES Glass Composition Thermal Expansion Temperature Range of Validity SiO2–PbO glass (47.8% mol PbO) 83.03–87.03x10–7/K 20–170˚C (49.8% mol PbO) (50% mol PbO) (53.8% mol PbO) 85.57–89.82x10–7/K 723x10 /K 90.62–95.25x10–7/K 20–170˚C 1100˚C (57.5% mol PbO) 95.64–100.45x10–7/K –7 –7 20–170˚C 20–170˚C 20–170˚C (59.0% mol PbO) (61.0% mol PbO) (61.75% mol PbO) 97.00–101.90x10 /K 100.66–105.58x10–7/K (66.7% mol PbO) 867x10–7/K 1100˚C (67.7% mol PbO) 110.38–115.48x10–7/K 20–170˚C 101.36–106.30x10–7/K 20–170˚C 20–170˚C Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 491 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 8 OF 21) GLASSES Glass Composition Thermal Expansion Temperature Range of Validity SiO2–Na2O glass (20% mol Na2O) 6.7x10–5/K liquidus temp. to 1400˚C 120x10–7/K below Tg 315x10–7/K above Tg 97.5x10–7/K room temp–100˚C (20% mol Na2O, Tg = 478˚C) (20% mol Na2O, Tg = 478˚C) (20.3% mol Na2O) –7 (20.3% mol Na2O) (20.3% mol Na2O) (20.3% mol Na2O) 99.3x10 /K 100.6x10–7/K 106.9x10–7/K 100–200˚C (24.0% mol Na2O) 109.7x10–7/K room temp–100˚C (24.0% mol Na2O) (24.0% mol Na2O) (24.0% mol Na2O) 114.3x10–7/K 116.6x10–7/K 121.7x10–7/K 100–200˚C 200–300˚C 200–300˚C 300–400˚C 300–400˚C Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 492 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 9 OF 21) Glass SiO2–Na2O glass GLASSES Thermal Expansion Temperature Range of Validity 152x10–7/K below Tg 402x10–7/K above Tg (31.1% mol Na2O) 136.0x10–7/K room temp–100˚C (31.1% mol Na2O) (31.1% mol Na2O) (31.1% mol Na2O) 142.5x10–7/K 148.3x10–7/K 160.0x10–7/K 100–200˚C 200–300˚C 300–400˚C 165x10–7/K below Tg 465x10–7/K above Tg 17.2x10–5/K liquidus temp.to 1400˚C Composition (30% mol Na2O, Tg = 455˚C) (30% mol Na2O, Tg = 455˚C) (33% mol Na2O, Tg = 445˚C) (33% mol Na2O, Tg = 445˚C) (33.3% mol Na2O) Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 493 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 10 OF 21) GLASSES Glass Composition Thermal Expansion Temperature Range of Validity SiO2–Na2O glass (33.8% mol Na2O) 143.9x10–7/K room temp–100˚C (33.8% mol Na2O) (33.8% mol Na2O) (33.8% mol Na2O) 153.6x10–7/K 159.1x10–7/K 173.6x10–7/K 100–200˚C 200–300˚C (37.2% mol Na2O) 152.1x10–7/K room temp–100˚C –7 300–400˚C (37.2% mol Na2O) (37.2% mol Na2O) (37.2% mol Na2O) 160.9x10 /K 171.6x10–7/K 187.7x10–7/K 100–200˚C (40% mol Na2O) 20.0x10–5/K liquidus temp. to 1400˚C 179x10–7/K below Tg 500x10–7/K above Tg (40% mol Na2O, Tg = 421˚C) (40% mol Na2O, Tg = 421˚C) 200–300˚C 300–400˚C Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 494 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 11 OF 21) Glass SiO2–Na2O glass Thermal Expansion Temperature Range of Validity 219x10–7/K below Tg 574x10–7/K above Tg 23.7x10–5/K liquidus temp. to 1400˚C 154.5–183x10–7/K 0–100˚C 154.5–169x10–7/K 150±3–158±3x10–7/K 100–200˚C 20–200˚C (0.01% mol Na2O) 140x10–7/K –196—25˚C (0.01% mol Na2O) 149.3x10–7/K (0.01% mol Na2O) 149.0x10–7/K 20–50˚C 20–150˚C Composition (45% mol Na2O, Tg = 417˚C) (45% mol Na2O, Tg = 417˚C) (50% mol Na2O) B2O3 glass B2O3–Na2O glass GLASSES Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 495 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 12 OF 21) Glass Composition B2O3–Na2O glass (4.4% mol Na2O) (4.4% mol Na2O) (4.4% mol Na2O) (4.4% mol Na2O) (5% mol Na2O, Tg = 318˚C) (5% mol Na2O, Tg = 318˚C) (8.7% mol Na2O) (8.7% mol Na2O) (8.7% mol Na2O) GLASSES Thermal Expansion Temperature Range of Validity 94.6x10–7/K 103.0x10–7/K 109.9x10–7/K 116.0x10–7/K –196—25˚C 20–50˚C 20–150˚C 20–250˚C 115x10–7/K below Tg 1400x10–7/K above Tg 98.8x10–7/K 100.5x10–7/K 105.3x10–7/K 20–50˚C 20–150˚C 20–250˚C Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 496 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 13 OF 21) Glass B2O3–Na2O glass Composition (10% mol Na2O, Tg = 354˚C) (10% mol Na2O, Tg = 354˚C) (11.5% mol Na2O) (11.5% mol Na2O) (11.5% mol Na2O) (11.5% mol Na2O) (13.7% mol Na2O) (13.7% mol Na2O) (13.7% mol Na2O) (13.7% mol Na2O) GLASSES Thermal Expansion Temperature Range of Validity 77x10–7/K below Tg 1230x10–7/K above Tg 71.5x10–7/K 88.7x10–7/K 94.9x10–7/K 97.9x10–7/K –196—25˚C 20–50˚C 20–150˚C 20–250˚C 69.3x10–7/K 87.5x10–7/K 92.3x10–7/K 90.9x10–7/K –196—25˚C 20–50˚C 20–150˚C 20–250˚C Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 497 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 14 OF 21) Glass B2O3–Na2O glass Composition (15% mol Na2O, Tg = 407˚C) (15% mol Na2O, Tg = 407˚C) (15.8% mol Na2O) (15.8% mol Na2O) (15.8% mol Na2O) (15.8% mol Na2O) (15.8% mol Na2O) (16.2% mol Na2O) (16.2% mol Na2O) GLASSES Thermal Expansion Temperature Range of Validity 69x10–7/K below Tg 761x10–7/K above Tg 67.4x10–7/K 80.7x10–7/K –196—25˚C 20–50˚C 87.8x10–7/K 93.3x10–7/K 97.9x10–7/K 20–150˚C 20–250˚C 20–350˚C 65.9x10–7/K 86.0x10–7/K –196—25˚C 20–50˚C Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 498 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 15 OF 21) Glass Composition B2O3–Na2O glass (16.2% mol Na2O) (16.2% mol Na2O) (16.2% mol Na2O) (17.4% mol Na2O) (17.4% mol Na2O) (17.4% mol Na2O) (17.4% mol Na2O) (18.4% mol Na2O) (18.4% mol Na2O) (18.4% mol Na2O) (18.4% mol Na2O) (18.4% mol Na2O) GLASSES Thermal Expansion Temperature Range of Validity 87.7x10–7/K 90.9x10–7/K 96.9x10–7/K 20–150˚C 20–250˚C 20–350˚C 85.6x10–7/K 89.1x10–7/K 92.4x10–7/K 96.3x10–7/K 20–50˚C 20–150˚C 20–250˚C 20–350˚C 69.1x10–7/K 86.2x10–7/K –196—25˚C 20–50˚C 89.2x10–7/K 94.1x10–7/K 96.2x10–7/K 20–150˚C 20–250˚C 20–350˚C Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 499 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 16 OF 21) GLASSES Thermal Expansion Temperature Range of Validity 86.8x10–7/K 91.2x10–7/K 95.3x10–7/K 99.6x10–7/K 20–50˚C 20–150˚C 20–250˚C 20–350˚C (20.0% mol Na2O) 87.6x10–7/K 91.6x10–7/K 97.6x10–7/K 20–50˚C 20–150˚C 20–250˚C (20.0% mol Na2O) 101.3x10–7/K 20–350˚C 86x10–7/K below Tg 586x10–7/K above Tg Glass Composition B2O3–Na2O glass (19.6% mol Na2O) (19.6% mol Na2O) (19.6% mol Na2O) (19.6% mol Na2O) (20.0% mol Na2O) (20.0% mol Na2O) (20% mol Na2O, Tg = 456˚C) (20% mol Na2O, Tg = 456˚C) Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 500 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 17 OF 21) Glass Composition B2O3–Na2O glass (22.5% mol Na2O) (22.5% mol Na2O) (22.5% mol Na2O) (22.5% mol Na2O) (22.5% mol Na2O) (23.6% mol Na2O) (23.6% mol Na2O) (23.6% mol Na2O) (23.6% mol Na2O) GLASSES Thermal Expansion Temperature Range of Validity 71.9x10–7/K 90.4x10–7/K –196—25˚C 20–50˚C 94.7x10–7/K 98.7x10–7/K 104.0x10–7/K 20–150˚C 20–250˚C 20–350˚C 90.4x10–7/K 96.7x10–7/K 101.2x10–7/K 106.5x10–7/K 20–50˚C 20–150˚C 20–250˚C 20–350˚C Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 501 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 18 OF 21) Glass Composition B2O3–Na2O glass (25% mol Na2O, Tg = 466˚C) (25% mol Na2O, Tg = 466˚C) (28.9% mol Na2O) (28.9% mol Na2O) (28.9% mol Na2O) (28.9% mol Na2O) (28.9% mol Na2O) (30% mol Na2O, Tg = 468˚C) (30% mol Na2O, Tg = 468˚C) GLASSES Thermal Expansion Temperature Range of Validity 95x10–7/K below Tg 834x10–7/K above Tg 81.4x10–7/K –196—25˚C 102.1x10–7/K 107.4x10–7/K 112.8x10–7/K 117.1x10–7/K 20–50˚C 20–150˚C 20–250˚C 20–350˚C 128x10–7/K below Tg 1150x10–7/K above Tg Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 502 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 19 OF 21) GLASSES Glass Composition Thermal Expansion Temperature Range of Validity B2O3–CaO glass (29.3% mol CaO) (29.3% mol CaO) 54.9–56.4x10–7/K 60.2–60.8x10–7/K (29.3% mol CaO) 63.9–65.4x10–7/K room temp. to 100˚C 100–200˚C 200–300˚C (29.3% mol CaO) (29.3% mol CaO) (29.3% mol CaO) 71.3–71.6x10–7/K 76.9–77.1x10–7/K 80.9–86.8x10–7/K 300–400˚C 400–500˚C 500–600˚C (31.4% mol CaO) 57.3–58.2x10–7/K room temp. to 100˚C (31.4% mol CaO) (31.4% mol CaO) 63.5–65.1x10–7/K 67.4–68.1x10–7/K 100–200˚C (31.4% mol CaO) 76.5–76.7x10–7/K 300–400˚C (31.4% mol CaO) (31.4% mol CaO) –7 79.2–81.0x10 /K 83.1–88.5x10–7/K 200–300˚C 400–500˚C 500–600˚C Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 503 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 20 OF 21) GLASSES Glass Composition Thermal Expansion Temperature Range of Validity B2O3–CaO glass (34.9% mol CaO) 60.1–66.2x10–7/K room temp. to 100˚C (34.9% mol CaO) (34.9% mol CaO) 67.5–67.6x10–7/K 74.7–75.2x10–7/K 100–200˚C 200–300˚C (34.9% mol CaO) 77.8–78.5x10–7/K 300–400˚C (34.9% mol CaO) (34.9% mol CaO) 83.8–95.0x10–7/K 91.8–92.1x10–7/K 400–500˚C 500–600˚C (37.1% mol CaO) 63.1–64.0x10–7/K room temp. to 100˚C (37.1% mol CaO) (37.1% mol CaO) 68.4–70.4x10–7/K 100–200˚C 200–300˚C –7 74.6–75.8x10 /K Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 504 Wednesday, December 31, 1969 17:00 Table 118. THERMAL EXPANSION OF (SHEET 21 OF 21) GLASSES Glass Composition Thermal Expansion Temperature Range of Validity B2O3–CaO glass (37.1% mol CaO) 81.6–82.2x10–7/K 300–400˚C (37.1% mol CaO) (37.1% mol CaO) 86.9–87.6x10–7/K 400–500˚C 500–600˚C –7 93.5–95.5x10 /K Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 7.10 Thermal L Page 505 Wednesday, December 31, 1969 17:00 Table 119. THERMAL EXPANSION OF (SHEET 1 OF 13) POLYMERS Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) Medium impact 3.2—4.8 x 10–6 High impact 5.5—6.0 x 10–6 Very high impact 5.0—6.0 x 10–6 Low temperature impact 5.0—6.0 x 10–6 Heat resistant 3.0—4.0 x 10–6 Cast Resin Sheets, Rods: General purpose, type I 4.5 x 10–6 General purpose, type II 4.5 x 10–6 Moldings: Grades 5, 6, 8 3—4 x 10–6 High impact grade 4—6 x 10–6 Type ABS Resins; Molded, Extruded Acrylics; Cast, Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.10 Thermal L Page 506 Wednesday, December 31, 1969 17:00 Table 119. THERMAL EXPANSION OF (SHEET 2 OF 13) POLYMERS Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) Thermoset Carbonate Allyl diglycol carbonate 6 x 10–5 Alkyds; Molded Putty (encapsulating) 1.3 x 10–5 Rope (general purpose) 1.3 x 10–5 Granular (high speed molding) 1.3 x 10–5 Glass reinforced (heavy duty parts) 1.3 x 10–5 ASTM Grade: H6—1 4.4—9.0 x 10–5 H4—1 4.4—9.0 x 10–5 H2—1 4.4—9.0 x 10–5 MH—1, MH—2 4.4—9.0 x 10–5 MS—1, MS—2 4.4—9.0 x 10–5 S2—1 4.4—9.0 x 10–5 Type Cellulose Acetate; Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.10 Thermal L Page 507 Wednesday, December 31, 1969 17:00 Table 119. THERMAL EXPANSION OF (SHEET 3 OF 13) POLYMERS Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) ASTM Grade: H4 6—9 x 10–5 MH 6—9 x 10–5 S2 6—9 x 10–5 ASTM Grade: 1 6—9 x 10–5 3 6—9 x 10–5 6 6—9 x 10–5 Chlorinated polyether 6.6 x 10–6 Chlorinated polyvinyl chloride 4.4 x 10–6 Polycarbonate 3.75 x 10–6 Polycarbonate (40% glass fiber reinforced) 1.0—1.1 x 10–6 Type Cellulose Acetate Butyrate; Molded, Extruded Cellusose Acetate Propionate; Molded, Extruded Chlorinated Polymers Polycarbonates Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.10 Thermal L Page 508 Wednesday, December 31, 1969 17:00 Table 119. THERMAL EXPANSION OF (SHEET 4 OF 13) POLYMERS Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) Orlon filled 5.0 x 10–5 Dacron filled 5.2 x 10–5 Asbestos filled 4.0 x 10–5 Glass fiber filled 2.2—2.6 x 10–5 Polytrifluoro chloroethylene (PTFCE) 3.88 x 10–5 Polytetrafluoroethylene (PTFE) 55 x 10–5 Ceramic reinforced (PTFE) 1.7—2.0 x 10–5 Fluorinated ethylene propylene(FEP) 8.3—10.5 x 10–5 Polyvinylidene— fluoride (PVDF) 8.5 x 10–5 Type Diallyl Phthalates; Molded Fluorocarbons; Molded,Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.10 Thermal L Page 509 Wednesday, December 31, 1969 17:00 Table 119. THERMAL EXPANSION OF (SHEET 5 OF 13) POLYMERS Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid 3.3 x 10–5 Cast flexible 3—5 x 10–5 Molded 1—2 x 10–5 General purpose glass cloth laminate 3.3—4.8 x 10–6 High strength laminate 3.3—4.8 x 10–6 Filament wound composite 2—6 x 10–5 High performance resins (cycloaliphatic diepoxides) Molded Epoxy novolacs Cast, rigid 1.7—2.2 x 10–6 Type Epoxies; Cast, Molded, Reinforced Epoxies—Molded, Extruded 1.6—3.0 x 10–6 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.10 Thermal L Page 510 Wednesday, December 31, 1969 17:00 Table 119. THERMAL EXPANSION OF (SHEET 6 OF 13) POLYMERS Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) Filler & type Cellulose electrical 1.11—2.78 x 10–5 Glass fiber 0.82 x 10–5 General purpose 4.8 x 10–5 Glass fiber (30%) reinforced 1.2 x 10–5 Cast 4.4 x 10–5 Type 11 5.5 x 10–5 Type 12 7.2 x 10–5 General purpose molding 1.69—1.7 x 10–5 Glass fiber reinforced 1.5–3.3 x 10–5 General purpose extrusion 1.7 x 10–5 Type Melamines; Molded Nylons; Molded, Extruded Type 6 Nylon 6/6 Nylon Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.10 Thermal L Page 511 Wednesday, December 31, 1969 17:00 Table 119. THERMAL EXPANSION OF (SHEET 7 OF 13) POLYMERS Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) General purpose 1.5 x 10–5 Glass fiber (30%) reinforced 3.5 x 10–5 Type and filler General: woodflour and flock 1.66—2.50 x 10–5 Shock: paper, flock, or pulp 1.6—2.3 x 10–5 High shock: chopped fabric or cord 1.60—2.22 x 10–5 Very high shock: glass fiber 0.88 x 10–5 Rubber phenolic—woodflour or flock 0.83—2.20 x 10–5 Rubber phenolic—chopped fabric 1.7 x 10–5 Rubber phenolic—asbestos 2.2 x 10–5 ABS–Polycarbonate Alloy 6.12 x 10–5 Type 6/10 Nylon Phenolics; Molded Phenolics: Molded ABS–Polycarbonate Alloy Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.10 Thermal L Page 512 Wednesday, December 31, 1969 17:00 Table 119. THERMAL EXPANSION OF (SHEET 8 OF 13) POLYMERS Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) PVC–Acrylic Alloy PVC–acrylic sheet 3.5 x 10–5 Unreinforced 2.5 x 10–6 Unreinforced 2nd value 3.0—4.5 x 10–6 Glass reinforced 0.8 x 10–6 Standard 4.5 x 10–5 20% glass reinforced 2.0—4.5 x 10–5 22% TFE reinforced Copolymer: Standard 4.5 x 10–5 25% glass reinforced 2.2—4.7 x 10–5 High flow 4.7 x 10–5 Type PVC–Acrylic Polymides Homopolymer 4.7 x 10–5 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.10 Thermal L Page 513 Wednesday, December 31, 1969 17:00 Table 119. THERMAL EXPANSION OF (SHEET 9 OF 13) POLYMERS Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) Injection Moldings: General purpose grade 5.3 x 10–5 Glass reinforced grades 2.7—3.3 x 10–5 Glass reinforced self extinguishing 3.5 x 10–5 General purpose grade 4.9—13.0 x 10–5 Type Polyester; Thermoplastic Polyesters: Thermosets Phenylene Oxides Cast polyyester Rigid Reinforced polyester moldings High strength (glass fibers) 3.9—5.6 x 10–5 13—19 x 10–6 SE—100 3.8 x 10–5 SE—1 3.3 x 10–5 Glass fiber reinforced 1.4–2.0 x 10–5 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.10 Thermal L Page 514 Wednesday, December 31, 1969 17:00 Table 119. THERMAL EXPANSION OF (SHEET 10 OF 13) POLYMERS Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) Phenylene oxides (Noryl) Standard 3.1 x 10–5 Glass fiber reinforced 1.2–1.6 x 10–5 Polyarylsulfone Polyarylsulfone 2.6 x 10–5 Polypropylene General purpose 3.8—5.8 x 10–5 High impact 4.0—5.9 x 10–5 Asbestos filled 2—3 x 10–5 Glass reinforced 1.6—2.4 x 10–5 Standard 3.0—4.9 x 10–5 40% glass reinforced 4 x 10–5 Type Phenylene Oxides (Con’t) Polyphenylene sulfide Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.10 Thermal L Page 515 Wednesday, December 31, 1969 17:00 Table 119. THERMAL EXPANSION OF (SHEET 11 OF 13) POLYMERS Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) Type I—lower density (0.910–0.925) Melt index 0.3—3.6 8.9—11.0 x 10–5 Melt index 6—26 8.9—11.0 x 10–5 Melt index 200 11 x 10–5 Type II—medium density (0.926—0.940) Melt index 20 8.3—16.7 x 10–5 Melt index l.0—1.9 8.3—16.7 x 10–5 Type III—higher density (0.941—0.965) Melt index 0.2—0.9 8.3—16.7 x 10–5 Melt Melt index 0.l—12.0 8.3—16.7 x 10–5 Melt index 1.5—15 8.3—16.7 x 10–5 Type Polyethylenes; Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.10 Thermal L Page 516 Wednesday, December 31, 1969 17:00 Table 119. THERMAL EXPANSION OF (SHEET 12 OF 13) POLYMERS Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) General purpose 3.3—4.8 x 10–5 Medium impact 3.3—4.7 x 10–5 High impact 2.2—5.6 x 10–5 Glass fiber -30% reinforced 1.8 x 10–5 Styrene acrylonitrile (SAN) 3.6—3.7 x 10–5 Glass fiber (30%) reinforced SAN 1.6 x 10–5 Rigid—normal impact 2.8—3 .3 x 10–5 Vinylidene chloride 8.78 x 10–5 Type Polystyrenes; Molded Polyvinyl Chloride And Copolymers; Molded, Extruded Vinylidene chloride Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.10 Thermal L Page 517 Wednesday, December 31, 1969 17:00 Table 119. THERMAL EXPANSION OF (SHEET 13 OF 13) POLYMERS Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) Fibrous (glass) reinforced silicones 3.17—3.23 x 10–5 Granular (silica) reinforced silicones 2.5—5.0 x 10–5 Alpha—cellulose filled (ASTM Type l) 1.22—1 .50 x 10–5 Type Silicones; Molded, Laminated Ureas; Molded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 7.11 Thermal Page 518 Wednesday, December 31, 1969 17:00 Thermal Properties Table 120. THERMAL EXPANSION COEFFICIENTS OF MATERIALS FOR INTEGRATED CIRCUITS Material Coefficient Range Temperature Range (˚C) Aluminum oxide ceramic Brass Kanthal A Kovar 6.0–7.0 17.7–21.2 13.9–15.1 5.0 25–300 25–300 20–900 25–300 Pyrex glass Pyroceram (#9608) 3.2 420 25–300 25–300 Pyroceram cement (Vitreous #45) Pyroceram cement (Devitrified) Pyroceram cement (#89, #95) 4 2.4 8–10 0–300 25–300 — Silicon carbide Silicon nitride (α) Silicon nitride (β) Solder glass (Kimble CV-101) 4.8 0–1,000 2.9 2.25 25–1,000 25–1,000 809 0–300 Coefficient of Linear Thermal Expansion of Selected Materials per K Note: Multiply all values by 10–6. Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 518 CRC Handbook of Materials Science & Engineering 7.11 Thermal Page 519 Wednesday, December 31, 1969 17:00 Thermal Properties Table 121. THERMAL EXPANSION OF SILICON CARBIDE SCS–2–AL Fiber orientation No. of plies Coefficient of Thermal Expansion, (10-6/K) 0° 90° 6, 8, 12 6, 12,40 6.6 21.3 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994). ©2001 CRC Press LLC Shackelford & Alexander 519 7.11 Thermal Page 520 Wednesday, December 31, 1969 17:00 Thermal Properties Table 122. ASTM B 601 T EMPER DESIGNATION CODES FOR COPPER AND COPPER ALLOYS (SHEET 1 OF 2) Class Cold-worked tempers(a) Cold-worked tempers(b) Temper Designation Temper Name or Material Condition H00 H01 H02 H03 1/8 hard 1/4 hard 1/2 hard 3/4 hard H04 H06 H08 H10 Hard Extra hard Spring Extra spring H12 H13 H14 Special Spring Ultra Spring Super Spring H50 H52 H55 H58 Extruded and drawn Pierced and drawn Light drawn, light cold rolled Drawn general purpose H60 H63 H64 H66 Cold heading; forming Rivet Screw Bolt H70 H80 H85 Bending Hard drawn Medium-hard-drawn electrical wire H86 H90 Hard-drawn electrical wire As-finned Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p439, (1993). ©2001 CRC Press LLC 520 CRC Handbook of Materials Science & Engineering 7.11 Thermal Page 521 Wednesday, December 31, 1969 17:00 Thermal Properties Table 122. ASTM B 601 T EMPER DESIGNATION CODES FOR COPPER AND COPPER ALLOYS (SHEET 2 OF 2) Class Temper Designation Temper Name or Material Condition Cold-worked and stress-relieved tempers HR01 H01 and stress relieved HR02 HR04 HR08 H02 and stress relieved H04 and stress relieved H08 and stress relieved HR10 HR20 HR50 H10 and stress relieved As-finned Drawn and stress relieved HT04 H04 and order heat treated HT08 H08 and order heat treated Cold-rolled and orderstrengthened tempers(c) Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p439, (1993). (a) Cold-worked tempers to meet standard requirements based on cold rolling or cold drawing. (b) Cold-worked tempers to meet standard requirements based on temper names applicable to specific processes. (c) Tempers produced by controlled amounts of cold work following by thermal treatment to produce order strengthening. ©2001 CRC Press LLC Shackelford & Alexander 521 7.11 Thermal Page 522 Wednesday, December 31, 1969 17:00 Thermal Properties Table 123. TEMPER DESIGNATION SYSTEM FOR ALUMINUM ALLOYS Temper Definition F O As fabricated Annealed H1 H2 Strain-hardened only Strain-hardened and partially annealed Strain-hardened and stabilized (mechanical properties stabilized by lowtemperature thermal treatment) H3 T3 Cooled from an elevated-temperature shaping process and naturally aged to a substantially stable condition Cooled from an elevated temperature shaping process, cold-worked, and naturally aged to a substantially stable condition Solution heat-treated, cold-worked, and naturally aged to a substantially stable condition T4 T5 T6 Solution heat-treated and naturally aged to a substantially stable condition Cooled from an elevated-temperature shaping process and artificially aged Solution heat-treated and artificially aged T7 T8 T9 Solution heat-treated and stabilized Solution heat-treated, cold-worked, and artificially aged Solution heat-treated, artificially aged, and cold-worked Cooled from an elevated temperature shaping process, cold-worked, and artificially aged T1 T2 T10 Source: data from Metals Handbook, 9th ed., Vol. 2, American Society for Metals, Metals Park, Ohio, 1979, 24-27. ©2001 CRC Press LLC 522 CRC Handbook of Materials Science & Engineering 7.12 Thermal L Page 523 Wednesday, December 31, 1969 17:00 Table 124. TOOL STEEL SOFTENING AFTER 100 HOURS Hardness (HRC) after 100 h at Original Hardness (HRC) 480˚C 540˚C 600˚C 650˚C 700˚C 760˚C H13 60.2 41.7 48.7 38.6 46.3 39.3 29.0 27.7 22.7 23.7 20.1 20.2 13.9 13.2 H21 49.2 36.7 48.7 34.8 47.6 34.9 37.2 32.6 27.4 27.1 19.8 19.8 16.2 14.9 H23 40.8 38.9 40.0 38.9 40.6 38.0 40.8 38.0 38.6 37.1 33.2 32.6 26.8 26.6 H26 61.0 42.9 60.6 42.4 60.3 42.3 47.1 41.3 38.4 34.9 26.9 26.4 21.3 21.1 Type Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.426, (1984). See also: Mechanical Properties of Tool Steels ©2001 CRC Press LLC 7.12 Thermal L Page 524 Wednesday, December 31, 1969 17:00 Table 125. THERMOPLASTIC Polymer Flexural modulus 106 psi Injection Molding Types: General purpose grade Glass reinforced grades Glass reinforced grades 1.2—1.5 POLYESTER SOFTENING WITH TEMPERATURE Tensile strength 103 psi D638 212•F 302• F 7.5—8 17—25 7 5.5 0.63 0.53 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. See also: Mechanical Properties of Polymers ©2001 CRC Press LLC 7.13 Thermal Page 525 Wednesday, December 31, 1969 17:00 Thermal Properties Table 126. HEAT-DEFLECTION TEMPERATURE OF CARBON - AND GLASS -REINFORCED ENGINEERING THERMOPLASTICS (SHEET 1 OF 2) Class Resin Type Composition Heat-Deflection Temperature (°C) Amorphous Acrylonitrile-butadiene-styrene(ABS) 30% glass fiber 30% carbon fiber 105 105 Nylon 30% glass fiber 30% carbon fiber 140 145 Polycarbonate 30% glass fiber 30% carbon fiber 150 150 Polyetherimide 30% glass fiber 30% carbon fiber 215 215 Polyphenylene oxide (PPO) 30% glass fiber 30% carbon fiber 155 155 Polysulfone 30% glass fiber 30% carbon fiber 185 185 30% glass fiber 120 30% glass fiber 170 Styrene-maleic-anhydride (SMA) Thermoplastic polyurethane Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994). ©2001 CRC Press LLC Shackelford & Alexander 525 7.13 Thermal Page 526 Wednesday, December 31, 1969 17:00 Thermal Properties Table 126. HEAT-DEFLECTION TEMPERATURE OF CARBON - AND GLASS -REINFORCED ENGINEERING THERMOPLASTICS (SHEET 2 OF 2) Class Resin Type Composition Heat-Deflection Temperature (°C) Crystalline Acetal 30% glass fiber 20% carbon fiber 165 160 Nylon 66% 30% glass fiber 30% carbon fiber 255 257 Polybutylene terephthalate (PBT) 30% glass fiber 30% carbon fiber 210 210 Polythylene terephthalate (PET) 30% glass fiber 225 Polyphenylene sulfide (PPS) 30% glass fiber 30% carbon fiber 260 265 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994). ©2001 CRC Press LLC 526 CRC Handbook of Materials Science & Engineering Shackelford, James F. and Alexander, W. “Mechanical Properties of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001 8.00 Mechanical Page 527 Wednesday, December 31, 1969 17:00 CHAPTER 6 List of Tables Mechanical Properties of Materials Tensile Strength Tensile Strength of Tool Steels Tensile Strength of Gray Cast Tensile Strength of Gray Cast Iron Bars Tensile Strength of Ductile Irons Tensile Strength of Malleable Iron Castings Tensile Strength of Austenitic Stainless Steels Tensile Strength of Ferritic Stainless Steels Tensile Strength of Precipitation-Hardening Austenitic Stainless Steels Tensile Strength of High–Nitrogen Austenitic Stainless Steels Tensile Strength of Martensitic Stainless Steels Tensile Strength of Wrought Coppers and Copper Alloys Tensile Strength of Aluminum Casting Alloys Tensile Strength of Wrought Aluminum Alloys Tensile Strength of Cobalt-Base Superalloys Tensile Strength of Nickel-Base Superalloys Tensile Strength of Wrought Titanium Alloys at Room Temperature Tensile Strength of Wrought Titanium Alloys at High Temperature (continued) ©2001 CRC Press LLC 527 8.00 Mechanical Page 528 Wednesday, December 31, 1969 17:00 Mechanical Properties List of Tables (Continued) Tensile Strength (continued) Tensile Strength of Refractory Metal Alloys Tensile Strength of Ceramics Tensile Strength of Glass Tensile Strength of Polymers Tensile Strength of Fiberglass Reinforced Plastics Tensile Strength of Carbon- and Glass-Reinforced Engineering Thermoplastics Strength of Graphite Fiber Reinforced Metals Tensile Strength of Graphite/Magnesium Castings Tensile Strength of Graphite/Aluminum Composites Tensile Strength of Graphite/Aluminum Composites Tensile Strength of Silicon Carbide SCS–2–Al Ultimate Tensile Strength of Investment Cast Silicon Carbide SCS–Al Ultimate Tensile Strength of Silicon Carbide–Aluminum Alloy Composites Tensile Strength of SiC-Whisker–Reinforced Aluminum Alloy Ultimate Tensile Strength of Aluminum Alloy Reinforced with SiC Whiskers vs. Temperature Ultimate Tensile Strength of Reinforced Aluminum Alloy vs. Temperature Tensile Strength of Polycrystalline–Alumina–Reinforced Aluminum Alloy Tensile Strength of Boron/Aluminum Composites Compressive Strength Compressive Strength of Gray Cast Iron Bars Compressive Strength of Ceramics Compressive Strength of Fiberglass Reinforced Plastic Ultimate Compressive Strength of Investment Cast Silicon Carbide SCS–Al ©2001 CRC Press LLC 528 CRC Handbook of Materials Science & Engineering 8.00 Mechanical Page 529 Wednesday, December 31, 1969 17:00 Mechanical Properties List of Tables Yield Strength (Continued) Yield Strength of Tool Steels Yield Strength of Ductile Irons Yield Strength of Malleable Iron Castings Yield Strength of Austenitic Stainless Steels Yield Strength of Ferritic Stainless Steels Yield Strength of Martensitic Stainless Steels Yield Strength of Precipitation-Hardening Austenitic Stainless Steels Yield Strength of High–Nitrogen Austenitic Stainless Steels Yield Strength of Wrought Coppers and Copper Alloys Yield Strength of Cast Aluminum Alloys Yield Strength of Wrought Aluminum Alloys Yield Strength of Wrought Titanium Alloys at Room Temperature Yield Strength of Wrought Titanium Alloys at High Temperature Yield Strength of Cobalt-Base Superalloys Yield Strength of Nickel-Base Superalloys Yield Strength of Commercially Pure Tin Yield Strength of Polymers Yield Strength of SiC-Whisker–Reinforced Aluminum Alloy Yield Strength of Reinforced Aluminum Alloy vs. Temperature Yield Strength of Polycrystalline–Alumina–Reinforced Aluminum Alloy Compressive Yield Strength of Polymers Flextural Strength Flexural Strength of Polymers Flextural Strength of Fiberglass Reinforced Plastics ©2001 CRC Press LLC Shackelford & Alexander 529 8.00 Mechanical Page 530 Wednesday, December 31, 1969 17:00 Mechanical Properties List of Tables (Continued) Shear Strength Shear Strength of Wrought Aluminum Alloys Torsion Shear Strength of Gray Cast Fe Hardness Hardness of Gray Cast Irons Hardness of Gray Cast Iron Bars Hardness of Malleable Iron Castings Hardness of Ductile Irons Hardness of Tool Steels Hardness of Austenitic Stainless Steels Hardness of Ferritic Stainless Steels Hardness of Martensitic Stainless Steels Hardness of Precipitation-Hardening Austenitic Stainless Steels Machinability Rating of Wrought Coppers and Copper Alloys Hardness of Wrought Aluminum Alloys Hardness of Wrought Titanium Alloys at Room Temperature Hardness of Ceramics Microhardness of Glass Hardness of Polymers Hardness of Si3N4 and Al2O3 Composites Coefficient of Friction Coefficient of Static Friction for Polymers Abrasion Resistance Abrasion Resistance of Polymers Fatique Fatigue Strength of Wrought Aluminum Alloys Reversed Bending Fatigue Limit of Gray Cast Iron Bars ©2001 CRC Press LLC 530 CRC Handbook of Materials Science & Engineering 8.00 Mechanical Page 531 Wednesday, December 31, 1969 17:00 Mechanical Properties List of Tables Impact (Continued) Impact Energy of Tool Steels Impact Strength of Wrought Titanium Alloys at Room Temperature Impact Strength of Polymers Impact Strength of Fiberglass Reinforced Plastics Impact Strength of Carbon- and Glass-Reinforced Engineering Thermoplastics Fracture Toughness Fracture Toughness of Si3N4 and Al2O3 Composites Tensile Modulus Tensile Modulus of Gray Cast Irons Tension Modulus of Treated Ductile Irons Tensile Modulus of Fiberglass Reinforced Plastics Tensile Modulus of Graphite/Aluminum Composites Tensile Modulus of Investment Cast Silicon Carbide SCS–Al Tensile Modulus of Silicon Carbide SCS–2–Al Young’s Modulus Young’s Modulus of Ceramics Young’s Modulus of Glass (continues) ©2001 CRC Press LLC Shackelford & Alexander 531 8.00 Mechanical Page 532 Wednesday, December 31, 1969 17:00 Mechanical Properties List of Tables (Continued) Elastic Modulus Elastic Modulus of Wrought Stainless Steels Modulus of Elasticity of Wrought Titanium Alloys Modulus of Elasticity in Tension for Polymers Modulus of Elasticity of 55MSI Graphite/6061 Aluminum Composites Modulus of Elasticity of Graphite/Magnesium Castings Modulus of Elasticity of Graphite/Aluminum Composites Modulus of Elasticity of Graphite Fiber Reinforced Metals Modulus of Elasticity of SiC-Whisker–Reinforced Aluminum Alloy Modulus of Elasticity of Polycrystalline–Alumina–Reinforced Aluminum Alloy Modulus of Elasticity of Boron/Aluminum Composites Compression Modulus Compression Modulus of Treated Ductile Irons Modulus of Elasticity in Compression for Polymers Bulk Modulus Bulk Modulus of Glass Sheer Modulus Shear Modulus of Glass Torsion Modulus Torsional Modulus of Gray Cast Irons Torsion Modulus of Treated Ductile Irons Flexural Modulus Modulus of Elasticity in Flexure for Polymers Flexural Modulus of Fiberglass Reinforced Plastics Flexural Modulus of Carbon- and Glass-Reinforced Engineering Thermoplastics Modulus of Rupture Modulus of Rupture for Ceramics Rupture Strength of Refractory Metal Alloys Rupture Strength of Superalloys Modulus of Rupture for Si3N4 and Al2O3Composites ©2001 CRC Press LLC 532 CRC Handbook of Materials Science & Engineering 8.00 Mechanical Page 533 Wednesday, December 31, 1969 17:00 Mechanical Properties List of Tables Poisson’s Ratio (Continued) Poisson's Ratio of Wrought Titanium Alloys Poisson’s Ratio for Ceramics Poisson’s Ratio of Glass Poisson's Ratio of Silicon Carbide SCS–2–Al Compression Poisson’s Ratio of Treated Ductile Irons Torsion Poisson’s Ratio of Treated Ductile Irons Elongation Elongation of Tool Steels Elongation of Ductile Irons Elongation of Malleable Iron Castings Elongation of Ferritic Stainless Steels Elongation of Martensitic Stainless Steels Elongation of Precipitation-Hardening Austenitic Stainless Steels Elongation of High–Nitrogen Austenitic Stainless Steels Total Elongation of Cast Aluminum Alloys Elongation of Wrought Coppers and Copper Alloys Elongation of Commercially Pure Tin Elongation of Cobalt-Base Superalloys Elongation of Nickel-Base Superalloys Ductility of Refractory Metal Alloys Elongation of Wrought Titanium Alloys at Room Temperature Elongation of Wrought Titanium Alloys at High Temperature Total Elongation of Polymers Elongation at Yield for Polymers Ultimate Tensile Elongation of Fiberglass Reinforced Plastics Total Strain of Silicon Carbide SCS–2–Al ©2001 CRC Press LLC Shackelford & Alexander 533 8.00 Mechanical Page 534 Wednesday, December 31, 1969 17:00 Mechanical Properties List of Tables (Continued) Area Reduction Area Reduction of Tool Steels Reduction in Area of Austenitic Stainless Steels Reduction in Area of Ferritic Stainless Steels Reduction in Area of High–Nitrogen Austenitic Stainless Steels Reduction in Area of Precipitation-Hardening Austenitic Stainless Steels Reduction in Area of Martensitic Stainless Steels Reduction in Area of Commercially Pure Tin Area Reduction of Wrought Titanium Alloys at Room Temperature Area Reduction of Wrought Titanium Alloys at High Temperature Ratios Strength Density Ratio of Graphite Fiber Reinforced Metals Modulus Density Ratio of Graphite Fiber Reinforced Metals Viscosity Viscosity of Glasses Internal Friction of SiO2 Glass Surface Tension Surface Tension of Elements at Melting Surface Tension of Liquid Elements ©2001 CRC Press LLC 534 CRC Handbook of Materials Science & Engineering 8.01 Mechanical Page 535 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 127. TENSILE STRENGTH OF TOOL STEELS (SHEET 1 OF 2) Tensile Strength (MPa) Type Condition L2 Annealed Oil quenched from 855 •C and single tempered at: 205 •C 315 •C 2000 1790 425 •C 540 •C 650 •C 1550 1275 930 Annealed Oil quenched from 845 •C and single tempered at: 315 •C 425 •C 540 •C 650 •C 655 L6 S1 S5 710 2000 1585 1345 965 Annealed Oil quenched from 930 •C and single tempered at: 205 •C 315 •C 690 2070 2030 425 •C 540 •C 650 •C 1790 1680 1345 Annealed Oil quenched from 870 •C and single tempered at: 205 •C 315 •C 725 2345 2240 425 •C 540 •C 650 •C 1895 1520 1035 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984). ©2001 CRC Press LLC Shackelford & Alexander 535 8.01 Mechanical Page 536 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 127. TENSILE STRENGTH OF TOOL STEELS (SHEET 2 OF 2) Tensile Strength (MPa) Type Condition S7 Annealed Fan cooled from 940 •C and single tempered at: 205 •C 315 •C 2170 1965 425 •C 540 •C 650 •C 1895 1820 1240 640 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984). ©2001 CRC Press LLC 536 CRC Handbook of Materials Science & Engineering 8.01 Mechanical Page 537 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 128. TENSILE STRENGTH OF GRAY CAST IRONS SAE grade Maximum Tensile Strength (MPa) G1800 G2500 G2500a 118 173 173 G3000 C3500 G3500b 207 241 1241 G3500c G4000 G4000d 1241 276 1276 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). Table 129. TENSILE STRENGTH OF GRAY CAST IRON BARS ASTM Class Tensile Strength (MPa) ASTM Class Tensile Strength (MPa) 20 25 30 152 179 214 35 40 50 252 293 362 60 431 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). ©2001 CRC Press LLC Shackelford & Alexander 537 8.01 Mechanical Page 538 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 130. TENSILE STRENGTH OF DUCTILE IRONS Specification Number Grade or Class Tensile Strength (MPa) ASTM A395-76 ASME SA395 60-40-18 414 ASTM A476-70(d); SAE AMS5316 80-60-03 552 60-40-18 65-45-12 414 448 80-55-06 100-70-03 120-90-02 552 689 827 SAE J434c D4018 D4512 D5506 D7003 414 448 552 689 MlL-I-24137(Ships) Class A Class B Class C 414 379 345 ASTM A536-72, MIL-1-11466B(MR) Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984). ©2001 CRC Press LLC 538 CRC Handbook of Materials Science & Engineering 8.01 Mechanical Page 539 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 131. TENSILE STRENGTH OF MALLEABLE IRON CASTINGS Specification Number Ferritic ASTM A47, A338; ANSI G48.1; FED QQ–I–666c Grade or Class 32510 35018 345 365 276 40010 45008 45006 50005 414 448 448 483 60004 70003 80002 90001 552 586 655 724 M3210 M4504(a) M5003(a) 345 448 517 M5503(b) M7002(b) M8501(b) 517 621 724 ASTM A197 Pearlitic and Martensitic ASTM A220; ANSI C48.2; MIL–I–11444B Automotive ASTM A602; SAE J158 Tensile Strength (MPa) (a) Air quenched and tempered (b) Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984). ©2001 CRC Press LLC Shackelford & Alexander 539 8.02 Mechanical L Page 540 Wednesday, December 31, 1969 17:00 Table 132. TENSILE STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 1 OF 5) Type Form Condition ASTM Specification Tensile Strength (MPa) Type 301(UNS S30100) Bar,Wire,Plate,Sheet, Strip Annealed A167 515 Type 302 (UNS S30200) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 515 620 515 Type 302B (UNS S30215) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 515 620 515 Type 302Cu(UNS S30430) Bar Annealed A493 450 to 585 Types 303 (UNS S30300) and 303Se (UNS S30323) Bar Annealed A581 585 Wire Annealed Cold worked A581 A581 585 to 860 790 to 1000 (a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 541 Wednesday, December 31, 1969 17:00 Table 132. TENSILE STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 2 OF 5) Type Form Condition ASTM Specification Tensile Strength (MPa) Type 304(UNS S30400) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 515 620 515 Type 304L (UNS S30403) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 480 620 480 Types 304N (UNS S30451) and 316N(UNS S31651) Bar Annealed A276 550 Type 304LN Bar Annealed — 515 Type 305 (UNS S30500) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 515 260 515 (a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 542 Wednesday, December 31, 1969 17:00 Table 132. TENSILE STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 3 OF 5) Type Form Condition ASTM Specification Tensile Strength (MPa) Types 308 (UNS S30800),321(UNS S32100),347(UNS34700) and 348 (UNS S34800) Bar Hot finished and annealed A276 515 Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 620 515 Type 308L Bar Annealed — 550 Types 309 (UNS S30900), 309S (UNS S30908), 310 (UNS S31000) and 310S (UNS S31008) Bar Hot finished and annealed A276 515 Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 620 515 (a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 543 Wednesday, December 31, 1969 17:00 Table 132. TENSILE STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 4 OF 5) ASTM Specification Tensile Strength (MPa) MIL–E–19933 655 Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 515 620 515 Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 515 620 515 Type 316F (UNS S31620) Bar Annealed — 585 Type 316L (UNS S31603) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 480 620 480 Type Form Type 312 Weld metal — Type 314 (UNS S31400) Bar Type 316 (UNS S31600) Condition (a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 544 Wednesday, December 31, 1969 17:00 Table 132. TENSILE STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 5 OF 5) Type Form Condition ASTM Specification Tensile Strength (MPa) Type 316LN Bar Annealed — 515 Type 317 (UNS S31700) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 515 620 515 Type 317L (UNS S31703) Bar Annealed — 585 Type 317LM Bar,Plate,Sheet, Strip Annealed — 515 Type 329 (UNS S32900) Bar Annealed — 724 Type 330 (UNS N08330) Bar Annealed B511 480 Type 330HC Bar,Wire,Strip Annealed — 585 Types 384 (UNS S38400) Types 385 (UNS38500) Bar Bar Annealed Annealed A493 A493 415 to 550 415 to 550 (a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 545 Wednesday, December 31, 1969 17:00 Table 133. TENSILE STRENGTH OF FERRITIC STAINLESS STEELS (SHEET 1 OF 2) Type ASTM Specification Form Condition Tensile Strength (MPa) Type 405 (UNS S40500) A580 A580 Wire Annealed Annealed, Cold Finished 480 480 Type 409 (UNS S40900) Type 429 (UNS S42900) — — Bar Bar Annealed Annealed 450(a) 490(a) Type 430 (UNS S43000) A276 A276 Bar Annealed, Hot Finished Annealed, Cold Finished 480 480 Type 430F (UNS S43020) Type 430Ti(UNS S43036) A581 — Wire Bar Annealed Annealed 585 to 860 515(a) Type 434 (UNS S43400) Type 436 (UNS S43600) — — Wire Sheet, Strip Annealed Annealed 545(a) 530(a) (a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 546 Wednesday, December 31, 1969 17:00 Table 133. TENSILE STRENGTH OF FERRITIC STAINLESS STEELS (SHEET 2 OF 2) Type ASTM Specification Form Condition Tensile Strength (MPa) Type 442 (UNS S44200) Type 444 (UNS S44400) — A176 Bar Plate, Sheet, Strip Annealed Annealed 550(a) 415 Type 446 (UNS S44600) A276 A276 Bar Annealed, Hot Finished Annealed, Cold Finished 480 480 (a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 547 Wednesday, December 31, 1969 17:00 Table 134. TENSILE STRENGTH OF PRECIPITATION -HARDENING AUSTENITIC STAINLESS STEELS Type Form Condition Tensile Strength (MPa) PH 13–8 Mo (UNS S13800) Bar, Plate, Sheet, Strip H950 H1000 1520 1380 15–5 PH (UNS S15500) and 17–4 PH (UNS S17400) Bar, Plate, Sheet, Stript H900 H925 H1025 H1075 1310 1170 1070 1000 H1100 H1150 H1150M 965 930 795 RH950 TH1050 1275 1170 17–7 PH (UNS S17700) Bar Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p371 (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 548 Wednesday, December 31, 1969 17:00 Table 135. TENSILE STRENGTH OF HIGH–NITROGEN AUSTENITIC STAINLESS STEELS Type ASTM Specification Form Condition Tensile Strength (MPa) Type 201 (UNS S20100) A276 Bar Annealed 515 Type 202 (UNS S20200) A276 Bar Annealed 515 Type 205 (UNS S20500) — Plate Annealed* 830 Type 304N (UNS S30451) A276 Bar Annealed 550 Type 304HN (UNS S30452) — Bar Annealed 620 Type 316N (UNS S31651) A276 Bar Annealed 550 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p367 (1993). * Typical Values. ©2001 CRC Press LLC 8.02 Mechanical L Page 549 Wednesday, December 31, 1969 17:00 Table 136. TENSILE STRENGTH OF MARTENSITIC STAINLESS STEELS (SHEET 1 OF 3) Type ASTM Specification Form Condition Tensile Strength (MPa) Type 403 (UNS S40300) A276 A276 A276 A276 A276 A276 Bar Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished 485 485 690 690 825 825 Type 410 (UNS S41000) A276 A276 A276 A276 A276 A276 Bar Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished 485 485 690 690 825 825 Type 410S (UNS S41008) A176 Plate, Sheet, Strip Annealed 415 Type 410Cb (UNS S41040) A276 A276 A276 A276 Bar Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished 485 485 860 860 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 550 Wednesday, December 31, 1969 17:00 Table 136. TENSILE STRENGTH OF MARTENSITIC STAINLESS STEELS (SHEET 2 OF 3) Type ASTM Specification Form Condition Tensile Strength (MPa) Type 414 (UNS S41400) A276 A276 Bar Intermediate temper, hot finished Intermediate temper, cold finished 795 795 Type 414L — Bar Annealed 795 Types 416 (UNS S41600) and 416Se (UNS S41623) A581 Wire Annealed 585 to 860 Intermediate temper Hard temper 795 to 1000 965 to 1210 A581 A581 Type 420 (UNS S42000) — A580 Bar Wire Tempered 205 °C Annealed, cold finished 1720 860 max Type 422 (UNS S42200) A565 Bar Intermediate and hard tempers* 965 Type 431 (UNS S43100) — — Bar Tempered 260 °C Tempered 595 °C 1370 965 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 551 Wednesday, December 31, 1969 17:00 Table 136. TENSILE STRENGTH OF MARTENSITIC STAINLESS STEELS (SHEET 3 OF 3) Type ASTM Specification Form Condition Tensile Strength (MPa) Type 440A (UNS S44002) — — — — Bar Annealed Tempered 315 °C Annealed Tempered 315 °C 725 1790 740 1930 Type 440B (UNS S44003) Bar Type 440C (UNS S44004) — — Bar Annealed Tempered 315 °C 760 1970 Type 501 (UNS S50100) — — Bar, Plate Annealed Tempered 540 °C 485 1210 Type 502 (UNS S50200) — Bar, Plate Annealed 485 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993). * Heat treated for high-temperature service ©2001 CRC Press LLC 8.02 Mechanical L Page 552 Wednesday, December 31, 1969 17:00 Table 137. TENSILE STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 1 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Tensile Strength (MPa) C10100 Oxygen-free electronic C10200 Oxygen-free copper C10300 Oxygen-free extra-low phosporus C10400, C10500, C10700 Oxygen-free, silver-bearing 99.99 Cu 99.95 Cu 99.95 Cu, 0.003 P 99.95 Cu(e) F, R, W, T, P, S F, R, W, T, P, S F, R, T, P, S F, R, W, S 221-455 221-455 221-379 221-455 C10800 Oxygen-free, low phosporus CS11000 Electrolytic tough pitch copper C11100 Electrolytic tough pitch, anneal resistant C11300, C11400, C11500, C11600 Silver-bearing tough pitch copper 99.95 Cu, 0.009 P 99.90 Cu, 0.04 O 99.90 Cu, 0.04 O, 0.01 Cd 99.90 Cu, 0.04 O, Ag(f) F, R, T, P F, R, W, T, P, S W F, R, W, T, S 221-379 221-455 455 221-455 C12000, C12100 C12200 Phosphorus deoxidized copper, high residual phosphorus C12500, C12700, C12800, C12900, C13000 Fire-refined tough pitch with silver C14200 Phosphorus deoxidized, arsenical 99.9 Cu(g) 99.90 Cu, 0.02 P F, T, P F, R, T, P 221-393 221-379 99.88 Cu(h) F, R, W, S 221-462 99.68 Cu, 0.3 As, 0.02 P F, R, T 221-379 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 553 Wednesday, December 31, 1969 17:00 Table 137. TENSILE STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 2 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Tensile Strength (MPa) C19200 C14300 C14310 C14500 Phosphorus deoxidized, tellurium bearing 98.97 Cu, 1.0 Fe, 0.03 P 99.9 Cu, 0.1 Cd 99.8 Cu, 0.2 Cd 99.5 Cu, 0.50 Te, 0.008 P F, T F F F, R, W, T 255-531 221-400 221-400 221-386 C14700 Sulfur bearing C15000 Zirconium copper C15500 C15710 99.6 Cu, 0.40 S 99.8 Cu, 0.15 Zr 99.75 Cu, 0.06 P, 0.11 Mg, Ag(i) 99.8 Cu, 0.2 Al2O3 R, W R, W F R, W 221-393 200-524 276-552 324-724 C15720 C15735 C15760 C16200 Cadmium copper 99.6 Cu, 0.4 Al2O3 99.3 Cu, 0.7 Al2O3 98.9 Cu, 1.1 Al2O3 99.0 Cu, 1.0 Cd F, R R F, R F, R, W 462-614 483-586 483-648 241-689 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 554 Wednesday, December 31, 1969 17:00 Table 137. TENSILE STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 3 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Tensile Strength (MPa) C16500 C17000 Beryllium copper C17200 Beryllium copper C17300 Beryllium copper 98.6 Cu, 0.8 Cd, 0.6 Sn 99.5 Cu, 1.7 Be, 0.20 Co 99.5 Cu, 1.9 Be , 0.20 Co 99.5 Cu, 1.9 Be, 0.40 Pb F, R, W F, R F, R, W, T, P, S R 276-655 483-1310 469-1462 469-1479 C17500 Copper-cobalt-beryllium alloy C18200, C18400, C18500 Chromium copper C18700 leaded copper C18900 99.5 Cu, 2.5 Co, 0.6 Be 99.5 Cu(j) 99.0 Cu, 1.0 Pb 98.75 Cu, 0.75 Sn, 0.3 Si, 0.20 Mn F, R F, W, R, S, T R R, W 310-793 234-593 221-379 262-655 C19000 Copper-nickel-phosphorus alloy C19100 Copper-nickel-phosphorus-tellurium alloy C19400 98.7 Cu, 1.1 Ni, 0.25 P 98.15 Cu, 1.1 Ni, 0.50 Te, 0.25 P 97.5 Cu, 2.4 Fe, 0.13 Zn, 0.03 P F, R, W R, F F 262-793 248-717 310-524 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 555 Wednesday, December 31, 1969 17:00 Table 137. TENSILE STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 4 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Tensile Strength (MPa) C19500 C21000 Gilding, 95% C22000 Commercial bronze, 90% C22600 Jewelry bronze, 87.5% 97.0 Cu, 1.5 Fe, 0.6 Sn, 0.10 P, 0.80 Co 95.0 Cu, 5.0 Zn 90.0 Cu, 10.0 Zn 87.5 Cu, 12.5 Zn F F, W F, R, W, T F, W 552-669 234-441 255-496 269-669 C23000 Red brass, 85% C24000 Low brass, 80% C26000 Cartridge brass, 70% C26800, C27000 Yellow brass 85.0 Cu, 15.0 Zn 80.0 Cu, 20.0 Zn 70.0 Cu, 30.0 Zn 65.0 Cu, 35.0 Zn F, W, T, P F, W F, R, W, T F, R, W 269-724 290-862 303-896 317-883 C28000 Muntz metal C31400 Leaded commercial bronze C31600 Leaded commercial bronze, nickel-bearing C33000 Low-leaded brass tube 60.0 Cu, 40.0 Zn 89.0 Cu, 1.75 Pb, 9.25 Zn 89.0 Cu, 1.9 Pb, 1.0 Ni, 8.1 Zn 66.0 Cu, 0.5 Pb, 33.5 Zn F, R, T F, R F, R T 372-510 255-414 255-462 324-517 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 556 Wednesday, December 31, 1969 17:00 Table 137. TENSILE STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 5 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Tensile Strength (MPa) C33200 High-leaded brass tube C33500 Low-leaded brass C34000 Medium-leaded brass C34200 High-leaded brass 66.0 Cu, 1.6 Pb, 32.4 Zn 65.0 Cu, 0.5 Pb, 34.5 Zn 65.0 Cu, 1.0 Pb, 34.0 Zn 64.5 Cu, 2.0 Pb, 33.5 Zn T F F, R, W, S F, R 359-517 317-510 324-607 338-586 C34900 C35000 Medium-leaded brass C35300 High-leaded brass C35600 Extra-high-leaded brass 62.2 Cu, 0.35 Pb, 37.45 Zn 62.5 Cu, 1.1 Pb, 36.4 Zn 62.0 Cu, 1.8 Pb, 36.2 Zn 63.0 Cu, 2.5 Pb, 34.5 Zn R, W F, R F, R F 365-469 310-655 338-586 338-510 C36000 Free-cutting brass C36500 to C36800 Leaded Muntz metal C37000 Free-cutting Muntz metal C37700 Forging brass 61.5 Cu, 3.0 Pb, 35.5 Zn 60.0 Cu(k), 0.6 Pb, 39.4 Zn 60.0 Cu, 1.0 Pb, 39.0 Zn 59.0 Cu, 2.0 Pb, 39.0 Zn F, R, S F T R, S 339-469 372 (As hot rolled) 372-552 359 (as extruded) (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 557 Wednesday, December 31, 1969 17:00 Table 137. TENSILE STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 6 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Tensile Strength (MPa) C38500 Architectural bronze C40500 C40800 C41100 57.0 Cu, 3.0 Pb, 40.0 Zn 95 Cu, 1 Sn, 4 Zn 95 Cu, 2 Sn, 3 Zn 91 Cu, 0.5 Sn, 8.5 Zn R, S F F F, W 414 (as extruded) 269-538 290-545 269-731 C41300 C41500 C42200 C42500 90.0 Cu, 1.0 Sn, 9.0 Zn 91 Cu, 1.8 Sn, 7.2 Zn 87.5 Cu, 1.1 Sn, 11.4 Zn 88.5 Cu, 2.0 Sn, 9.5 Zn F, R, W F F F 283-724 317-558 296-607 310-634 C43000 C43400 C43500 C44300, C44400, C44500 Inhibited admiralty 87.0 Cu, 2.2 Sn, 10.8 Zn 85.0 Cu, 0.7 Sn, 14.3 Zn 81.0 Cu, 0.9 Sn, 18.1 Zn 71.0 Cu, 28.0 Zn, 1.0 Sn F F F, T F, W, T 317-648 310-607 317-552 331-379 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 558 Wednesday, December 31, 1969 17:00 Table 137. TENSILE STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 7 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Tensile Strength (MPa) C46400 to C46700 Naval brass C48200 Naval brass, medium-leaded C48500 Leaded naval brass C50500 Phosphor bronze, 1.25% E 60.0 Cu, 39.25 Zn, 0.75 Sn 60.5 Cu, 0.7 Pb, 0.8 Sn, 38.0 Zn 60.0 Cu, 1.75 Pb, 37.5 Zn, 0.75 Sn 98.75 Cu, 1.25 Sn, trace P F, R, T, S F, R, S F, R, S F, W 379-607 386-517 379-531 276-545 C51000 Phosphor bronze, 5% A C51100 C52100 Phosphor bronze, 8% C C52400 Phosphor bronze, 10% D 95.0 Cu, 5.0 Sn, trace P 95.6 Cu, 4.2 Sn, 0.2 P 92.0 Cu, 8.0 Sn, trace P 90.0 Cu, 10.0 Sn, trace P F, R, W, T F F, R, W F, R, W 324-965 317-710 379-965 455-1014 C54400 Free-cutting phosphor bronze C60800 Aluminum bronze, 5% C61000 C61300 88.0 Cu, 4.0 Pb, 4.0 Zn, 4.0 Sn 95.0 Cu, 5.0 Al 92.0 Cu, 8.0 Al 92.65 Cu, 0.35 Sn, 7.0 Al F, R T R, W F, R, T, P, S 303-517 414 483-552 483-586 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 559 Wednesday, December 31, 1969 17:00 Table 137. TENSILE STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 8 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Tensile Strength (MPa) C61400 Aluminum bronze, D C61500 C61800 C61900 91.0 Cu, 7.0 Al, 2.0 Fe 90.0 Cu, 8.0 Al, 2.0 Ni 89.0 Cu, 1.0 Fe, 10.0 Al 86.5 Cu, 4.0 Fe, 9.5 Al F, R, W, T, P, S F R F 524-614 483-1000 552-586 634-1048 C62300 C62400 C62500 C63000 87.0 Cu, 10.0 Al, 3.0 Fe 86.0 Cu, 3.0 Fe, 11.0 Al 82.7 Cu, 4.3 Fe, 13.0 Al 82.0 Cu, 3.0 Fe, 10.0 Al, 5.0 Ni F, R F, R F, R F, R 517-676 621-724 689 621-814 C63200 C63600 C63800 C64200 82.0 Cu, 4.0 Fe, 9.0 Al, 5.0 Ni 95.5 Cu, 3.5 Al, 1.0 Si 99.5 Cu, 2.8 Al, 1.8 Si, 0.40 Co 91.2 Cu, 7.0 Al F, R R, W F F, R 621-724 414-579 565-896 517-703 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 560 Wednesday, December 31, 1969 17:00 Table 137. TENSILE STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 9 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Tensile Strength (MPa) C65100 Low-silicon bronze, B C65500 High-silicon bronze, A C66700 Manganese brass C67400 98.5 Cu, 1.5 Si 97.0 Cu, 3.0 Si 70.0 Cu, 28.8 Zn, 1.2 Mn 58.5 Cu, 36.5 Zn, 1.2 Al, 2.8 Mn, 1.0 Sn R, W, T F, R, W, T F, W F, R 276-655 386-1000 315-689 483-634 C67500 Manganese bronze, A C68700 Aluninum brass, arsenical C68800 C69000 58.5 Cu, 1.4 Fe, 39.0 Zn, 1.0 Sn, 0.1 Mn 77.5 Cu, 20.5 Zn, 2.0 Al, 0.1 As 73.5 Cu, 22.7 Zn, 3.4 Al, 0.40 Co 73.3 Cu, 3.4 Al, 0.6 Ni, 22.7 Zn R, S T F F 448-579 414 565-889 496-896 C69400 Silicon red brass C70400 C70600 Copper nickel, 10% C71000 Copper nickel, 20% 81.5 Cu, 14.5 Zn, 4.0 Si 92.4 Cu, 1.5 Fe, 5.5 Ni, 0.6 Mn 88.7 Cu, 1.3 Fe, 10.0 Ni 79.00 Cu, 21.0 Ni R F, T F, T F, W, T 552-689 262-531 303-414 338-655 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 561 Wednesday, December 31, 1969 17:00 Table 137. TENSILE STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 10 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Tensile Strength (MPa) C71500 Copper nickel, 30% C71700 C72500 C73500 70.0 Cu, 30.0 Ni 67.8 Cu, 0.7 Fe, 31.0 Ni, 0.5 Be 88.20 Cu, 9.5 Ni, 2.3 Sn 72.0 Cu, 18.0 Ni , 10.0 Zn F, R, T F, R, W F, R, W, T F, R, W, T 372-517 483-1379 379-827 345-758 C74500 Nickel silver, 65-10 C75200 Nickel silver, 65-18 C75400 Nickel silver, 65-15 C75700 Nickel silver, 65-12 65.0 Cu, 25.0 Zn, 10.0 Ni 65.0 Cu, 17.0 Zn, 18.0 Ni 65.0 Cu, 20.0 Zn, 15.0 Ni 65.0 Cu, 23.0 Zn, 12.0 Ni F, W F, R, W F F, W 338-896 386-710 365-634 359-641 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.02 Mechanical L Page 562 Wednesday, December 31, 1969 17:00 Table 137. TENSILE STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 11 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Tensile Strength (MPa) C76200 C77000 Nickel silver, 55-18 C72200 C78200 Leaded nickel silver, 65-8-2 59.0 Cu, 29.0 Zn, 12.0 Ni 55.0 Cu, 27.0 Zn, 18.0 Ni 82.0 Cu, 16.0 Ni, 0.5 Cr, 0.8 Fe, 0.5 Mn 65.0 Cu, 2.0 Pb, 25.0 Zn, 8.0 Ni F, T F, R, W F, T F 393-841 414-1000 317-483 365-627 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). (d) Based on 100% for C360000. (e) C10400, 8 oz/ton Ag; C10500, 10 oz/ton; C10700, 25 oz/ton . (f) C11300, 8 oz/ton Ag; C11400,10 oz/ton; C11500, 16 oz/ton; C11600, 25 oz/ton (g) C12000, 0.008 P; C12100, 0.008 P and 4 oz/ton Ag; (h) C12700, 8 oz/ton Ag; C12800,10 oz/ton; C12900,16 oz/ton; C13000, 25 oz/ton. (i) 8.30 oz/ton Ag. (j) C18200, 0.9 Cr; C18400, 0.8 Cr; C18500, 0.7 Cr (k) Rod, 61.0 Cu min. ©2001 CRC Press LLC 8.03 Mechanical Page 563 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 138. TENSILE STRENGTH OF ALUMINUM CASTING ALLOYS (SHEET 1 OF 3) Alloy AA No. Temper Tensile Strength (MPa ) 201.0 T4 T6 T7 365 485 460 206.0, A206.0 208.0 T7 F 435 145 242.0 T21 T571 T77 T571 T61 185 220 205 275 325 295.0 T4 T6 T62 220 250 285 296.0 T4 T6 T7 255 275 270 308.0 F 195 319.0 F T6 F T6 185 250 235 280 336.0 T551 T65 250 325 354.0 T61 380 355.0 T51 T6 T61 T7 195 240 270 265 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 563 8.03 Mechanical Page 564 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 138. TENSILE STRENGTH OF ALUMINUM CASTING ALLOYS (SHEET 2 OF 3) Alloy AA No. Temper Tensile Strength (MPa ) T71 T51 T6 175 210 290 T62 T7 T71 310 280 250 T51 T6 T7 175 230 235 T71 T6 T7 195 265 220 357.0, A357.0 T62 360 359.0 T61 T62 330 345 360.0 A360.0 380.0 F F F 325 320 330 383.0 384.0, A384.0 F F 310 330 390.0 F T5 280 300 A390.0 F,T5 T6 T7 180 280 250 F,T5 T6 T7 200 310 260 355.0 (Con’t) 356.0 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 564 CRC Handbook of Materials Science & Engineering 8.03 Mechanical Page 565 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 138. TENSILE STRENGTH OF ALUMINUM CASTING ALLOYS (SHEET 3 OF 3) Alloy AA No. Temper Tensile Strength (MPa ) 413.0 A413.0 443.0 B443.0 F F F F 300 290 130 159 C443.0 514.0 518.0 F F F 228 170 310 520.0 535.0 712.0 T4 F F 330 275 240 713.0 T5 T5 210 220 771.0 850.0 T6 T5 345 160 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 565 8.03 Mechanical Page 566 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 139. TENSILE STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 7) Alloy Temper Tensile Strength (MPa) 1050 0 H14 H16 H18 76 110 130 160 1060 0 H12 H14 H16 H18 69 83 97 110 130 1100 0 H12 H14 H16 H18 90 110 125 145 165 1350 0 H12 H14 H16 H19 83 97 110 125 185 2011 T3 T8 380 405 2014 0 T4 T6 185 425 485 Alclad 2014 0 T3 T4 T6 170 435 420 470 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984). ©2001 CRC Press LLC 566 CRC Handbook of Materials Science & Engineering 8.03 Mechanical Page 567 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 139. TENSILE STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 7) Alloy Temper Tensile Strength (MPa) 2024 0 T3 T4, T351 T361 185 485 470 495 Alclad 2024 0 T T4, T351 T361 T81, T851 T861 180 450 440 460 450 485 2036 2048 2124 T4 T851 340 455 490 2218 T61 T71 T72 405 345 330 2219 0 T42 T31, T351 T37 T62 T81, T851 T87 170 360 360 395 415 455 475 2618 3003 Alclad All 0 H12 440 110 130 3003 H14 H16 H18 150 180 200 3004 Alclad 0 H32 180 215 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984). ©2001 CRC Press LLC Shackelford & Alexander 567 8.03 Mechanical Page 568 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 139. TENSILE STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 7) Alloy Temper Tensile Strength (MPa) 3004 H34 H36 H38 240 260 285 3105 0 H12 H14 H16 H18 H25 115 150 170 195 215 180 4032 T6 380 4043 0 H18 145 285 5005 0 H12 H14 H16 H18 125 140 160 180 200 H32 H34 H36 H38 140 160 180 200 5050 0 H32 H34 H36 H38 145 170 195 205 220 5052 0 H32 H34 H36 H38 195 230 260 275 290 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984). ©2001 CRC Press LLC 568 CRC Handbook of Materials Science & Engineering 8.03 Mechanical Page 569 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 139. TENSILE STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 7) Alloy Temper Tensile Strength (MPa) 5056 0 H18 H38 290 435 415 5083 0 H112 H113 H321 H323, H32 H343, H34 290 305 315 315 325 345 5086 0 H32, H116, H117 H34 H112 260 290 325 270 5154 0 H32 H34 H36 H38 H112 240 270 290 310 330 240 5182 0 H32 H34 H19(n) 275 315 340 420 5252 H25 H28, H38 235 285 5254 0 240 5254 H32 H34 H36 H38 H112 270 290 310 330 240 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984). ©2001 CRC Press LLC Shackelford & Alexander 569 8.03 Mechanical Page 570 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 139. TENSILE STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 5 OF 7) Alloy Temper Tensile Strength (MPa) 5454 0 H32 H34 H36 250 275 305 340 H38 H111 H112 H311 370 260 250 260 5456 0 H111 H112 H321, H116 310 325 310 350 5457 0 H25 H28, H38 130 180 205 5652 0 H32 H34 H36 H38 195 230 260 275 290 5657 H25 H28, H38 160 195 6005 T1 T5 170 260 6009 T4 T6 235 345 6010 T4 255 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984). ©2001 CRC Press LLC 570 CRC Handbook of Materials Science & Engineering 8.03 Mechanical Page 571 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 139. TENSILE STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 6 OF 7) Alloy Temper Tensile Strength (MPa) 6061 0 T4, T451 T6, T651 125 240 310 Alclad 6061 0 T4, T451 T6, T651 115 230 290 6063 0 T1 T4 T5 90 150 170 185 T6 T83 T831 T832 240 255 205 290 6066 0 T4, T451 T6, T651 150 360 395 6070 0 T4 T6 145 315 380 6101 6151 Hlll T6 97 220 6201 T6 T81 330 330 6205 Tl T5 260 310 6262 T9 400 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984). ©2001 CRC Press LLC Shackelford & Alexander 571 8.03 Mechanical Page 572 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 139. TENSILE STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 7 OF 7) Alloy Temper Tensile Strength (MPa) 6351 T4 T6 250 310 6463 Tl T5 T6 150 185 240 7005 0 T53 T6,T63,T6351 193 393 372 7050 T736 515 7075 0 T6,T651 T73 230 570 505 Alclad 7075 0 T6,T651 220 525 7175 T66 T736 595 525 7475 T61 525 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984). ©2001 CRC Press LLC 572 CRC Handbook of Materials Science & Engineering 8.03 Mechanical Page 573 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 140. TENSILE STRENGTH OF COBALT -BASE SUPERALLOYS Temperature (°C) Tensile Strength (MPa) Haynes 25 (L–605) sheet 21 540 650 760 870 1010 800 710 455 325 Haynes 188, sheet 21 540 650 760 870 960 740 710 635 420 S-816, bar 21 540 650 760 870 965 840 765 650 360 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387, (1993). ©2001 CRC Press LLC Shackelford & Alexander 573 8.03 Mechanical Page 574 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 141. TENSILE STRENGTH OF NICKEL -BASE SUPERALLOYS (SHEET 1 OF 5) Temperature (°C) Tensile Strength (MPa) Astroloy, bar 21 540 650 760 870 1410 1240 1310 1160 770 D–979, bar 21 540 650 760 870 1410 1300 1100 7 345 Hastelloy X, sheet 21 540 650 760 870 785 650 570 435 255 IN–102, bar 21 540 650 760 870 960 825 710 440 215 Inconel 600, bar 21 540 650 760 870 620 580 450 185 105 Inconel 601, sheet 21 540 650 760 870 740 725 525 290 160 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993). ©2001 CRC Press LLC 574 CRC Handbook of Materials Science & Engineering 8.03 Mechanical Page 575 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 141. TENSILE STRENGTH OF NICKEL -BASE SUPERALLOYS (SHEET 2 OF 5) Temperature (°C) Tensile Strength (MPa) Inconel 625, bar 21 540 650 760 870 855 745 710 505 285 Inconel 706, bar 21 540 650 760 1300 1120 1010 690 Inconel 718, bar 21 540 650 760 870 1430 1280 1230 950 340 Inconel 718, sheet 21 540 650 760 1280 1140 1030 675 Inconel X-750, bar 21 540 650 760 870 1120 965 825 485 235 M-252, bar 21 540 650 760 870 1240 1230 1160 945 510 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993). ©2001 CRC Press LLC Shackelford & Alexander 575 8.03 Mechanical Page 576 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 141. TENSILE STRENGTH OF NICKEL -BASE SUPERALLOYS (SHEET 3 OF 5) Temperature (°C) Tensile Strength (MPa) Nimonic 75, bar 21 540 650 760 870 750 635 538 290 145 Nimonic 80A, bar 21 540 650 760 870 1240 1100 1000 760 400 Nimonic 90, bar 21 540 650 760 870 1240 1100 1030 825 430 Nimonic 105, bar 21 540 650 760 870 1140 1100 1080 965 605 Nimonic 115, bar 21 540 650 760 870 1240 1090 1120 1080 825 Pyromet 860, bar 21 540 650 760 1300 1250 1110 910 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993). ©2001 CRC Press LLC 576 CRC Handbook of Materials Science & Engineering 8.03 Mechanical Page 577 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 141. TENSILE STRENGTH OF NICKEL -BASE SUPERALLOYS (SHEET 4 OF 5) Temperature (°C) Tensile Strength (MPa) René 41, bar 21 540 650 760 870 1420 1400 1340 1100 620 René 95, bar 21 540 650 760 1620 1540 1460 1170 Udimet 500, bar 21 540 650 760 870 1310 1240 1210 1040 640 Udimet 520, bar 21 540 650 760 870 1310 1240 1170 725 515 Udimet 700, bar 21 540 650 760 870 1410 1280 1240 1030 690 Udimet 710, bar 21 540 650 760 870 1190 1150 1290 1020 705 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993). ©2001 CRC Press LLC Shackelford & Alexander 577 8.03 Mechanical Page 578 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 141. TENSILE STRENGTH OF NICKEL -BASE SUPERALLOYS (SHEET 5 OF 5) Temperature (°C) Tensile Strength (MPa) Unitemp AF2–1DA, bar 21 540 650 760 870 1290 1340 1360 1150 830 Waspaloy, bar 21 540 650 760 870 1280 1170 1120 795 525 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993). ©2001 CRC Press LLC 578 CRC Handbook of Materials Science & Engineering 8.04 Mechanical L Page 579 Wednesday, December 31, 1969 17:00 Table 142. TENSILE STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE (SHEET 1 OF 3) Class Alloy Condition Tensile Strength (MPa) Commercially Pure 99.5 Ti 99.2 Ti 99.1 Ti Annealed Annealed Annealed 331 434 517 99.0 Ti 99.2Ti-0.2Pd Ti-0.8Ni-0.3Mo Annealed Annealed Annealed 662 434 517 Alpha Alloys Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2) Annealed Annealed 862 807 Near Alpha Alloys Ti-8Al-1Mo-1V Duplex Annealed 1000 Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Ti-6Al-2Sn-4Zr-2Mo Ti-5Al-2Sn-2Zr-2Mo-0.25Si Ti-6Al-2Nb-1Ta-1Mo Ti-6Al-2Sn-1.5Zr-1Mo- 0.35Bi-0.1Si Duplex Annealed Duplex Annealed 975 ˚C (1/2h), AC + 595˚C (2h), AC As rolled 2.5 cm (1 in.) plate Beta forge + duplex anneal 1103 979 1048 855 1014 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.04 Mechanical L Page 580 Wednesday, December 31, 1969 17:00 Table 142. TENSILE STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE (SHEET 2 OF 3) Class Alloy Condition Tensile Strength (MPa) Alpha-Beta Alloys Ti-8Mn Ti-3Al-2.5V Annealed Annealed 945 689 Ti-6Al-4V Annealed Solution + age 993 1172 Ti-6Al-4V(low O2) Annealed 896 Ti-6Al-6V-2Sn Annealed Solution + age 1069 1276 Ti-7Al-4Mo Ti-6Al-2Sn-4Zr-6Mo Ti-6Al-2Sn-2Zr-2Mo- 2Cr-0.25Si Ti-10V-2Fe-3Al Solution + age Solution + age Solution + age Solution + age 1103 1269 1276 1276 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.04 Mechanical L Page 581 Wednesday, December 31, 1969 17:00 Table 142. TENSILE STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE (SHEET 3 OF 3) Class Alloy Condition Beta Alloys Ti-13V-1Cr-3Al Solution + age Ti-8Mo-8V-2Fe-3Al Ti-3Al-8V-6Cr-4Mo-4Zr Solution + age Solution + age Annealed Solution + age Ti-11.5Mo-6Zr-4.5Sn Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC Tensile Strength (MPa) 1220 1276 1310 1448 883 1386 8.04 Mechanical L Page 582 Wednesday, December 31, 1969 17:00 Table 143. TENSILE STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 1 OF 4) Class Alloy Condition Test Temperature (°C) Commercially Pure 99.5 Ti 99.2 Ti 99.1 Ti Annealed Annealed Annealed 315 315 315 152 193 234 99.0 Ti 99.2Ti-0.2Pd Ti-0.8Ni-0.3Mo Ti-0.8Ni-0.3Mo Annealed Annealed Annealed Annealed 315 315 205 315 310 186 345 324 Alpha Alloys Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2) Annealed Annealed 315 -195 -255 565 1241 1579 Near Alpha Alloys Ti-8Al-1Mo-1V Duplex Annealed 315 425 540 793 738 621 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC Tensile Strength (MPa) 8.04 Mechanical L Page 583 Wednesday, December 31, 1969 17:00 Table 143. TENSILE STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 2 OF 4) Class Test Temperature (°C) Tensile Strength (MPa) Alloy Condition Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Duplex Annealed 315 425 540 896 827 758 Ti-6Al-2Sn-4Zr-2Mo Duplex Annealed 315 425 540 772 703 648 Ti-5Al-2Sn-2Zr-2Mo-0.25Si 975 ˚C (1/2h), AC + 595 ˚C (2h), AC 315 425 540 793 779 689 Ti-6Al-2Nb-1Ta-1Mo As rolled 2.5 cm (1 in.) plate 315 425 540 586 517 483 Ti-6Al-2Sn-1.5Zr-1Mo- 0.35Bi-0.1Si Beta forge + duplex anneal 480 724 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.04 Mechanical L Page 584 Wednesday, December 31, 1969 17:00 Table 143. TENSILE STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 3 OF 4) Class Alloy Condition Test Temperature (°C) Alpha-Beta Alloys Ti-8Mn Ti-3Al-2.5V Annealed Annealed 315 315 717 483 Ti-6Al-4V Annealed Annealed Annealed 315 425 540 724 669 531 Solution + age Solution + age Solution + age 315 425 540 862 800 655 Ti-6Al-4V(low O2) Ti-6Al-6V-2Sn Annealed Annealed Solution + age 160 315 315 1517 931 979 Ti-7Al-4Mo Solution + age 315 425 976 848 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC Tensile Strength (MPa) 8.04 Mechanical L Page 585 Wednesday, December 31, 1969 17:00 Table 143. TENSILE STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 4 OF 4) Class Beta Alloys Test Temperature (°C) Tensile Strength (MPa) Alloy Condition Ti-6Al-2Sn-4Zr-6Mo Solution + age 315 425 540 1020 951 848 Ti-6Al-2Sn-2Zr-2Mo- 2Cr-0.25Si Solution + age 315 979 Ti-10V-2Fe-3Al Solution + age 205 315 1117 1103 Ti-13V-1Cr-3Al Solution + age 315 425 883 1103 Ti-8Mo-8V-2Fe-3Al Ti-3Al-8V-6Cr-4Mo-4Zr Solution + age Solution + age 315 315 425 1131 1034 938 Ti-11.5Mo-6Zr-4.5Sn Annealed Solution + age 315 315 724 903 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.04 Mechanical L Page 586 Wednesday, December 31, 1969 17:00 Table 144. TENSILE STRENGTH OF REFRACTORY METAL ALLOYS (SHEET 1 OF 3) Form Condition Tensile Strength (ksi) Class Alloy Niobium and Niobium Alloys Pure Niobium — All Recrystallized 2000 10 Nb–1Zr C103(KbI–3) SCb291 1 Zr 10 Hf, 1 Ti 0.7 Zr 10 Ta, 10 W All All Bar, Sheet Recrystallized Recrystallized Recrystallized 2000 2000 2000 23 27 32 C129 FS85 SU31 10 W, 10 Hf, 0.1 Y 28 Ta, 11 W, 0.8 Zr 17 W, 3.5 Hf, 0.12 C, 0.03 Si Sheet Sheet Bar, Sheet Recrystallized Recrystallized Special Thermal Processing 2400 2400 2400 26 23 40 Molybdenum and Molybdenum Alloys Alloying Additions (%) Temperature (°F) Pure Molybdenum — All Stress-relieved Annealed 1800 52 Doped Mo Low C Mo TZM K, Si; ppm levels None 0.5 Ti, 0.08 Zr, 0.015 C Wire, Sheet All All Cold Worked Stress-relieved Annealed Stress-relieved Annealed 3000 1800 2400 30 50 45 TZC Mo–5Re Mo–30W 1.0 Ti, 0.14 Zr, 0.02 to 0.08 C 5 Re 30 W All All All Stress-relieved Annealed Stress-relieved Annealed Stress-relieved Annealed 2400 3000 2000 55 2 50 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p390, (1993). ©2001 CRC Press LLC 8.04 Mechanical L Page 587 Wednesday, December 31, 1969 17:00 Table 144. TENSILE STRENGTH OF REFRACTORY METAL ALLOYS (SHEET 2 OF 3) Tensile Strength (ksi) Class Alloy Alloying Additions (%) Form Condition Temperature (°F) Tantalum Alloys Unalloyed FS61 FS63 None 7.5 W(P/M) 2.5 W, 0.15 Nb All Wire, Sheet All Recrystallized Cold Worked Recrystallized 2400 75 200 8.5 165 46 TA–10W KBI–40 10 W 40 Nb All All Recrystallized Recrystallized 2400 500 50 42 Unalloyed None Stress-relieved Annealed 3000 25 Doped K, Si, Al; ppm levels Bar, Sheet, Wire Wire Cold Worked 3000 94 W–1 ThO2 1ThO2 Stress-relieved Annealed 3000 37 W–2 ThO2 2 ThO2 Stress-relieved Annealed 3000 30 W–3 ThO2 W–4 ThO2 3 ThO2 4 ThO2 Bar, Sheet, Wire Bar, Sheet, Wire Bar, Wire Bar Stress-relieved Annealed Stress-relieved Annealed 3000 3000 30 30 Tungsten Alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p390, (1993). ©2001 CRC Press LLC 8.04 Mechanical L Page 588 Wednesday, December 31, 1969 17:00 Table 144. TENSILE STRENGTH OF REFRACTORY METAL ALLOYS (SHEET 3 OF 3) Class Alloy Alloying Additions (%) Form Condition W–15 Mo W–50 Mo W–3 Re 15 Mo 50 Mo 3 Re Stress-relieved Annealed Stress-relieved Annealed Cold Worked 3000 3000 — 36 20 — W–25 Re 25 Re Bar, Wire Bar, Wire Wire Bar, Sheet, Wire Stress-relieved Annealed 3000 33 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p390, (1993). ©2001 CRC Press LLC Tensile Strength (ksi) Temperature (°F) 8.05 Mechanical Page 589 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 145. TENSILE STRENGTH OF (SHEET 1 OF 4) Type Ceramic Borides Chromium Diboride (CrB2) Carbides CERAMICS Tensile Strength (psi) Titanium Diboride (TiB2) 10.6x104 18.4x103 Zirconium Diboride (ZrB2) 28.7x103 Boron Carbide (B4C) 22.5x103 980˚C Silicon Carbide (SiC) 5-20x103 psi 25˚C (hot pressed) (hot pressed) 3 psi 20˚C 29x10 3 psi 5.75-21.75 x10 (reaction bonded) 11.17x103 psi Tantalum Monocarbide (TaC) 2-42x103 psi Titanium Monocarbide (TiC) 17.2x103 Tungsten Monocarbide (WC) Zirconium Monocarbide (ZrC) 1000˚C 3 psi 50x10 16.0x103 room temp. 3 980˚C 3 1250˚C 12.95-15.85x10 Boron Nitride (BN) 1400˚C 20˚C 11.7-14.45x10 Nitrides Temperature 0.35x103 1000˚C 0.35x103 1500˚C 1.15x103 1800˚C 3 2.25x10 2000˚C 6.80x103 2400˚C Trisilicon tetranitride (Si3N4) (hot pressed) 54.4 x103 20˚C (hot pressed) 21.8 x103 1400˚C (reaction bonded) 24.7 x103 20˚C (reaction bonded) 20.3 x103 1400˚C To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 589 8.05 Mechanical Page 590 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 145. TENSILE STRENGTH OF (SHEET 2 OF 4) CERAMICS Type Ceramic Tensile Strength (psi) Temperature Oxides Aluminum Oxide (Al2O3) 37-37.8 x103 room temp. 33.6 x103 300˚C 3 40 x10 3 34.6 x10 800˚C 3 1000˚C 35 x10 33.9 x103 1050˚C 3 31.4 x10 1140˚C 18.5-20 x103 1200˚C 3 1300˚C 3 1400˚C 3 1460˚C 6.4 x10 4.3 x10 1.5 x10 Beryllium Oxide (BeO) 13.5-20 x103 room temp. 3 11.1 x10 500˚C 3 900˚C 3 1000˚C 3 1140˚C 3 0.6 x10 1300˚C 14 x103 room temp. 7.0 x10 5.0 x10 2.0 x10 Magnesium Oxide (MgO) 500˚C 3 14 x10 3 200˚C 15.2 x10 400˚C 3 800˚C 16 x10 3 11.5 x10 1000˚C 3 10 x10 1100˚C 3 1200˚C 3 1300˚C 8 x10 6 x10 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 590 CRC Handbook of Materials Science & Engineering 8.05 Mechanical Page 591 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 145. TENSILE STRENGTH OF (SHEET 3 OF 4) CERAMICS Type Ceramic Tensile Strength (psi) Temperature Oxides (Con’t) Thorium Dioxide (ThO2) 14x103 room temp. Zircoium Oxide (ZrO2) 17.9-20x103 room temp. 16.8x103 200˚C 3 400˚C 17.5x10 3 500˚C 3 600˚C 20.0x10 17.6x10 16.0x103 800˚C 3 6.75-17.0x10 13.0-13.5x103 (MgO stabilized) 1000˚C 1100˚C 3 12.1x10 1200˚C 10.2x103 1300˚C 6 psi 21x10 room temp. Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.51g/cm3) 7.8x103 25˚C ρ=2.1g/cm3) ( 3.5x103 800˚C (ρ=1.8g/cm3) 2.5x103 1200˚C Mullite (3Al2O3 2SiO2) 16x103 25˚C Spinel (Al2O3 MgO) 19.2x103 room temp. 13.7x103 550˚C 3 110.8x10 900˚C 3 6.1x10 1150˚C 1.1x103 1300˚C To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 591 8.05 Mechanical Page 592 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 145. TENSILE STRENGTH OF (SHEET 4 OF 4) CERAMICS Type Ceramic Tensile Strength (psi) Temperature Oxides (Con’t) Zircon (SiO2 ZrO2) 12.7x103 room temp. 8.7x103 1050˚C 3 1200˚C 3.6x10 Silicide Molybdenum Disilicide (MoSi2) 40x103 980˚C 42.16x103 1090˚C 42.8x103 1200˚C 3 1300˚C 41.07x10 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 592 CRC Handbook of Materials Science & Engineering 8.06 Mechanical L Page 593 Wednesday, December 31, 1969 17:00 Table 146. TENSILE STRENGTH OF (SHEET 1 OF 3) GLASS Type Glass Tensile Strength (Kg • mm–2) SiO2 glass (48 µm diameter fiber) (56 µm diameter fiber) (60 µm diameter fiber) (65 µm diameter fiber) 49.6 44.3 42.3 39.7 (74 µm diameter fiber) (78 µm diameter fiber) (108 µm diameter fiber) (112 µm diameter fiber) 36.5 35.8 28.8 28.3 (1.5 mm diameter rod, 0.5 g/mm2•s stress rate) (1.5 mm diameter rod, 54 g/mm2•s stress rate) 5.84–7.08 9.73±2.13 8.52±2.52 (Corning 7940 silica glass) (Corning 7940 silica glass) (Corning 7940 silica glass) 5.6 6.2 6.6 (1.5 mm diameter rod, 50 g/mm2•s stress rate) Temperature 100˚C 300˚C 500˚C Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 8.06 Mechanical L Page 594 Wednesday, December 31, 1969 17:00 Table 146. TENSILE STRENGTH OF (SHEET 2 OF 3) GLASS Type Glass Tensile Strength (Kg • mm–2) SiO2 glass (Con’t) (Corning 7940 silica glass) (Corning 7940 silica glass) 7.1 7.6 SiO2–Na2O glass (6.0µm diameter fiber, 19.5% mol Na2O) (8.6µm diameter fiber, 19.5% mol Na2O) (25.7µm diameter fiber, 19.5% mol Na2O) 173±1.36 134±1.34 92.5±10.08 (5 mm diameter rod, 20% mol Na2O) 15 (3.6µm diameter fiber, 25.5% mol Na2O) 142±0.189 127±0.259 103±1.020 (6.3µm diameter fiber, 25.5% mol Na2O) (12.8µm diameter fiber, 25.5% mol Na2O) (5.4µm diameter fiber, 36.3% mol Na2O) (8.6µm diameter fiber, 36.3% mol Na2O) (11.4µm diameter fiber, 36.3% mol Na2O) Temperature 700˚C 900˚C 107.6±0.308 98.0±0.344 91.2±1.480 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 8.06 Mechanical L Page 595 Wednesday, December 31, 1969 17:00 Table 146. TENSILE STRENGTH OF (SHEET 3 OF 3) GLASS Type Glass Tensile Strength (Kg • mm–2) SiO2–PbO glass (3.0 µm diameter fiber, 50% mol PbO) (4.3 µm diameter fiber, 50% mol PbO) (5.7 µm diameter fiber, 50% mol PbO) (7.1 µm diameter fiber, 50% mol PbO) 70.8 64 66–67.2 62–71.3 (8.0 µm diameter fiber, 50% mol PbO) (11.4 µm diameter fiber, 50% mol PbO) (17.2 µm diameter fiber, 50% mol PbO) 64.5 51.9–56 43–51.6 B2O3 glass (10–30 µm diameter fiber) 60 B2O3–Na2O glass (10–30 µm diameter fiber, 10% mol Na2O) 102 137 152 (10–30 µm diameter fiber, 20% mol Na2O) (10–30 µm diameter fiber, 30% mol Na2O) Temperature Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 8.06 Mechanical L Page 596 Wednesday, December 31, 1969 17:00 Table 147. TENSILE STRENGTH OF (SHEET 1 OF 12) POLYMERS Class Polymer Tensile Strength, (ASTM D638) (103 psi) ABS Resins; Molded, Extruded Medium impact High impact Very high impact Low temperature impact Heat resistant 6.3—8.0 5.0—6.0 4.5—6.0 4—6 7.0—8.0 Acrylics; Cast, Molded, Extruded Cast Resin Sheets, Rods: General purpose, type I General purpose, type II Moldings: Grades 5, 6, 8 High impact grade 8.8—10.5 5.5—8.0 Allyl diglycol carbonate 5—6 Thermoset Carbonate 6—9 8—10 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.06 Mechanical L Page 597 Wednesday, December 31, 1969 17:00 Table 147. TENSILE STRENGTH OF (SHEET 2 OF 12) POLYMERS Class Polymer Tensile Strength, (ASTM D638) (103 psi) Alkyds; Molded Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts) 4—5 7—8 3—4 5—9 Cellulose Acetate; Molded, Extruded ASTM Grade: H4—1 H2—1 MH—1, MH—2 MS—1, MS—2 S2—1 (Tensile Strength at Fracture) 7—8 5.8—7.2 4.8—6.3 3.9—5.3 3.0—4.4 Cellulose Acetate Butyrate; Molded, Extruded ASTM Grade: H4 MH S2 (Tensile Strength at Fracture) 6.9 5.0—6.0 3.0—4.0 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.06 Mechanical L Page 598 Wednesday, December 31, 1969 17:00 Table 147. TENSILE STRENGTH OF (SHEET 3 OF 12) POLYMERS Class Polymer Tensile Strength, (ASTM D638) (103 psi) Cellusose Acetate Propionate; Molded, Extruded ASTM Grade: 1 3 6 5.9—6.5 5.1—5.9 4 Chlorinated Polymers Chlorinated polyether Chlorinated polyvinyl chloride 6 7.3 Polycarbonates Polycarbonate Polycarbonate (40% glass fiber reinforced) 9.5 18 Diallyl Phthalates; Molded Orlon filled Dacron filled Asbestos filled Glass fiber filled 4.5—6 4.6—6.2 4—6.5 5.5—11 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.06 Mechanical L Page 599 Wednesday, December 31, 1969 17:00 Table 147. TENSILE STRENGTH OF (SHEET 4 OF 12) POLYMERS Class Polymer Tensile Strength, (ASTM D638) (103 psi) Fluorocarbons; Molded,Extruded Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) 4.6—5.7 2.5—6.5 0.75—2.5 2.5—4.0 5.2—8.6 Epoxies; Cast, Molded, Reinforced Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded 9.5-11.5 1.4—7.6 8—11 General purpose glass cloth laminate High strength laminate Filament wound composite 50-58 160 230-240 (hoop) To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.06 Mechanical L Page 600 Wednesday, December 31, 1969 17:00 Table 147. TENSILE STRENGTH OF (SHEET 5 OF 12) POLYMERS Tensile Strength, (ASTM D638) (103 psi) Class Polymer Epoxies—Molded, Extruded High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate Epoxy novolacs Cast, rigid Glass cloth laminate 9.6—12.0 59.2 Filler & type Cellulose electrical Glass fiber Alpha cellulose and mineral 5—9 6—9 5—8 Melamines; Molded 8—12 5.2—5.3 50—52 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.06 Mechanical L Page 601 Wednesday, December 31, 1969 17:00 Table 147. TENSILE STRENGTH OF (SHEET 6 OF 12) POLYMERS Class Polymer Tensile Strength, (ASTM D638) (103 psi) Nylons; Molded, Extruded Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers 9.5—12.5 21—24 12.8 7.5—10.0 Type 12 7.1—8.5 6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion 11.2—11.8 25—30 19—22 1.26–8.6 6/10 Nylon General purpose Glass fiber (30%) reinforced 7.1—8.5 19 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.06 Mechanical L Page 602 Wednesday, December 31, 1969 17:00 Table 147. TENSILE STRENGTH OF (SHEET 7 OF 12) POLYMERS Tensile Strength, (ASTM D638) (103 psi) Class Polymer Phenolics; Molded Phenolics; Molded Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber (ASTM D651) Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos 6 4.5—9 3—5 4 ABS–Polycarbonate Alloy 8.2 5.0—8.5 5.0—8.5 5—9 5—10 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.06 Mechanical L Page 603 Wednesday, December 31, 1969 17:00 Table 147. TENSILE STRENGTH OF (SHEET 8 OF 12) POLYMERS Class Polymer Tensile Strength, (ASTM D638) (103 psi) Polyacetals Homopolymer: Standard 20% glass reinforced 22% TFE reinforced 10 8.5 6.9 Copolymer: Standard 25% glass reinforced High flow 8.8 18.5 8.8 Cast polyyester Rigid Flexible 5—15 1—8 High strength (glass fibers) Heat and chemical resistant (asbestos) Sheet molding compounds, general purpose 5—10 4—6 15—17 Polyesters: Thermosets Reinforced polyester moldings To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.06 Mechanical L Page 604 Wednesday, December 31, 1969 17:00 Table 147. TENSILE STRENGTH OF (SHEET 9 OF 12) POLYMERS Class Polymer Tensile Strength, (ASTM D638) (103 psi) Polyarylsulfone Polyarylsulfone 13 Polypropylene: General purpose 4.5—6.0 Polyethylenes; Molded, Extruded Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200 (ASTM D412) 1.4—2.5 1.4—2.0 0.9—1.1 Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9 2 2.3—2.4 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.06 Mechanical L Page 605 Wednesday, December 31, 1969 17:00 Table 147. TENSILE STRENGTH OF (SHEET 10 OF 12) POLYMERS Class Polymer Tensile Strength, (ASTM D638) (103 psi) Polyethylenes; Molded, Extruded (Con’t) Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight 4.4 2.9—4.0 4.4 5.4 Olefin Copolymers; Molded EEA (ethylene ethyl acrylate) EVA (ethylene vinyl acetate) Ethylene butene 0.2 0.36 0.35 Propylene—ethylene Propylene—ethylene Ionomer Polyallomer 0.4 0.4 3—4.3 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.06 Mechanical L Page 606 Wednesday, December 31, 1969 17:00 Table 147. TENSILE STRENGTH OF (SHEET 11 OF 12) POLYMERS Class Polymer Tensile Strength, (ASTM D638) (103 psi) Polystyrenes Polystyrenes; Molded General purpose Medium impact High impact 5.0—10 4.0—6.0 3.3—5.1 Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN 14 8.3—12.0 18 Polyvinyl Chloride And Copolymers; Molded, Extruded Nonrigid—general Nonrigid—electrical Rigid—normal impact Vinylidene chloride D412 1—3.5 2—3.2 5.5—8 4—40 Polyvinyl Chloride And Copolymers; To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.06 Mechanical L Page 607 Wednesday, December 31, 1969 17:00 Table 147. TENSILE STRENGTH OF (SHEET 12 OF 12) POLYMERS Class Polymer Tensile Strength, (ASTM D638) (103 psi) Silicones Silicones; Molded, Laminated Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate (ASTM D651) 6.5 4—6 30—35 Ureas; Molded Alpha—cellulose filled (ASTM Type l) 5—10 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.07 Mechanical Page 608 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 148. TENSILE STRENGTH OF FIBERGLASS REINFORCED PLASTICS Class Material Glass fiber content (wt%) Glass fiber reinforced thermosets Sheet molding compound (SMC) 15 to 30 8 to 20 Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester 15 to 35 25 to 50 20 to 30 4 to 10 25 to 30 12 to 20 Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic 30 to 50 30 to 80 40 to 80 5 to 25 9 to 18 80 to 250 60 to 180 7 to 17 Glass–fiber–reinforced thermoplastics Tensile strength at yield (ksi) Acetal 20 to 40 9 to 18 Nylon Polycarbonate Polyethylene 6 to 60 20 to 40 10 to 40 13 to 33 12 to 25 6.5 to 11 Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene) 20 to 40 20 to 35 20 to 40 20 to 40 5.5 to 10.5 10 to 15 13 to 20 11 to 16 PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester 15 to 35 20 to 40 20 to 40 20 to 35 14 to 18 15 to 22 13 to 18 14 to 19 To convert (ksi) to (MPa), multiply by 6.89 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994). ©2001 CRC Press LLC 608 CRC Handbook of Materials Science & Engineering 8.07 Mechanical Page 609 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 149. TENSILE STRENGTH OF CARBON - AND GLASS REINFORCED ENGINEERING THERMOPLASTICS (SHEET 1 OF 2) Class Resin Type Composition Tensile Strength (MPa) Amorphous Acrylonitrile-butadiene-styrene(ABS) 30% glass fiber 30% carbon fiber 100 130 Nylon 30% glass fiber 30% carbon fiber 148 207 Polycarbonate 30% glass fiber 30% carbon fiber 128 165 Polyetherimide 30% glass fiber 30% carbon fiber 197 234 Polyphenylene oxide (PPO) 30% glass fiber 30% carbon fiber 145 159 Polysulfone 30% glass fiber 30% carbon fiber 124 159 Styrene-maleic-anhydride (SMA) 30% glass fiber 103 Thermoplastic polyurethane 30% glass fiber 57 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994). ©2001 CRC Press LLC Shackelford & Alexander 609 8.07 Mechanical Page 610 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 149. TENSILE STRENGTH OF CARBON - AND GLASS REINFORCED ENGINEERING THERMOPLASTICS (SHEET 2 OF 2) Class Resin Type Composition Tensile Strength (MPa) Crystalline Acetal 30% glass fiber 20% carbon fiber 134 81 Nylon 66 30% glass fiber 30% carbon fiber 179 241 Polybutylene telphthalate (PBT) 30% glass fiber 30% carbon fiber 134 152 Polythylene terephthalate (PET) 30% glass fiber 159 Polyphenylene sulfide (PPS) 30% glass fiber 30% carbon fiber 138 186 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994). ©2001 CRC Press LLC 610 CRC Handbook of Materials Science & Engineering 8.07 Mechanical Page 611 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 150. STRENGTH OF GRAPHITE FIBER REINFORCED METALS Composite Fiber content (vol%) Strength (ksi) Graphite(a)/lead Graphite(b)/lead Graphite(a)/zinc Graphite(a)/magnesium 41 35 35 42 104 72 110.9 65 (a) Thornel 75 fiber (b) Courtaulds HM fiber To convert psi to MPa, multiply by 145. Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). ©2001 CRC Press LLC Shackelford & Alexander 611 8.08 Mechanical L Page 612 Wednesday, December 31, 1969 17:00 Table 151. TENSILE STRENGTH OF GRAPHITE /MAGNESIUM CASTINGS * Tensile Strength (GPa) Tensile Strength,90° (GPa) Fiber Type Fiber content Fiber orientation P75 40% plus 9% 40% ±16° 90° ± 16° Hollow cylinder Hollow cylinder Hollow cylinder Filament wound Filament wound Filament wound 0.45 0.45 0.56 0.061 0.061 0.38 40% 30% 10% 20% 20% 0° 0° plus 90° 0° plus 90° Plate Plate Plate Plate Plate Prepreg Prepreg Prepreg Prepreg Prepreg 0.48 0.28 0.28 8.45 8.45 0.02 0.010 0.010 0.24 0.24 P100 P55 Casting Fiber Preform Method Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). * Pitch-base fibers ©2001 CRC Press LLC 8.09 Mechanical Page 613 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 152. TENSILE STRENGTH OF GRAPHITE /ALUMINUM COMPOSITES Composite Fiber loading (vol %) Wire diameter (mm) Tensile Strength (MPa) VS0054/201 Al GY70SE/201 Al 48 to 52 37 to 38 0.64 (2-strand) 0.71(8-strand) 1035 to 1070 793 to 827 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). Table 153. TENSILE STRENGTH OF GRAPHITE /ALUMINUM COMPOSITES Thornel Fiber Longitudinal Tensile Strength (MPa) Transverse Tensile Strength (MPa) P55 P75 P100 517 to 621 621 to 724 552 to 834 28 to 48 28 to 48 28 to ~48 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). ©2001 CRC Press LLC Shackelford & Alexander 613 8.09 Mechanical Page 614 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 154. TENSILE STRENGTH OF SILICON CARBIDE SCS–2–AL Fiber orientation No. of plies Tensile Strength (MPa) 0° 90° 6, 8, 12 6, 12,40 1462 86.2 [0°/90°/0°/90°]s [02 °90°20°]s [902/0°/90°]s 8 8 8 673 1144 341.3 ± 45° [0°±45°/0°]s+2s [0°±45°/90°]s 8, 12, 40 8, 16 8 309.5 800.0 572.3 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994). Table 155. ULTIMATE TENSILE STRENGTH OF INVESTMENT CAST SILICON CARBIDE SCS–AL Fiber orientation Fiber vol (%) Ultimate Tensile Strength (MPa) 0°3/90°6/0°3 90°3/0°6/90°3 0° 33 33 34 458.5 584.0 1034.2 Range of Measurement (%) 75 95 85 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994). ©2001 CRC Press LLC 614 CRC Handbook of Materials Science & Engineering 8.09 Mechanical Page 615 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 156. ULTIMATE TENSILE STRENGTH OF SILICON CARBIDE –ALUMINUM ALLOY COMPOSITES * Ultimate Tensile Strength (MPa) Material Fiber (vol %) Base Reinforced Pure Aluminum 6061–T6 2024–T4 11 16 20 59 300 470 235 441 565 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994). * Room Temperature Table 157. TENSILE STRENGTH OF SIC-WHISKER –REINFORCED ALUMINUM ALLOY Tensile Strength Fiber Content (vol %) ( MPa) Standard Deviation Range of Measurement 0 12 16 20 297 359 374 383.6 1.8 33.6 8.0 15.2 3.5 85.6 23.0 38.8 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p150,(1994). ©2001 CRC Press LLC Shackelford & Alexander 615 8.09 Mechanical Page 616 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 158. ULTIMATE TENSILE STRENGTH OF ALUMINUM ALLOY REINFORCED WITH SIC WHISKERS VS. TEMPERATURE Ultimate Tensile Strength (MPa) Fiber (Vol%) 350 °C 300 °C 250 °C Polycrystalline alumina 0 0.05 0.12 0.20 55 63 74 112 70 88 — 155 115 134 — 198 SiC whiskers 0 0.12 0.16 0.20 55 124 147 184 70 180 — 235 115 226 — 284 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p150,(1994). ©2001 CRC Press LLC 616 CRC Handbook of Materials Science & Engineering 8.09 Mechanical Page 617 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 159. ULTIMATE TENSILE STRENGTH OF REINFORCED ALUMINUM ALLOY VS. TEMPERATURE Ultimate Tensile Strength (MPa) Vol % 350°C 300°C 250°C Polycrystalline alumina 0 5 12 20 55 63 74 112 70 88 — 155 115 134 — 198 SiC whiskers 0 12 16 20 55 124 147 184 70 180 — 235 115 226 — 284 Fiber Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154,(1994). ©2001 CRC Press LLC Shackelford & Alexander 617 8.09 Mechanical Page 618 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 160. TENSILE STRENGTH OF POLYCRYSTALLINE –ALUMINA–REINFORCED ALUMINUM ALLOY Tensile Strength Fiber Content (vol %) (MPa) Standard Deviation Range of Measurement 0 5 12 20 297 282 273 312 1.8 6.5 19.6 16.0 3.5 15.1 49.6 42.3 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154,(1994). Table 161. TENSILE STRENGTH OF BORON/ALUMINUM COMPOSITES * Matrix Fiber Orientation Tensile Strength ( MPa) Al-6061 0° 90° 1515 138 Al-2024 0° 90° 1550 214 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157,(1994). * These samples contain 48% Avco (142 µm) boron. Longitudinal tensile specimens are 152 mm by 7.9 mm by 6 ply. Transverse tensile bars are 152 mm by 12.7 mm by 6 ply. ©2001 CRC Press LLC 618 CRC Handbook of Materials Science & Engineering 8.09 Mechanical Page 619 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 162. COMPRESSIVE STRENGTH OF GRAY CAST IRON BARS ASTM Class Compressive Strength (MPa) 20 25 30 572 669 752 35 40 50 60 855 965 1130 1293 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). ©2001 CRC Press LLC Shackelford & Alexander 619 8.09 Mechanical Page 620 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 163. COMPRESSIVE STRENGTH OF (SHEET 1 OF 3) CERAMICS Class Ceramic Compressive Strength (psi) Boride Titanium Diboride (TiB2) 47-97x103 Carbides Boron Carbide (B4C) 41.4x104 room temp. Silicon Carbide (SiC) 82-200x103 25˚C Titanium Monocarbide (TiC) Trichromium Dicarbide (Cr3C2) 10.9-19x104 room temp. Zirconium Monocarbide (ZrC) 238x103 Boron Nitride (BN) parallel to c axis 34.0x103 parallel to a axis 45x103 Titanium Mononitirde (TiN) 141x103 Trisilicon tetranitride (Si3N4) 10-100x103 Nitrides Oxides Aluminum Oxide (Al2O3) Temperature 60x104 room temp. 10-30x103 25˚C 1000˚C 427 x103 room temp. 214 x103 400˚C 600˚C 800˚C 199 x103 183 x103 128 x103 85 x103 71 x103 1000˚C 1100˚C 1200˚C To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 620 CRC Handbook of Materials Science & Engineering 8.09 Mechanical Page 621 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 163. COMPRESSIVE STRENGTH OF (SHEET 2 OF 3) CERAMICS Class Ceramic Compressive Strength (psi) Oxides (Con’t) Aluminum Oxide (Al2O3) (Con’t) 35.6 x103 14 x103 7 x103 Oxides (Con’t) Beryllium Oxide (BeO) 114-310 x103 71 x103 64 x103 35.5-40 x103 28.5 x103 Temperature 1400˚C 1500˚C 1600˚C room temp. 500˚C 800˚C 1000˚C 7 x103 1145˚C 1400˚C 1500˚C 1600˚C Magnesium Oxide (MgO) 112 x103 room temp. Thorium Dioxide (ThO2) 146-214x103 room temp. 400˚C 600˚C 800˚C 24 x103 17 x103 156x103 85x103 71x103 51x103 28.5x103 5.7x103 1.5x103 1000˚C 1200˚C 1400˚C 1500˚C To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 621 8.09 Mechanical Page 622 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 163. COMPRESSIVE STRENGTH OF (SHEET 3 OF 3) CERAMICS Class Ceramic Compressive Strength (psi) Oxides (Con’t) Zircoium Oxide (ZrO2) 205-300x103 228x103 171x103 114x103 Temperature room temp. 500˚C 1000˚C 2.8x103 1200˚C 1400˚C 1500˚C 85-190x106 room temp. (ρ=1.8g/cm3) 50x103 50x103 30x103 18.5x103 25oC 400oC 800oC 1200oC Mullite (3Al2O3 2SiO2) 80-190x103 25˚C Spinel (Al2O3 MgO) 270x103 room temp. 500˚C 800˚C 18.5x103 (CaO stabilized) Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.51g/cm3) (ρ=2.3g/cm3) (ρ=2.1g/cm3) 199x103 171x103 85.5x103 71x103 21.4x103 8.5x103 1100˚C 1200˚C 1400˚C 1600˚C To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 622 CRC Handbook of Materials Science & Engineering 8.09 Mechanical Page 623 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 164. COMPRESSIVE STRENGTH OF FIBERGLASS REINFORCED PLASTIC Class Material Glass fiber content (wt%) Glass fiber reinforced thermosets Sheet molding compound (SMC) 15 to 30 15 to 30 Bulk molding compound(BMC) Preform/mat(compression molded) Spray–up–polyester 15 to 35 25 to 50 30 to 50 20 to 30 15 to 30 15 to 25 Filament wound–epoxy Rod stock–polyester Molding compound–phenolic 30 to 80 40 to 80 5 to 25 45 to 70 30 to 70 14 to 35 Acetal 20 to 40 11 to 17 Nylon Polycarbonate Polyethylene 6 to 60 20 to 40 10 to 40 13 to 24 14 to 24 4 to 8 Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene) 20 to 40 20 to 35 20 to 40 20 to 40 6 to 8 13.5 to 19 21 to 26 12 to 22 PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester 15 to 35 20 to 40 20 to 40 20 to 35 13.4 to 16.8 18 to 20 12 to 23 16 to 18 Glass–fiber–reinforced thermoplastics Compressive strength (ksi) To convert (ksi) to (Mpa), multiply by 6.89 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994). ©2001 CRC Press LLC Shackelford & Alexander 623 8.09 Mechanical Page 624 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 165. ULTIMATE COMPRESSIVE STRENGTH OF INVESTMENT CAST SILICON CARBIDE SCS–AL Fiber orientation Fiber vol (%) Ultimate Compressive Strength (MPa) 0°3/90°6/0°3 90°3/0°6/90°3 0° 33 33 34 1378 9 1378.9 1896.1 Compressive Modulus (GPa) — — 186.2 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994). ©2001 CRC Press LLC 624 CRC Handbook of Materials Science & Engineering 8.09 Mechanical Page 625 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 166. YIELD STRENGTH OF TOOL STEELS Type Condition L2 Annealed Oil quenched from 855 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C L6 S1 S5 S7 Annealed Oil quenched from 845 •C and single tempered at: 315 •C 425 •C 540 •C 650 •C Annealed Oil quenched from 930 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C Annealed Oil quenched from 870 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C Annealed Fan cooled from 940 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C 0.2% Yield Strength (MPa) 510 1790 1655 1380 1170 760 380 1790 1380 1100 830 415 1895 1860 1690 1525 1240 440 1930 1860 1690 1380 1170 380 1450 1585 1410 1380 1035 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984). ©2001 CRC Press LLC Shackelford & Alexander 625 8.09 Mechanical Page 626 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 167. YIELD STRENGTH OF DUCTILE IRONS Specification Number Grade or Class Yield Strength (MPa) ASTM A395-76; ASME SA395 60-40-18 276 ASTM A476-70(d); SAE AMS5316 80-60-03 414 ASTM A536-72, MIL-1-11466B(MR) 60-40-18 65-45-12 276 310 80-55-06 100-70-03 120-90-02 379 483 621 SAE J434c D4018 D4512 D5506 D7003 276 310 379 483 MlL-I-24137(Ships) Class A Class B Class C 310 207 172 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984). ©2001 CRC Press LLC 626 CRC Handbook of Materials Science & Engineering 8.09 Mechanical Page 627 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 168. YIELD STRENGTH OF MALLEABLE IRON CASTINGS Specification Number Ferritic ASTM A47, A338; ANSI G48.1; FED QQ–I–666c Grade or Class 32510 35018 224 241 207 40010 45008 45006 50005 276 310 310 345 60004 70003 80002 90001 414 483 552 621 M3210 M4504(a) M5003(a) 224 310 345 M5503(b) 379 M7002(b) M8501(b) 483 586 ASTM A197 Pearlitic and Martensitic ASTM A220; ANSI C48.2; MIL–I–11444B Automotive ASTM A602; SAE J158 Yield Strength (MPa) (a) Air quenched and tempered (b) Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984). ©2001 CRC Press LLC Shackelford & Alexander 627 8.10 Mechanical L Page 628 Wednesday, December 31, 1969 17:00 Table 169. YIELD STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 1 OF 5) Type Form Condition ASTM Specification 0.2% Yield Strength (MPa) Type 301(UNS S30100) Bar,Wire,Plate, Sheet,Strip Annealed A167 205 Type 302 (UNS S30200) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 205 310 205 Type 302B (UNS S30215) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 205 310 205 Type 302Cu(UNS S30430) Bar Annealed A493 — Types 303 (UNS S30300) and 303Se (UNS S30323) Bar Annealed A581 240 Wire Annealed Cold worked A581 A581 — — (a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 629 Wednesday, December 31, 1969 17:00 Table 169. YIELD STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 2 OF 5) Type Form Condition ASTM Specification 0.2% Yield Strength (MPa) Type 304(UNS S30400) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 205 310 205 Type 304L (UNS S30403) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 170 310 170 Types 304N (UNS S30451) and 316N(UNS S31651) Bar Annealed A276 240 Type 304LN Bar Annealed — 205 Type 305 (UNS S30500) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 205 310 205 (a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 630 Wednesday, December 31, 1969 17:00 Table 169. YIELD STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 3 OF 5) Type Form Condition ASTM Specification 0.2% Yield Strength (MPa) Types 308 (UNS S30800),321(UNS S32100),347(UNS34700) and 348 (UNS S34800) Bar Hot finished and annealed A276 205 Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 310 205 Annealed — 207 Hot finished and annealed A276 205 Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 310 205 Type 308L Bar Types 309 (UNS S30900), 309S (UNS S30908), 310 (UNS S31000) and 310S (UNS S31008) Bar (a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 631 Wednesday, December 31, 1969 17:00 Table 169. YIELD STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 4 OF 5) Type Form Condition ASTM Specification 0.2% Yield Strength (MPa) Type 314 (UNS S31400) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 205 310 205 Type 316 (UNS S31600) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 205 310 205 Type 316F (UNS S31620) Bar Annealed — 240 Type 316L (UNS S31603) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 170 310 170 Type 316LN Bar Annealed — 205 (a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 632 Wednesday, December 31, 1969 17:00 Table 169. YIELD STRENGTH OF AUSTENITIC STAINLESS STEELS (SHEET 5 OF 5) Type Form Condition ASTM Specification 0.2% Yield Strength (MPa) Type 317 (UNS S31700) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 205 310 205 Type 317L (UNS S31703) Bar Annealed — 240 Type 317LM Bar,Plate,Sheet, Strip Annealed — 205 Type 329 (UNS S32900) Bar Annealed — 550 Type 330 (UNS N08330) Bar Annealed B511 210 Type 330HC Bar,Wire,Strip Annealed — 290 Types 384 (UNS S38400) Bar Annealed A493 — Types 385 (UNS38500) Bar Annealed A493 — (a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 633 Wednesday, December 31, 1969 17:00 Table 170. YIELD STRENGTH OF FERRITIC STAINLESS STEELS (SHEET 1 OF 2) Type ASTM Specification Form Condition 0.2% Yield Strength (MPa) Type 405 (UNS S40500) A580 A580 Wire Annealed Annealed, Cold Finished 275 275 Type 409 (UNS S40900) Type 429 (UNS S42900) — — Bar Bar Annealed Annealed 240(a) 310(a) Type 430 (UNS S43000) A276 A276 Bar Annealed, Hot Finished Annealed, Cold Finished 275 275 Type 430Ti(UNS S43036) — Bar Annealed 310(a) Type 434 (UNS S43400) Type 436 (UNS S43600) — — Wire Sheet, Strip Annealed Annealed 415(a) 365(a) (a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 634 Wednesday, December 31, 1969 17:00 Table 170. YIELD STRENGTH OF FERRITIC STAINLESS STEELS (SHEET 2 OF 2) Type ASTM Specification Form Condition 0.2% Yield Strength (MPa) Type 442 (UNS S44200) Type 444 (UNS S44400) — A176 Bar Plate, Sheet, Strip Annealed Annealed 310(a) 275 Type 446 (UNS S44600) A276 A276 Bar Annealed, Hot Finished Annealed, Cold Finished 275 275 (a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 635 Wednesday, December 31, 1969 17:00 Table 171. YIELD STRENGTH OF MARTENSITIC STAINLESS STEELS (SHEET 1 OF 3) Type ASTM Specification Form Condition 0.2% Yield Strength (MPa) Type 403 (UNS S40300) A276 A276 A276 A276 A276 A276 Bar Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished 275 275 550 550 620 620 Type 410 (UNS S41000) A276 A276 A276 A276 A276 A276 Bar Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished 275 275 550 550 620 620 Type 410S (UNS S41008) A176 Plate, Sheet, Strip Annealed 205 Type 410Cb (UNS S41040) A276 A276 A276 A276 Bar Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished 275 275 690 690 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 636 Wednesday, December 31, 1969 17:00 Table 171. YIELD STRENGTH OF MARTENSITIC STAINLESS STEELS (SHEET 2 OF 3) Type ASTM Specification Form Condition 0.2% Yield Strength (MPa) Type 414 (UNS S41400) A276 A276 Bar Intermediate temper, hot finished Intermediate temper, cold finished 620 620 Type 414L Type 420 (UNS S42000) — — Bar Bar Annealed Tempered 205 °C 550 1480 Type 422 (UNS S42200) A565 Bar for high-temperature service 760 Type 431 (UNS S43100) — — Bar Tempered 260 °C Tempered 595 °C 1030 795 Type 440A (UNS S44002) — — Bar Annealed Tempered 315 °C 415 1650 Type 440B (UNS S44003) — — Bar Annealed Tempered 315 °C 425 1860 Type 440C (UNS S44004) — — Bar Annealed Tempered 315 °C 450 1900 Intermediate and hard tempers Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 637 Wednesday, December 31, 1969 17:00 Table 171. YIELD STRENGTH OF MARTENSITIC STAINLESS STEELS (SHEET 3 OF 3) Type ASTM Specification Form Condition 0.2% Yield Strength (MPa) Type 501 (UNS S50100) — — Bar, Plate Annealed Tempered 540 °C 205 965 Type 502 (UNS S50200) — Bar, Plate Annealed 205 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 638 Wednesday, December 31, 1969 17:00 Table 172. YIELD STRENGTH OF PRECIPITATION -HARDENING AUSTENITIC STAINLESS STEELS Type Form Condition 0.2% Yield Strength (MPa) PH 13–8 Mo (UNS S13800) Bar, Plate, Sheet, Strip H950 H1000 1410 1310 15–5 PH (UNS S15500) and 17–4 PH (UNS S17400) Bar, Plate, Sheet, Stript H900 H925 H1025 H1075 1170 1070 1000 860 H1100 H1150 H1150M 795 725 515 RH950 TH1050 1030 965 17–7 PH (UNS S17700) Bar Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p371 (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 639 Wednesday, December 31, 1969 17:00 Table 173. YIELD STRENGTH OF HIGH–NITROGEN AUSTENITIC STAINLESS STEELS Type ASTM Specification Form Condition 0.2% Yield Strength (MPa) Type 201 (UNS S20100) A276 Bar Annealed 275 Type 202 (UNS S20200) A276 Bar Annealed 275 Type 205 (UNS S20500) — Plate Annealed* 475 Type 304N (UNS S30451) A276 Bar Annealed 240 Type 304HN (UNS S30452) — Bar Annealed 345 Type 316N (UNS S31651) A276 Bar Annealed 240 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p367 (1993). * Typical Values ©2001 CRC Press LLC 8.10 Mechanical L Page 640 Wednesday, December 31, 1969 17:00 Table 174. YIELD STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 1 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Yield Strength (MPa) C10100 Oxygen-free electronic C10200 Oxygen-free copper C10300 Oxygen-free extra-low phosporus C10400, C10500, C10700 Oxygen-free, silver-bearing 99.99 Cu 99.95 Cu 99.95 Cu, 0.003 P 99.95 Cu(e) F, R, W, T, P, S F, R, W, T, P, S F, R, T, P, S F, R, W, S 69-365 69-365 69-345 69-365 C10800 Oxygen-free, low phosporus CS11000 Electrolytic tough pitch copper C11100 Electrolytic tough pitch, anneal resistant C11300, C11400, C11500, C11600 Silver-bearing tough pitch copper 99.95 Cu, 0.009 P 99.90 Cu, 0.04 O 99.90 Cu, 0.04 O, 0.01 Cd 99.90 Cu, 0.04 O, Ag(f) F, R, T, P F, R, W, T, P, S W F, R, W, T, S 69-345 69-365 — 69-365 C12000, C12100 C12200 Phosphorus deoxidized copper, high residual phosphorus C12500, C12700, C12800, C12900, C13000 Fire-refined tough pitch with silver C14200 Phosphorus deoxidized, arsenical 99.9 Cu(g) 99.90 Cu, 0.02 P F, T, P F, R, T, P 69-365 69-345 99.88 Cu(h) F, R, W, S 69-365 99.68 Cu, 0.3 As, 0.02 P F, R, T 69-345 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 641 Wednesday, December 31, 1969 17:00 Table 174. YIELD STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 2 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Yield Strength (MPa) C19200 C14300 C14310 C14500 Phosphorus deoxidized, tellurium bearing 98.97 Cu, 1.0 Fe, 0.03 P 99.9 Cu, 0.1 Cd 99.8 Cu, 0.2 Cd 99.5 Cu, 0.50 Te, 0.008 P F, T F F F, R, W, T 76-510 76-386 76-386 69-352 C14700 Sulfur bearing C15000 Zirconium copper C15500 C15710 99.6 Cu, 0.40 S 99.8 Cu, 0.15 Zr 99.75 Cu, 0.06 P, 0.11 Mg, Ag(i) 99.8 Cu, 0.2 Al2O3 R, W R, W F R, W 69-379 41-496 124-496 268-689 C15720 C15735 C15760 C16200 Cadmium copper 99.6 Cu, 0.4 Al2O3 99.3 Cu, 0.7 Al2O3 98.9 Cu, 1.1 Al2O3 99.0 Cu, 1.0 Cd F, R R F, R F, R, W 365-586 414-565 386-552 48-476 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 642 Wednesday, December 31, 1969 17:00 Table 174. YIELD STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 3 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Yield Strength (MPa) C16500 C17000 Beryllium copper C17200 Beryllium copper C17300 Beryllium copper 98.6 Cu, 0.8 Cd, 0.6 Sn 99.5 Cu, 1.7 Be, 0.20 Co 99.5 Cu, 1.9 Be , 0.20 Co 99.5 Cu, 1.9 Be, 0.40 Pb F, R, W F, R F, R, W, T, P, S R 97-490 221-1172 172-1344 172-1255 C17500 Copper-cobalt-beryllium alloy C18200, C18400, C18500 Chromium copper C18700 leaded copper C18900 99.5 Cu, 2.5 Co, 0.6 Be 99.5 Cu(j) 99.0 Cu, 1.0 Pb 98.75 Cu, 0.75 Sn, 0.3 Si, 0.20 Mn F, R F, W, R, S, T R R, W 172-758 97-531 69-345 62-359 C19000 Copper-nickel-phosphorus alloy C19100 Copper-nickel-phosphorus-tellurium alloy C19400 98.7 Cu, 1.1 Ni, 0.25 P 98.15 Cu, 1.1 Ni, 0.50 Te, 0.25 P 97.5 Cu, 2.4 Fe, 0.13 Zn, 0.03 P F, R, W R, F F 138-552 69-634 165-503 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 643 Wednesday, December 31, 1969 17:00 Table 174. YIELD STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 4 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Yield Strength (MPa) C19500 C21000 Gilding, 95% C22000 Commercial bronze, 90% C22600 Jewelry bronze, 87.5% 97.0 Cu, 1.5 Fe, 0.6 Sn, 0.10 P, 0.80 Co 95.0 Cu, 5.0 Zn 90.0 Cu, 10.0 Zn 87.5 Cu, 12.5 Zn F F, W F, R, W, T F, W 448-655 69-400 69-427 76-427 C23000 Red brass, 85% C24000 Low brass, 80% C26000 Cartridge brass, 70% C26800, C27000 Yellow brass 85.0 Cu, 15.0 Zn 80.0 Cu, 20.0 Zn 70.0 Cu, 30.0 Zn 65.0 Cu, 35.0 Zn F, W, T, P F, W F, R, W, T F, R, W 69-434 83-448 76-448 97-427 C28000 Muntz metal C31400 Leaded commercial bronze C31600 Leaded commercial bronze, nickel-bearing C33000 Low-leaded brass tube 60.0 Cu, 40.0 Zn 89.0 Cu, 1.75 Pb, 9.25 Zn 89.0 Cu, 1.9 Pb, 1.0 Ni, 8.1 Zn 66.0 Cu, 0.5 Pb, 33.5 Zn F, R, T F, R F, R T 145-379 83-379 83-407 103-414 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 644 Wednesday, December 31, 1969 17:00 Table 174. YIELD STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 5 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Yield Strength (MPa) C33200 High-leaded brass tube C33500 Low-leaded brass C34000 Medium-leaded brass C34200 High-leaded brass 66.0 Cu, 1.6 Pb, 32.4 Zn 65.0 Cu, 0.5 Pb, 34.5 Zn 65.0 Cu, 1.0 Pb, 34.0 Zn 64.5 Cu, 2.0 Pb, 33.5 Zn T F F, R, W, S F, R 138-414 97-414 103-414 117-427 C34900 C35000 Medium-leaded brass C35300 High-leaded brass C35600 Extra-high-leaded brass 62.2 Cu, 0.35 Pb, 37.45 Zn 62.5 Cu, 1.1 Pb, 36.4 Zn 62.0 Cu, 1.8 Pb, 36.2 Zn 63.0 Cu, 2.5 Pb, 34.5 Zn R, W F, R F, R F 110-379 90-483 117-427 117-414 C36000 Free-cutting brass C36500 to C36800 Leaded Muntz metal C37000 Free-cutting Muntz metal C37700 Forging brass 61.5 Cu, 3.0 Pb, 35.5 Zn 60.0 Cu(k), 0.6 Pb, 39.4 Zn 60.0 Cu, 1.0 Pb, 39.0 Zn 59.0 Cu, 2.0 Pb, 39.0 Zn F, R, S F T R, S 124-310 138 138-414 138 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 645 Wednesday, December 31, 1969 17:00 Table 174. YIELD STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 6 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Yield Strength (MPa) C38500 Architectural bronze C40500 C40800 C41100 57.0 Cu, 3.0 Pb, 40.0 Zn 95 Cu, 1 Sn, 4 Zn 95 Cu, 2 Sn, 3 Zn 91 Cu, 0.5 Sn, 8.5 Zn R, S F F F, W 138 83-483 90-517 76-496 C41300 C41500 C42200 C42500 90.0 Cu, 1.0 Sn, 9.0 Zn 91 Cu, 1.8 Sn, 7.2 Zn 87.5 Cu, 1.1 Sn, 11.4 Zn 88.5 Cu, 2.0 Sn, 9.5 Zn F, R, W F F F 83-565 117-517 103-517 124-524 C43000 C43400 C43500 C44300, C44400, C44500 Inhibited admiralty 87.0 Cu, 2.2 Sn, 10.8 Zn 85.0 Cu, 0.7 Sn, 14.3 Zn 81.0 Cu, 0.9 Sn, 18.1 Zn 71.0 Cu, 28.0 Zn, 1.0 Sn F F F, T F, W, T 124-503 103-517 110-469 124-152 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 646 Wednesday, December 31, 1969 17:00 Table 174. YIELD STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 7 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Yield Strength (MPa) C46400 to C46700 Naval brass C48200 Naval brass, medium-leaded C48500 Leaded naval brass C50500 Phosphor bronze, 1.25% E 60.0 Cu, 39.25 Zn, 0.75 Sn 60.5 Cu, 0.7 Pb, 0.8 Sn, 38.0 Zn 60.0 Cu, 1.75 Pb, 37.5 Zn, 0.75 Sn 98.75 Cu, 1.25 Sn, trace P F, R, T, S F, R, S F, R, S F, W 172-455 172-365 172-365 97-345 C51000 Phosphor bronze, 5% A C51100 C52100 Phosphor bronze, 8% C C52400 Phosphor bronze, 10% D 95.0 Cu, 5.0 Sn, trace P 95.6 Cu, 4.2 Sn, 0.2 P 92.0 Cu, 8.0 Sn, trace P 90.0 Cu, 10.0 Sn, trace P F, R, W, T F F, R, W F, R, W 131-552 345-552 165-552 193 (Annealed) C54400 Free-cutting phosphor bronze C60800 Aluminum bronze, 5% C61000 C61300 88.0 Cu, 4.0 Pb, 4.0 Zn, 4.0 Sn 95.0 Cu, 5.0 Al 92.0 Cu, 8.0 Al 92.65 Cu, 0.35 Sn, 7.0 Al F, R T R, W F, R, T, P, S 131-434 186 207-379 207-400 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 647 Wednesday, December 31, 1969 17:00 Table 174. YIELD STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 8 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Yield Strength (MPa) C61400 Aluminum bronze, D C61500 C61800 C61900 91.0 Cu, 7.0 Al, 2.0 Fe 90.0 Cu, 8.0 Al, 2.0 Ni 89.0 Cu, 1.0 Fe, 10.0 Al 86.5 Cu, 4.0 Fe, 9.5 Al F, R, W, T, P, S F R F 228-414 152-965 269-293 338-1000 C62300 C62400 C62500 C63000 87.0 Cu, 10.0 Al, 3.0 Fe 86.0 Cu, 3.0 Fe, 11.0 Al 82.7 Cu, 4.3 Fe, 13.0 Al 82.0 Cu, 3.0 Fe, 10.0 Al, 5.0 Ni F, R F, R F, R F, R 241-359 276-359 379 345-517 C63200 C63600 C63800 C64200 82.0 Cu, 4.0 Fe, 9.0 Al, 5.0 Ni 95.5 Cu, 3.5 Al, 1.0 Si 99.5 Cu, 2.8 Al, 1.8 Si, 0.40 Co 91.2 Cu, 7.0 Al F, R R, W F F, R 310-365 — 372-786 241-469 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 648 Wednesday, December 31, 1969 17:00 Table 174. YIELD STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 9 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Yield Strength (MPa) C65100 Low-silicon bronze, B C65500 High-silicon bronze, A C66700 Manganese brass C67400 98.5 Cu, 1.5 Si 97.0 Cu, 3.0 Si 70.0 Cu, 28.8 Zn, 1.2 Mn 58.5 Cu, 36.5 Zn, 1.2 Al, 2.8 Mn, 1.0 Sn R, W, T F, R, W, T F, W F, R 1 03-476 145-483 83-638 234-379 C67500 Manganese bronze, A C68700 Aluninum brass, arsenical C68800 C69000 58.5 Cu, 1.4 Fe, 39.0 Zn, 1.0 Sn, 0.1 Mn 77.5 Cu, 20.5 Zn, 2.0 Al, 0.1 As 73.5 Cu, 22.7 Zn, 3.4 Al, 0.40 Co 73.3 Cu, 3.4 Al, 0.6 Ni, 22.7 Zn R, S T F F 207-414 186 379-786 345-807 C69400 Silicon red brass C70400 C70600 Copper nickel, 10% C71000 Copper nickel, 20% 81.5 Cu, 14.5 Zn, 4.0 Si 92.4 Cu, 1.5 Fe, 5.5 Ni, 0.6 Mn 88.7 Cu, 1.3 Fe, 10.0 Ni 79.00 Cu, 21.0 Ni R F, T F, T F, W, T 276-393 276-524 110-393 90-586 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 649 Wednesday, December 31, 1969 17:00 Table 174. YIELD STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 10 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Yield Strength (MPa) C71500 Copper nickel, 30% C71700 C72500 C73500 70.0 Cu, 30.0 Ni 67.8 Cu, 0.7 Fe, 31.0 Ni, 0.5 Be 88.20 Cu, 9.5 Ni, 2.3 Sn 72.0 Cu, 18.0 Ni , 10.0 Zn F, R, T F, R, W F, R, W, T F, R, W, T 138-483 207-1241 152-745 103-579 C74500 Nickel silver, 65-10 C75200 Nickel silver, 65-18 C75400 Nickel silver, 65-15 C75700 Nickel silver, 65-12 65.0 Cu, 25.0 Zn, 10.0 Ni 65.0 Cu, 17.0 Zn, 18.0 Ni 65.0 Cu, 20.0 Zn, 15.0 Ni 65.0 Cu, 23.0 Zn, 12.0 Ni F, W F, R, W F F, W 124-524 172-621 124-545 124-545 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.10 Mechanical L Page 650 Wednesday, December 31, 1969 17:00 Table 174. YIELD STRENGTH OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 11 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Yield Strength (MPa) C76200 C77000 Nickel silver, 55-18 C72200 C78200 Leaded nickel silver, 65-8-2 59.0 Cu, 29.0 Zn, 12.0 Ni 55.0 Cu, 27.0 Zn, 18.0 Ni 82.0 Cu, 16.0 Ni, 0.5 Cr, 0.8 Fe, 0.5 Mn 65.0 Cu, 2.0 Pb, 25.0 Zn, 8.0 Ni F, T F, R, W F, T F 145-758 186-621 124-455 159-524 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). (d) Based on 100% for C360000. (e) C10400, 8 oz/ton Ag; C10500, 10 oz/ton; C10700, 25 oz/ton . (f) C11300, 8 oz/ton Ag; C11400,10 oz/ton; C11500, 16 oz/ton; C11600, 25 oz/ton (g) C12000, 0.008 P; C12100, 0.008 P and 4 oz/ton Ag; (h) C12700, 8 oz/ton Ag; C12800,10 oz/ton; C12900,16 oz/ton; C13000, 25 oz/ton. (i) 8.30 oz/ton Ag. (j) C18200, 0.9 Cr; C18400, 0.8 Cr; C18500, 0.7 Cr (k) Rod, 61.0 Cu min. ©2001 CRC Press LLC 8.11 Mechanical Page 651 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 175. YIELD STRENGTH OF CAST ALUMINUM ALLOYS (SHEET 1 OF 3) Alloy AA No. Temper Yield Strength (MPa) 201.0 T4 T6 T7 215 435 415 206.0, A206.0 208.0 T7 F 345 97 242.0 T21 T571 T77 T571 T61 125 205 160 235 290 295.0 T4 T6 T62 110 165 220 296.0 T4 T6 T7 130 180 140 308.0 F 110 319.0 F T6 F T6 125 165 130 185 336.0 T551 T65 T61 195 295 285 T51 T6 T61 T7 160 175 240 250 354.0 355.0 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 651 8.11 Mechanical Page 652 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 175. YIELD STRENGTH OF CAST ALUMINUM ALLOYS (SHEET 2 OF 3) Alloy AA No. Temper Yield Strength (MPa) 355.0 (Con’t) T71 T51 T6 200 165 190 T62 T7 T71 280 210 215 T51 T6 T7 140 165 210 T71 T6 T7 145 185 165 357.0, A357.0 359.0 T62 T61 T62 290 255 290 360.0 A360.0 380.0 F F F 170 165 165 383.0 384.0, A384.0 390.0 F F F T5 150 165 240 260 A390.0 F,T5 T6 T7 180 280 250 F,T5 T6 T7 200 310 260 356.0 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 652 CRC Handbook of Materials Science & Engineering 8.11 Mechanical Page 653 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 175. YIELD STRENGTH OF CAST ALUMINUM ALLOYS (SHEET 3 OF 3) Alloy AA No. Temper Yield Strength (MPa) 413.0 A413.0 443.0 B443.0 F F F F 140 130 55 62 C443.0 514.0 518.0 F F F 110 85 190 520.0 535.0 712.0 T4 F F 180 140 170 713.0 T5 T5 150 150 771.0 850.0 T6 T5 275 75 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 653 8.11 Mechanical Page 654 Wednesday, December 31, 1969 17:00 Mechanical Properties . Table 176. YIELD STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 7) Alloy Temper Yield Strength (MPa) 1050 0 H14 H16 H18 28 105 125 145 1060 0 H12 H14 H16 H18 28 76 90 105 125 1100 0 H12 H14 H16 H18 34 105 115 140 150 1350 0 H12 H14 H16 H19 28 83 97 110 165 2011 T3 T8 295 310 2014 0 T4 T6 97 290 415 Alclad 2014 0 T3 T4 T6 69 275 255 415 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984) ©2001 CRC Press LLC 654 CRC Handbook of Materials Science & Engineering 8.11 Mechanical Page 655 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 176. YIELD STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 7) Alloy Temper Yield Strength (MPa) 2024 0 T3 T4, T351 T361 76 345 325 395 Alclad 2024 0 T T4, T351 76 310 290 T361 T81, T851 T861 365 415 455 2036 2048 T4 195 415 2124 2218 T851 T61 T71 T72 440 305 275 255 2219 0 T42 T31, T351 T37 76 185 250 315 T62 T81, T851 T87 290 350 395 2618 3003 Alclad All 0 H12 370 42 125 3003 H14 H16 H18 145 170 185 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984) ©2001 CRC Press LLC Shackelford & Alexander 655 8.11 Mechanical Page 656 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 176. YIELD STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 7) Alloy Temper Yield Strength (MPa) 3004 Alclad 0 H32 69 170 3004 H34 H36 H38 200 230 250 3105 0 H12 H14 55 130 150 H16 H18 H25 170 195 160 4032 4043 T6 0 H18 315 69 270 5005 0 H12 H14 41 130 150 H16 H18 H32 170 195 115 H34 H36 H38 140 165 185 0 H32 H34 H36 H38 55 145 165 180 200 5050 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984) ©2001 CRC Press LLC 656 CRC Handbook of Materials Science & Engineering 8.11 Mechanical Page 657 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 176. YIELD STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 7) Alloy Temper Yield Strength (MPa) 5052 0 H32 H34 H36 H38 90 195 215 240 255 5056 0 H18 H38 150 405 345 5083 0 H112 H113 145 195 230 H321 H323, H32 H343, H34 230 250 285 5086 0 H32, H116, H117 H34 H112 115 205 255 130 5154 0 H32 H34 115 205 230 H36 H38 H112 250 270 115 5182 0 H32 H34 H19(n) 140 235 285 395 5252 H25 H28, H38 170 240 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984) ©2001 CRC Press LLC Shackelford & Alexander 657 8.11 Mechanical Page 658 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 176. YIELD STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 5 OF 7) Alloy Temper Yield Strength (MPa) 5254 0 H32 H34 115 205 230 H36 H38 H112 250 270 115 0 H32 H34 H36 115 205 240 275 H38 H111 H112 H311 310 180 125 180 5456 0 H111 H112 H321, H116 160 230 165 255 5457 0 H25 H28, H38 48 160 185 5652 0 H32 H34 H36 H38 90 195 215 240 255 5657 H25 H28, H38 T1 T5 140 165 105 240 5454 6005 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984) ©2001 CRC Press LLC 658 CRC Handbook of Materials Science & Engineering 8.11 Mechanical Page 659 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 176. YIELD STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 6 OF 7) Alloy Temper Yield Strength (MPa) 6009 T4 T6 130 325 6010 6061 T4 0 T4, T451 T6, T651 170 55 145 275 Alclad 6061 0 T4, T451 T6, T651 48 130 255 6063 0 T1 T4 T5 48 90 90 145 T6 T83 T831 T832 215 240 185 270 6066 0 T4, T451 T6, T651 83 205 360 6070 0 T4 T6 69 170 350 6101 6151 6201 Hlll T6 T6 T81 76 195 300 310 6205 Tl T5 140 290 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984) ©2001 CRC Press LLC Shackelford & Alexander 659 8.11 Mechanical Page 660 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 176. YIELD STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 7 OF 7) Alloy Temper Yield Strength (MPa) 6262 6351 T9 T4 T6 380 150 285 6463 Tl T5 T6 90 145 215 7005 0 T53 T6,T63,T6351 83 345 315 7049 7050 T73 T736 455 7072 0 H12 H14 7075 0 T6,T651 T73 105 505 435 Alclad 7075 0 T6,T651 95 460 7175 T66 T736 T61 525 455 460 7475 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984) ©2001 CRC Press LLC 660 CRC Handbook of Materials Science & Engineering 8.12 Mechanical L Page 661 Wednesday, December 31, 1969 17:00 Table 177. YIELD STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE (SHEET 1 OF 3) Class Alloy Condition Yield Strength (MPa) Commercially Pure 99.5 Ti 99.2 Ti 99.1 Ti Annealed Annealed Annealed 241 345 448 99.0 Ti 99.2Ti-0.2Pd Ti-0.8Ni-0.3Mo Annealed Annealed Annealed 586 345 448 Alpha Alloys Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2) Annealed Annealed 807 745 Near Alpha Alloys Ti-8Al-1Mo-1V Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Duplex Annealed Duplex Annealed 951 993 Ti-6Al-2Sn-4Zr-2Mo Ti-5Al-2Sn-2Zr-2Mo-0.25Si Ti-6Al-2Nb-1Ta-1Mo Ti-6Al-2Sn-1.5Zr-1Mo- 0.35Bi-0.1Si Duplex Annealed 975 ˚C (1/2h), AC + 595 ˚C (2h), AC As rolled 2.5 cm (1 in.) plate Beta forge + duplex anneal 896 965 758 945 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.12 Mechanical L Page 662 Wednesday, December 31, 1969 17:00 Table 177. YIELD STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE (SHEET 2 OF 3) Class Alloy Condition Yield Strength (MPa) Alpha-Beta Alloys Ti-8Mn Ti-3Al-2.5V Annealed Annealed 862 586 Ti-6Al-4V Annealed Solution + age 924 1103 Ti-6Al-4V(low O2) Ti-6Al-6V-2Sn Annealed Annealed Solution + age 827 1000 1172 Ti-7Al-4Mo Ti-6Al-2Sn-4Zr-6Mo Ti-6Al-2Sn-2Zr-2Mo- 2Cr-0.25Si Ti-10V-2Fe-3Al Solution + age Solution + age Solution + age Solution + age 1034 1172 1138 1200 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.12 Mechanical L Page 663 Wednesday, December 31, 1969 17:00 Table 177. YIELD STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE (SHEET 3 OF 3) Class Alloy Condition Beta Alloys Ti-13V-1Cr-3Al Solution + age Ti-8Mo-8V-2Fe-3Al Ti-3Al-8V-6Cr-4Mo-4Zr Solution + age Solution + age Annealed Solution + age Ti-11.5Mo-6Zr-4.5Sn Yield Strength (MPa) Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 1172 1207 1241 1379 834 1317 8.12 Mechanical L Page 664 Wednesday, December 31, 1969 17:00 Table 178. YIELD STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 1 OF 4) Class Alloy Condition Test Temperature (°C) Commercially Pure 99.5 Ti 99.2 Ti 99.1 Ti Annealed Annealed Annealed 315 315 315 97 117 138 99.0 Ti 99.2Ti-0.2Pd Ti-0.8Ni-0.3Mo Ti-0.8Ni-0.3Mo Annealed Annealed Annealed Annealed 315 315 205 315 172 110 248 207 Ti-5Al-2.5Sn Annealed 315 448 Ti-5Al-2.5Sn (low O2) Annealed -195 -255 1158 1420 Ti-8Al-1Mo-1V Duplex Annealed 315 425 540 621 565 517 Alpha Alloys Near Alpha Alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC Yield Strength (MPa) 8.12 Mechanical L Page 665 Wednesday, December 31, 1969 17:00 Table 178. YIELD STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 2 OF 4) Class Test Temperature (°C) Yield Strength (MPa) Alloy Condition Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Duplex Annealed 315 425 540 758 676 586 Ti-6Al-2Sn-4Zr-2Mo Duplex Annealed 315 425 540 586 586 489 Ti-5Al-2Sn-2Zr-2Mo-0.25Si 975 ˚C (1/2h), AC + 595 ˚C (2h), AC 315 425 540 565 531 503 Ti-6Al-2Nb-1Ta-1Mo As rolled 2.5 cm (1 in.) plate 315 425 540 462 414 379 Ti-6Al-2Sn-1.5Zr-1Mo- 0.35Bi-0.1Si Beta forge + duplex anneal 480 586 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.12 Mechanical L Page 666 Wednesday, December 31, 1969 17:00 Table 178. YIELD STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 3 OF 4) Class Alloy Condition Test Temperature (°C) Alpha-Beta Alloys Ti-8Mn Ti-3Al-2.5V Annealed Annealed 315 315 565 345 Ti-6Al-4V Annealed Annealed Annealed 315 425 540 655 572 427 Solution + age Solution + age Solution + age 315 425 540 703 621 483 Ti-6Al-4V(low O2) Annealed 160 1413 Ti-6Al-6V-2Sn Annealed Solution + age 315 315 807 896 Ti-7Al-4Mo Solution + age 315 425 745 717 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC Yield Strength (MPa) 8.12 Mechanical L Page 667 Wednesday, December 31, 1969 17:00 Table 178. YIELD STRENGTH OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 4 OF 4) Class Beta Alloys Test Temperature (°C) Yield Strength (MPa) Alloy Condition Ti-6Al-2Sn-4Zr-6Mo Solution + age 315 425 540 841 758 655 Ti-6Al-2Sn-2Zr-2Mo- 2Cr-0.25Si Solution + age 315 807 Ti-10V-2Fe-3Al Solution + age 205 315 1048 979 Ti-13V-1Cr-3Al Solution + age 315 425 793 827 Ti-8Mo-8V-2Fe-3Al Solution + age 315 979 Ti-3Al-8V-6Cr-4Mo-4Zr Solution + age Annealed 315 425 315 896 758 655 Solution + age 315 848 Ti-11.5Mo-6Zr-4.5Sn Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.13 Mechanical Page 668 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 179. YIELD STRENGTH OF COBALT -BASE SUPERALLOYS Temperature (°C) Yield Strength (MPa) Haynes 25 (L–605) sheet 21 540 650 760 870 460 250 240 260 240 Haynes 188, sheet 21 540 650 760 870 485 305 305 290 260 S-816, bar 21 540 650 760 870 385 310 305 285 240 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387, (1993). ©2001 CRC Press LLC 668 CRC Handbook of Materials Science & Engineering 8.13 Mechanical Page 669 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 180. YIELD STRENGTH OF NICKEL -BASE SUPERALLOYS (SHEET 1 OF 5) Temperature (°C) Yield Strength (MPa) Astroloy, bar 21 540 650 760 870 1050 965 965 910 690 D–979, bar 21 540 650 760 870 1010 925 890 655 305 Hastelloy X, sheet 21 540 650 760 870 360 290 275 260 180 IN–102, bar 21 540 650 760 870 505 400 400 385 200 Inconel 600, bar 21 540 650 760 870 250 195 180 115 62 Inconel 601, sheet 21 540 650 760 870 340 150 180 200 140 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993). ©2001 CRC Press LLC Shackelford & Alexander 669 8.13 Mechanical Page 670 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 180. YIELD STRENGTH OF NICKEL -BASE SUPERALLOYS (SHEET 2 OF 5) Temperature (°C) Yield Strength (MPa) Inconel 625, bar 21 540 650 760 870 490 405 420 420 475 Inconel 706, bar 21 540 650 760 980 895 825 675 Inconel 718, bar 21 540 650 760 870 1190 1060 1020 740 330 Inconel 718, sheet 21 540 650 760 1050 945 870 625 Inconel X-750, bar 21 540 650 760 870 635 580 565 455 165 M-252, bar 21 540 650 760 870 840 765 745 715 485 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993). ©2001 CRC Press LLC 670 CRC Handbook of Materials Science & Engineering 8.13 Mechanical Page 671 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 180. YIELD STRENGTH OF NICKEL -BASE SUPERALLOYS (SHEET 3 OF 5) Temperature (°C) Yield Strength (MPa) Nimonic 80A, bar 21 540 650 760 870 620 530 550 505 260 Nimonic 90, bar 21 540 650 760 870 805 725 685 540 260 Nimonic 105, bar 21 540 650 760 870 815 775 800 655 365 Nimonic 115, bar 21 540 650 760 870 860 795 815 800 550 Pyromet 860, bar 21 540 650 760 835 840 850 835 René 41, bar 21 540 650 760 870 1060 1010 1000 940 550 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993). ©2001 CRC Press LLC Shackelford & Alexander 671 8.13 Mechanical Page 672 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 180. YIELD STRENGTH OF NICKEL -BASE SUPERALLOYS (SHEET 4 OF 5) Temperature (°C) Yield Strength (MPa) René 95, bar 21 540 650 760 1310 1250 1220 1100 Udimet 500, bar 21 540 650 760 870 840 795 760 730 495 Udimet 520, bar 21 540 650 760 870 860 825 795 725 515 Udimet 700, bar 21 540 650 760 870 965 895 855 825 635 Udimet 710, bar 21 540 650 760 870 910 850 860 815 635 Unitemp AF2–1DA, bar 21 540 650 760 870 1050 1080 1080 1010 715 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993). ©2001 CRC Press LLC 672 CRC Handbook of Materials Science & Engineering 8.13 Mechanical Page 673 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 180. YIELD STRENGTH OF NICKEL -BASE SUPERALLOYS (SHEET 5 OF 5) Alloy Waspaloy, bar Temperature (°C) Yield Strength (MPa) 21 540 650 760 870 795 725 690 675 515 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993). Table 181. YIELD STRENGTH OF COMMERCIALLY PURE TIN Temperature (°C) Yield Strength (MPa) Strained at 0.2 mm/m • min -200 -160 -120 -80 -40 0 23 36.2 90.3 87.6 38.9 20.1 12.5 11.0 Strained at 0.4 mm/m • min 15 50 100 150 200 14.5 12.4 11.0 7.6 4.5 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p488, (1993). ©2001 CRC Press LLC Shackelford & Alexander 673 8.13 Mechanical Page 674 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 182. YIELD STRENGTH OF POLYMERS (SHEET 1 OF 3) Class Polymer Yield Strength, (ASTM D638) (l03 psi) Chlorinated Polyether Chlorinated Polyether 5.9 Polycarbonate Polycarbonate 8.5 Nylons; Molded, Extruded Type 6 General purpose Cast Flexible copolymers 8.5—12.5 12.8 7.5—10.0 Type 8 Type 11 Type 12 3.9 8.5 5.5—6.5 6/6 Nylon General purpose molding Glass fiber reinforced General purpose extrusion 6/10 Nylon General purpose PVC–Acrylic Alloy Polymides 8.0—11.8 25 8.6—12.6 7.1—8.5 ABS–Polycarbonate Alloy 8.2 PVC–acrylic sheet PVC–acrylic injection molded 6.5 5.5 Unreinforced Unreinforced 2nd value Glass reinforced 7.5 5 28 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 674 CRC Handbook of Materials Science & Engineering 8.13 Mechanical Page 675 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 182. YIELD STRENGTH OF POLYMERS (SHEET 2 OF 3) Class Polymer Yield Strength, (ASTM D638) (l03 psi) Polyacetals Homopolymer: Standard 10 Copolymer: Standard 25% glass reinforced High flow 8.8 18.5 8.8 Polyester; Thermoplastic Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing 7.5—8 17—25 General purpose grade Glass reinforced grade Asbestos—filled grade 8.2 14 12 Phenylene Oxides SE—100 SE—1 Glass fiber reinforced 7.8 9.6 14.5—17.0 Phenylene oxides (Noryl) Standard Glass fiber reinforced 10.2 17—19 Polyarylsulfone Polypropylene: General purpose High impact 8—12 4.5—6.0 2.8—4.3 Asbestos filled Glass reinforced Flame retardant 3.3—8.2 7—11 3.6—4.2 17 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 675 8.13 Mechanical Page 676 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 182. YIELD STRENGTH OF POLYMERS (SHEET 3 OF 3) Class Polymer Yield Strength, (ASTM D638) (l03 psi) Polyphenylene sulfide: Standard 40% glass reinforced 9.511 20—21 Polystyrenes; Molded Polystyrenes General purpose Medium impact High impact Glass fiber -30% reinforced 5.0—10 3.7—6.0 2.8—5.3 14 Glass fiber (30%) reinforced SAN 18 Styrene acrylonitrile (SAN) To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. Table 183. YIELD STRENGTH OF SIC-WHISKER –REINFORCED ALUMINUM ALLOY Yield Strength (0.2%) Fiber Content (vol %) (MPa) Standard Deviation Range of Measurement 0 0.12 0.16 0.20 210 266.5 264.5 298 3.8 4.2 0.6 4.0 9.5 10.6 1.6 10.2 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p150,(1994). ©2001 CRC Press LLC 676 CRC Handbook of Materials Science & Engineering 8.13 Mechanical Page 677 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 184. YIELD STRENGTH OF REINFORCED ALUMINUM ALLOY VS. TEMPERATURE Yield Strength (MPa) Fiber Vol % 350°C 300°C 250°C Polycrystalline alumina 0 5 12 20 35 54 68 110 — 79 — 154 70 112 — 186 SiC whiskers 0 12 16 20 35 94 120 163 — 153 — 207 70 197 — 268 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154,(1994). ©2001 CRC Press LLC Shackelford & Alexander 677 8.13 Mechanical Page 678 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 185. YIELD STRENGTH OF POLYCRYSTALLINE –ALUMINA–REINFORCED ALUMINUM ALLOY Yield Strength (0.2%) Fiber Content (vol %) (MPa) Standard Deviation Range of Measurement 0 5 12 20 210 232 251.5 282.5 3.8 4.2 14.6 11.3 9.5 10.4 38.3 25.2 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154,(1994). ©2001 CRC Press LLC 678 CRC Handbook of Materials Science & Engineering 8.14 Mechanical Page 679 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 186. COMPRESSIVE YIELD STRENGTH OF POLYMERS (SHEET 1 OF 2) Class Polymer Acrylics; Cast, Molded, Extruded Cast Resin Sheets, Rods: General purpose, type I General purpose, type II Moldings: Grades 5, 6, 8 High impact grade Cellulose Acetate; Molded, Extruded 6.5—10.6 4.3—9.6 4.4—8.4 3.2—7.2 3.15—6.1 8.8 5.3—7.1 2.6—4.3 ASTM Grade: 1 3 Fluorocarbons; Molded,Extruded 14.5—17 7.3—12.0 ASTM Grade: H4 MH S2 Cellusose Acetate Propionate; Molded, Extruded 12—14 14—18 ASTM Grade: H4—1 H2—1 MH—1, MH—2 MS—1, MS—2 S2—1 Cellulose Acetate Butyrate; Molded, Extruded Compressive Yield Strength (ASTM D690 or D695) (0.1% offset, 1000 psi) Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) 6.2—7.3 4.9—5.8 2 0.7—1.8 1.4—1.8 1.6 12.8—14.2 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 679 8.14 Mechanical Page 680 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 186. COMPRESSIVE YIELD STRENGTH OF POLYMERS (SHEET 2 OF 2) Class Polymer Compressive Yield Strength (ASTM D690 or D695) (0.1% offset, 1000 psi) Nylons; Molded, Extruded Type 6 General purpose Glass fiber (30%) reinforced Cast 9.7 19—20 14 Nylons; Molded, Extruded 6/6 Nylon General purpose molding Glass fiber reinforced General purpose extrusion 6/10 Nylon General purpose Glass fiber (30%) reinforced Polyacetals Polypropylene: Homopolymer: Standard 20% glass reinforced 22% TFE reinforced Copolymer: Standard High flow 4.9 20—24 4.9 3.0 18 5.2 5.2 4.5 4.5 4.5 General purpose High impact Asbestos filled Glass reinforced 5.5—6.5 4.4 7 6.5—7 Polyvinyl Chloride And Copolymers; Molded, Extruded Rigid—normal impact 10—11 Vinylidene chloride Vinylidene chloride 75—85 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 680 CRC Handbook of Materials Science & Engineering 8.14 Mechanical Page 681 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 187. FLEXURAL STRENGTH OF (SHEET 1 OF 6) POLYMERS Class Polymer Flexural Strength (ASTM D790) (103 psi) ABS Resins; Molded, Extruded Medium impact 9.9—11.8 High impact Very high impact Low temperature impact Heat resistant 7.5—9.5 6.0—9.8 5—8 11.0—12.0 Acrylics; Cast, Molded, Extruded Cast Resin Sheets, Rods: General purpose, type I 12—14 General purpose, type II Moldings: Grades 5, 6, 8 High impact grade 15—17 15—16 8.7—12.0 Alkyds; Molded Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts) 8—11 19—20 7—10 12—17 Cellulose Acetate; Molded, Extruded ASTM Grade: Cellulose Acetate Butyrate; Molded, Extruded H4—1 H2—1 8.1—11.15 (yield) 6.0—10.0 (yield) MH—1, MH—2 MS—1, MS—2 S2—1 4.4—8.65 (yield) 3.8—7.1 (yield) 3.5—5.7 (yield) ASTM Grade: H4 MH S2 9 (yield) 5.6—6.7 (yield) 2.5—3.95 (yield) To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 681 8.14 Mechanical Page 682 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 187. FLEXURAL STRENGTH OF (SHEET 2 OF 6) POLYMERS Flexural Strength (ASTM D790) (103 psi) Class Polymer Cellusose Acetate Propionate; Molded, Extruded ASTM Grade: 1 3 6.8—7.9 (yield) 5.6—6.2 (yield) Chlorinated Polymers Chlorinated polyether Chlorinated polyvinyl chloride 5 (0.1% offset) 14.5 Polycarbonates Polycarbonate Polycarbonate (40% glass fiber reinforced) 13.5 Diallyl Phthalates; Molded Orlon filled Dacron filled Asbestos filled Glass fiber filled 7.5—10.5 9—11.5 8—10 10—18 Fluorocarbons; Molded,Extruded Polytrifluoro chloroethylene (PTFCE) 3.5 (0.1% offset) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) 3 (0.1% offset) 8.6—10.8 (0.1% offset) Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded 14—18 1.2—12.7 19—22 General purpose glass cloth laminate High strength laminate Filament wound composite 80—90 165—177 180—170 Epoxies; Cast, Molded, Reinforced 27 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 682 CRC Handbook of Materials Science & Engineering 8.14 Mechanical Page 683 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 187. FLEXURAL STRENGTH OF (SHEET 3 OF 6) POLYMERS Flexural Strength (ASTM D790) (103 psi) Class Polymer Epoxies—Molded, Extruded High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate Epoxy novolacs Cast, rigid Glass cloth laminate 12—13 84—89 Filler & type Unfilled Cellulose electrical Glass fiber Alpha cellulose and mineral 9.5—14 6—15 14—18 11—16, 8—10(mineral) Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers Unbreakable 26—34 16.5 3.4—16.4 Melamines; Molded Nylons; Molded, Extruded 6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled 6/10 Nylon General purpose Glass fiber (30%) reinforced 11—16 10—12 70—72 Unbreakable 26—35 26—28 8 23 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 683 8.14 Mechanical Page 684 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 187. FLEXURAL STRENGTH OF (SHEET 4 OF 6) POLYMERS Class Polymer Flexural Strength (ASTM D790) (103 psi) Phenolics; Molded Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber 8.5—12 8.0—11.5 8—15 10—45 Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos 10—13 7—12 7 7 ABS–Polycarbonate Alloy ABS–Polycarbonate Alloy 14.3 PVC–Acrylic Alloy PVC–acrylic sheet PVC–acrylic injection molded 10.7 8.7 Polymides Unreinforced Glass reinforced 6.6—11 56 Polyacetals Homopolymer: Standard 14.1 Copolymer: Standard 25% glass reinforced High flow 13 28 13 Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing 12.8 22—24 23 Polyester; Thermoplastic To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 684 CRC Handbook of Materials Science & Engineering 8.14 Mechanical Page 685 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 187. FLEXURAL STRENGTH OF (SHEET 5 OF 6) POLYMERS Class Polymer Flexural Strength (ASTM D790) (103 psi) Polyester; Thermoplastic (Con’t) General purpose grade 12 Glass reinforced grade Asbestos—filled grade 19 19 Cast polyyester Rigid Flexible 8—24 4—16 High strength (glass fibers) 6—26 Heat and chemical resistant (asbestos) Sheet molding compounds, general purpose 10—13 26—32 Phenylene Oxides SE—100 SE—1 Glass fiber reinforced 12.8 13.5 20.5—22 Phenylene oxides (Noryl) Standard Glass fiber reinforced 15.4 25—28 Polyarylsulfone Polyarylsulfone 16.1—17.2 Polypropylene: General purpose High impact Asbestos filled Glass reinforced 6—7 (yield) 4.1 (yield) 7.5—9 (yield) 8—11 (yield) Polyphenylene sulfide: Standard 40% glass reinforced 20 37 Polystyrenes; Molded Polystyrenes General purpose Glass fiber —30% reinforced 10—15 17 Polyesters: Thermosets Reinforced polyester moldings To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 685 8.14 Mechanical Page 686 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 187. FLEXURAL STRENGTH OF (SHEET 6 OF 6) POLYMERS Class Polymer Flexural Strength (ASTM D790) (103 psi) Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN 22 Polyvinyl Chloride And Copolymers; Molded, Extruded: Rigid—normal impact Vinylidene chloride 11—16 15—17 Silicones; Molded, Laminated Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate 16—19 6—10 33—47 Ureas; Molded Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) Woodflour filled 8—18 7.5—13 7.5—12.0 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 686 CRC Handbook of Materials Science & Engineering 8.14 Mechanical Page 687 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 188. FLEXTURAL STRENGTH OF FIBERGLASS REINFORCED PLASTICS Material Glass fiber content (wt%) Flexural strength (ksi) Sheet molding compound (SMC) Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester Spray–up–polyester 15 to 30 15 to 35 25 to 50 20 to 30 30 to 50 18 to 30 10 to 20 10 to 40 22 to 37 16 to 28 Filament wound–epoxy Rod stock–polyester Molding compound–phenolic 30 to 80 40 to 80 5 to 25 100 to 270 100 to 180 18 to 24 Acetal Nylon Polycarbonate Polyethylene 20 to 40 6 to 60 20 to 40 10 to 40 15 to 28 7 to 50 17 to 30 7 to 12 Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene) 20 to 40 20 to 35 20 to 40 20 to 40 7 to 11 10 to 17 21 to 27 23 to 26 PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester 15 to 35 20 to 40 20 to 40 20 to 35 20 to 25 17 to 31 15 to 21 19 to 29 Class Glass fiber reinforced thermosets Glass–fiber–reinforced thermoplastics To convert (ksi) to (MPa), multiply by 6.89 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994). ©2001 CRC Press LLC Shackelford & Alexander 687 8.14 Mechanical Page 688 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 189. SHEAR STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 6) Alloy AA No. Temper Shear Strength (MPa) 1050 0 H14 H16 H18 62 69 76 83 1060 0 H12 H14 H16 H18 48 55 62 69 76 1100 0 H12 H14 H16 H18 62 69 76 83 90 1350 0 H12 H14 H16 H19 55 62 69 76 105 2011 T3 T8 220 240 2014 0 T4 T6 125 260 290 Alclad 2014 0 T3 T4 T6 125 255 255 285 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 688 CRC Handbook of Materials Science & Engineering 8.14 Mechanical Page 689 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 189. SHEAR STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 6) Alloy AA No. Temper Shear Strength (MPa) 2024 0 T3 T4, T351 T361 125 285 285 290 Alclad 2024 0 T T4, T351 125 275 275 T361 T81, T851 T861 285 275 290 2218 2618 3003 Alclad T72 All 0 H12 205 260 76 83 3003 H14 H16 H18 97 105 110 3004 Alclad 0 H32 110 115 3004 H34 H36 H38 125 140 145 3105 0 H12 H14 83 97 105 H16 H18 H25 110 115 105 T6 260 4032 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 689 8.14 Mechanical Page 690 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 189. SHEAR STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 6) Alloy AA No. Temper Shear Strength (MPa) 5005 0 H12 H14 76 97 97 H16 H18 H32 105 110 97 H34 H36 H38 97 105 110 5050 0 H32 H34 H36 H38 105 115 125 130 140 5052 0 H32 H34 H36 H38 125 140 145 160 165 5056 0 H18 H38 180 235 220 5083 5086 0 0 H34 170 160 185 5154 0 H32 H34 H36 H38 150 150 165 180 195 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 690 CRC Handbook of Materials Science & Engineering 8.14 Mechanical Page 691 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 189. SHEAR STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 6) Alloy AA No. Temper Shear Strength (MPa) 5182 0 150 5252 H25 H28, H38 0 145 160 150 5254 H32 H34 H36 H38 150 165 180 195 5454 0 H32 H34 160 165 180 H111 H112 H311 160 160 160 5456 H321, H116 205 5457 0 H25 H28, H38 83 110 125 5652 0 H32 H34 H36 H38 125 140 145 160 165 5657 H25 H28, H38 97 105 6005 6009 T5 T4 205 150 5254 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 691 8.14 Mechanical Page 692 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 189. SHEAR STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 5 OF 6) Alloy AA No. Temper Shear Strength (MPa) 6061 0 T4, T451 T6, T651 83 165 205 Alclad 6061 0 T4, T451 T6, T651 76 150 185 6063 0 T1 T5 T6 69 97 115 150 T83 T831 T832 150 125 185 6066 0 T4, T451 T6, T651 97 200 235 6070 0 T4 T6 97 205 235 6151 6205 6262 6351 T6 T5 T9 T6 140 205 240 200 6463 Tl T5 T6 97 115 150 7005 0 T53 T6,T63,T6351 117 221 214 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 692 CRC Handbook of Materials Science & Engineering 8.14 Mechanical Page 693 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 189. SHEAR STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 6 OF 6) Alloy AA No. Temper Shear Strength (MPa) 7072 0 H12 H14 55 62 69 7075 0 T6,T651 150 330 Alclad 7075 0 T6,T651 150 315 7175 T66 T736 325 290 7475 T651 T7351 T7651 295 270 270 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 693 8.14 Mechanical Page 694 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 190. TORSION SHEAR STRENGTH OF GRAY CAST FE ASTM Class Torsional Shear Strength (MPa) 20 25 30 179 220 276 35 40 50 60 334 393 503 610 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). ©2001 CRC Press LLC 694 CRC Handbook of Materials Science & Engineering 8.14 Mechanical Page 695 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 191. HARDNESS OF GRAY CAST IRONS SAE grade Hardness (HB) G1800 G2500 G2500a 187 max 170 to 229 170 to 229 G3000 C3500 G3500b 187 to 241 207 to 255 207 to 255 G3500c G4000 G4000d 207 to 255 217 to 269 241 to 321 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). Table 192. HARDNESS OF GRAY CAST IRON BARS ASTM Class Hardness (HB) 20 25 30 156 174 210 35 40 50 60 212 235 262 302 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). ©2001 CRC Press LLC Shackelford & Alexander 695 8.14 Mechanical Page 696 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 193. HARDNESS OF Specification Number Ferritic ASTM A47, A338; ANSI G48.1; FED QQ–I–666c MALLEABLE IRON CASTINGS Grade or Class 32510 35018 156 max 156 max 156 max 40010 45008 45006 50005 149–197 156–197 156–207 179–229 60004 70003 80002 90001 197–241 217–269 241–285 269–321 M3210 M4504(a) M5003(a) 156 max 163–217 187–241 M5503(b) M7002(b) M8501(b) 187–241 229–269 269–302 ASTM A197 Pearlitic and Martensitic ASTM A220; ANSI C48.2; MIL–I–11444B Automotive ASTM A602; SAE J158 Hardness (HB) (a) Air quenched and tempered (b) Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984). ©2001 CRC Press LLC 696 CRC Handbook of Materials Science & Engineering 8.14 Mechanical Page 697 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 194. HARDNESS OF DUCTILE IRONS Specification Number Grade or Class Hardness (HB) ASTM A395-76 ASME SA395 60-40-18 143-187 ASTM A476-70(d); SAE AMS5316 80-60-03 201 min ASTM A536-72, MIL-1-11466B(MR) 60-40-18 65-45-12 80-55-06 100-70-03 120-90-02 SAE J434c D4018 D4512 D5506 D7003 170 max 156-217 187-255 241-302 MlL-I-24137(Ships) Class A Class B Class C 190 max 190 max 175 max Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984). ©2001 CRC Press LLC Shackelford & Alexander 697 8.14 Mechanical Page 698 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 195. HARDNESS OF TOOL (SHEET 1 OF 2) STEELS Type Condition Hardness (HRC) L2 Annealed 96 HRB Oil quenched from 855 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C 54 52 47 41 30 Oil quenched from 845 •C and single tempered at: 315 •C 425 •C 540 •C 650 •C 54 46 42 32 Annealed 96 HRB Oil quenched from 930 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C 57.5 54 50.5 47.5 42 Annealed 96 HRB Oil quenched from 870 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C 59 58 52 48 37 L6 S1 S5 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984). ©2001 CRC Press LLC 698 CRC Handbook of Materials Science & Engineering 8.14 Mechanical Page 699 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 195. HARDNESS OF TOOL (SHEET 2 OF 2) STEELS Type Condition Hardness (HRC) S7 Annealed 95 HRB Fan cooled from 940 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C 58 55 53 51 39 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984). ©2001 CRC Press LLC Shackelford & Alexander 699 8.15 Mechanical L Page 700 Wednesday, December 31, 1969 17:00 Table 196. HARDNESS OF AUSTENITIC STAINLESS STEELS Type Form Condition ASTM Specification Hardness (HRB) Type 301(UNS S30100) Bar,Wire,Plate,Sheet,Strip Annealed A167 88 max Type 317L (UNS S31703) Bar Annealed — 85max Type 317LM Bar,Plate,Sheet, Strip Annealed — 95 max Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993). ©2001 CRC Press LLC 8.15 Mechanical L Page 701 Wednesday, December 31, 1969 17:00 Table 197. HARDNESS OF FERRITIC STAINLESS STEELS Type ASTM Specification Form Condition Hardness (HRB) Type 409 (UNS S40900) — Bar Annealed 75 max(a) Type 434 (UNS S43400) Type 436 (UNS S43600) — — Wire Sheet, Strip Annealed Annealed 90 max(a) 83 max(a) Type 442 (UNS S44200) Type 444 (UNS S44400) — A176 Bar Plate, Sheet, Strip Annealed Annealed 90 max(a) 95 max (a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993). ©2001 CRC Press LLC 8.15 Mechanical L Page 702 Wednesday, December 31, 1969 17:00 Table 198. HARDNESS OF MARTENSITIC STAINLESS STEELS Type ASTM Specification Form Condition Rockwell Hardness Type 410S (UNS S41008) A176 Plate, Sheet, Strip Annealed 95 HRB max Type 420 (UNS S42000) — Bar Tempered 205 °C 52 HRC Type 440A (UNS S44002) — — Bar Annealed Tempered 315 °C 95 HRB 51 HRC Type 440B (UNS S44003) — — Bar Annealed Tempered 315 °C 96 HRB 55 HRC Type 440C (UNS S44004) — — Bar Annealed Tempered 315 °C 97 HRB 57 HRC Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993). ©2001 CRC Press LLC 8.15 Mechanical L Page 703 Wednesday, December 31, 1969 17:00 Table 199. HARDNESS OF PRECIPITATION -HARDENING AUSTENITIC STAINLESS STEELS Hardness (HRC) Type Form Condition Minimum Maximum PH 13–8 Mo (UNS S13800) Bar, Plate, Sheet, Strip H950 H1000 45 43 — — 15–5 PH (UNS S15500) and 17–4 PH (UNS S17400) Bar, Plate, Sheet, Stript H900 H925 H1025 H1075 40 38 35(a) 32(a) 48 47(a) 42(a) 38(a) H1100 H1150 H1150M 31(a) 28(a) 24(a) 38(a) 36(a) 34(a) RH950 TH1050 41 38 — — 17–7 PH (UNS S17700) Bar (a) For flat rolled products, value varies with thickness. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p371 (1993). ©2001 CRC Press LLC 8.15 Mechanical L Page 704 Wednesday, December 31, 1969 17:00 Table 200. MACHINABILITY RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 1 OF 9) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Machinability Rating (d) C10100 Oxygen-free electronic C10200 Oxygen-free copper C10300 Oxygen-free extra-low phosporus C10400, C10500, C10700 Oxygen-free, silver-bearing 99.99 Cu 99.95 Cu 99.95 Cu, 0.003 P 99.95 Cu(e) F, R, W, T, P, S F, R, W, T, P, S F, R, T, P, S F, R, W, S 20 20 20 20 C10800 Oxygen-free, low phosporus CS11000 Electrolytic tough pitch copper C11100 Electrolytic tough pitch, anneal resistant C11300, C11400, C11500, C11600 Silver-bearing tough pitch copper 99.95 Cu, 0.009 P 99.90 Cu, 0.040 O 99.90 Cu, 0.04 O, 0.01 Cd 99.90 Cu, 0.04 O, Ag(f) F, R, T, P F, R, W, T, P, S W F, R, W, T, S 20 20 20 20 C12000, C12100 C12200 Phosphorus deoxidized copper, high residual phosphorus C12500, C12700, C12800, C12900, C13000 Fire-refined tough pitch with silver C14200 Phosphorus deoxidized, arsenical 99.9 Cu(g) 99.90 Cu, 0.02 P F, T, P F, R, T, P 20 20 99.88 Cu(h) F, R, W, S 20 99.68 Cu, 0.3 As, 0.02 P F, R, T 20 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.15 Mechanical L Page 705 Wednesday, December 31, 1969 17:00 Table 200. MACHINABILITY RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 2 OF 9) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Machinability Rating (d) C19200 C14300 C14310 C14500 Phosphorus deoxidized, tellurium bearing 98.97 Cu, 1.0 Fe, 0.03 P 99.9 Cu, 0.1 Cd 99.8 Cu, 0.2 Cd 99.5 Cu, 0.50 Te, 0.008 P F, T F F F, R, W, T 20 20 20 85 C14700 Sulfur bearing C15000 Zirconium copper C15500 C16200 Cadmium copper 99.6 Cu, 0.40 S 99.8 Cu, 0.15 Zr 99.75 Cu, 0.06 P, 0.11 Mg, Ag(i) 99.0 Cu, 1.0 Cd R, W R, W F F, R, W 85 20 20 20 C16500 C17000 Beryllium copper C17200 Beryllium copper C17300 Beryllium copper 98.6 Cu, 0.8 Cd, 0.6 Sn 99.5 Cu, 1.7 Be, 0.20 Co 99.5 Cu, 1.9 Be , 0.20 Co 99.5 Cu, 1.9 Be, 0.40 Pb F, R, W F, R F, R, W, T, P, S R 20 20 20 50 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.15 Mechanical L Page 706 Wednesday, December 31, 1969 17:00 Table 200. MACHINABILITY RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 3 OF 9) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Machinability Rating (d) C18200, C18400, C18500 Chromium copper C18700 leaded copper C18900 99.5 Cu(j) 99.0 Cu, 1.0 Pb 98.75 Cu, 0.75 Sn, 0.3 Si, 0.20 Mn F, W, R, S, T R R, W 20 85 20 C19000 Copper-nickel-phosphorus alloy C19100 Copper-nickel-phosphorus-tellurium alloy C19400 98.7 Cu, 1.1 Ni, 0.25 P 98.15 Cu, 1.1 Ni, 0.50 Te, 0.25 P 97.5 Cu, 2.4 Fe, 0.13 Zn, 0.03 P F, R, W R, F F 30 75 20 C19500 C21000 Gilding, 95% C22000 Commercial bronze, 90% C22600 Jewelry bronze, 87.5% 97.0 Cu, 1.5 Fe, 0.6 Sn, 0.10 P, 0.80 Co 95.0 Cu, 5.0 Zn 90.0 Cu, 10.0 Zn 87.5 Cu, 12.5 Zn F F, W F, R, W, T F, W 20 20 20 30 C23000 Red brass, 85% C24000 Low brass, 80% C26000 Cartridge brass, 70% C26800, C27000 Yellow brass 95.0 Cu, 15.0 Zn 80.0 Cu, 20.0 Zn 70.00 Cu, 30.0 Zn 65.0 Cu, 35.0 Zn F, W, T, P F, W F, R, W, T F, R, W 30 30 30 30 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.15 Mechanical L Page 707 Wednesday, December 31, 1969 17:00 Table 200. MACHINABILITY RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 4 OF 9) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Machinability Rating (d) C28000 Muntz metal C31400 Leaded commercial bronze C31600 Leaded commercial bronze, nickel-bearing C33000 Low-leaded brass tube 60.0 Cu, 40.0 Zn 89.0 Cu, 1.75 Pb, 9.25 Zn 89.0 Cu, 1.9 Pb, 1.0 Ni, 8.1 Zn 66.0 Cu, 0.5 Pb, 33.5 Zn F, R, T F, R F, R T 40 80 80 60 C33200 High-leaded brass tube C33500 Low-leaded brass C34000 Medium-leaded brass C34200 High-leaded brass 66.0 Cu, 1.6 Pb, 32.4 Zn 65.0 Cu, 0.5 Pb, 34.5 Zn 65.0 Cu, 1.0 Pb, 34.0 Zn 64.5 Cu, 2.0 Pb, 33.5 Zn T F F, R, W, S F, R 80 60 70 90 C34900 C35000 Medium-leaded brass C35300 High-leaded brass C35600 Extra-high-leaded brass 62.2 Cu, 0.35 Pb, 37.45 Zn 62.5 Cu, 1.1 Pb, 36.4 Zn 62.0 Cu, 1.8 Pb, 36.2 Zn 63.0 Cu, 2.5 Pb, 34.5 Zn R, W F, R F, R F 50 70 90 100 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.15 Mechanical L Page 708 Wednesday, December 31, 1969 17:00 Table 200. MACHINABILITY RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 5 OF 9) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Machinability Rating (d) C36000 Free-cutting brass C36500 to C36800 Leaded Muntz metal C37000 Free-cutting Muntz metal C37700 Forging brass 61.5 Cu, 3.0 Pb, 35.5 Zn 60.0 Cu(k), 0.6 Pb, 39.4 Zn 60.0 Cu, 1.0 Pb, 39.0 Zn 59.0 Cu, 2.0 Pb, 39.0 Zn F, R, S F T R, S 100 60 70 80 C38500 Architectural bronze C40500 C40800 C41100 57.0 Cu, 3.0 Pb, 40.0 Zn 95 Cu, 1 Sn, 4 Zn 95 Cu, 2 Sn, 3 Zn 91 Cu, 0.5 Sn, 8.5 Zn R, S F F F, W 90 20 20 20 C41300 C41500 C42200 C42500 90.0 Cu, 1.0 Sn, 9.0 Zn 91 Cu, 1.8 Sn, 7.2 Zn 87.5 Cu, 1.1 Sn, 11.4 Zn 88.5 Cu, 2.0 Sn, 9.5 Zn F, R, W F F F 2 30 30 30 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.15 Mechanical L Page 709 Wednesday, December 31, 1969 17:00 Table 200. MACHINABILITY RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 6 OF 9) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Machinability Rating (d) C43000 C43400 C43500 C44300, C44400, C44500 Inhibited admiralty 87.0 Cu, 2.2 Sn, 10.8 Zn 85.0 Cu, 0.7 Sn, 14.3 Zn 81.0 Cu, 0.9 Sn, 18.1 Zn 71.0 Cu, 28.0 Zn, 1.0 Sn F F F, T F, W, T 30 30 30 30 C46400 to C46700 Naval brass C48200 Naval brass, medium-leaded C48500 Leaded naval brass C50500 Phosphor bronze, 1.25% E 60.0 Cu, 39.25 Zn, 0.75 Sn 60.5 Cu, 0.7 Pb, 0.8 Sn, 38.0 Zn 60.0 Cu, 1.75 Pb, 37.5 Zn, 0.75 Sn 98.75 Cu, 1.25 Sn, trace P F, R, T, S F, R, S F, R, S F, W 30 50 70 20 C51000 Phosphor bronze, 5% A C51100 C52100 Phosphor bronze, 8% C C52400 Phosphor bronze, 10% D 95.0 Cu, 5.0 Sn, trace P 95.6 Cu, 4.2 Sn, 0.2 P 92.0 Cu, 8.0 Sn, trace P 90.0 Cu, 10.0 Sn, trace P F, R, W, T F F, R, W F, R, W 20 20 20 20 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.15 Mechanical L Page 710 Wednesday, December 31, 1969 17:00 Table 200. MACHINABILITY RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 7 OF 9) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Machinability Rating (d) C54400 Free-cutting phosphor bronze C60800 Aluminum bronze, 5% C61000 C61300 88.0 Cu, 4.0 Pb, 4.0 Zn, 4.0 Sn 95.0 Cu, 5.0 Al 92.0 Cu, 8.0 Al 92.65 Cu, 0.35 Sn, 7.0 Al F, R T R, W F, R, T, P, S 80 20 20 30 C61400 Aluminum bronze, D C61500 C61800 91.0 Cu, 7.0 Al, 2.0 Fe 90.0 Cu, 8.0 Al, 2.0 Ni 89.0 Cu, 1.0 Fe, 10.0 Al F, R, W, T, P, S F R 20 30 40 C62300 C62400 C62500 C63000 87.0 Cu, 10.0 Al, 3.0 Fe 86.0 Cu, 3.0 Fe, 11.0 Al 82.7 Cu, 4.3 Fe, 13.0 Al 82.0 Cu, 3.0 Fe, 10.0 Al, 5.0 Ni F, R F, R F, R F, R 50 50 20 30 C63200 C63600 C64200 82.0 Cu, 4.0 Fe, 9.0 Al, 5.0 Ni 95.5 Cu, 3.5 Al, 1.0 Si 91.2 Cu, 7.0 Al F, R R, W F, R 30 40 60 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.15 Mechanical L Page 711 Wednesday, December 31, 1969 17:00 Table 200. MACHINABILITY RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 8 OF 9) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Machinability Rating (d) C65100 Low-silicon bronze, B C65500 High-silicon bronze, A C66700 Manganese brass C67400 98.5 Cu, 1.5 Si 97.0 Cu, 3.0 Si 70.0 Cu, 28.8 Zn, 1.2 Mn 58.5 Cu, 36.5 Zn, 1.2 Al, 2.8 Mn, 1.0 Sn R, W, T F, R, W, T F, W F, R 30 30 30 25 C67500 Manganese bronze, A C68700 Aluninum brass, arsenical C69400 Silicon red brass 58.5 Cu, 1.4 Fe, 39.0 Zn, 1.0 Sn, 0.1 Mn 77.5 Cu, 20.5 Zn, 2.0 Al, 0.1 As 81.5 Cu, 14.5 Zn, 4.0 Si R, S T R 30 30 30 C70400 C70600 Copper nickel, 10% C71000 Copper nickel, 20% 92.4 Cu, 1.5 Fe, 5.5 Ni, 0.6 Mn 88.7 Cu, 1.3 Fe, 10.0 Ni 79.00 Cu, 21.0 Ni F, T F, T F, W, T 20 20 20 C71500 Copper nickel, 30% C71700 C72500 C73500 70.0 Cu, 30.0 Ni 67.8 Cu, 0.7 Fe, 31.0 Ni, 0.5 Be 88.20 Cu, 9.5 Ni, 2.3 Sn 72.0 Cu, 18.0 Ni , 10.0 Zn F, R, T F, R, W F, R, W, T F, R, W, T 20 20 20 20 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.15 Mechanical L Page 712 Wednesday, December 31, 1969 17:00 Table 200. MACHINABILITY RATING OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 9 OF 9) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Machinability Rating (d) C74500 Nickel silver, 65-10 C75200 Nickel silver, 65-18 C75400 Nickel silver, 65-15 C75700 Nickel silver, 65-12 65.0 Cu, 25.0 Zn, 10.0 Ni 65.0 Cu, 17.0 Zn, 18.0 Ni 65.0 Cu, 20.0 Zn, 15.0 Ni 65.0 Cu, 23.0 Zn, 12.0 Ni F, W F, R, W F F, W 20 20 20 20 C77000 Nickel silver, 55-18 C78200 Leaded nickel silver, 65-8-2 55.0 Cu, 27.0 Zn, 18.0 Ni 65.0 Cu, 2.0 Pb, 25.0 Zn, 8.0 Ni F, R, W F 30 60 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). (d) Based on 100% for C360000. (e) C10400, 8 oz/ton Ag, C10500, 10 oz/ton C10700, 25 oz/ton . (f) C11300, 8 oz/ton Ag, C11400,10 oz/ton, C11500, 16 oz/ton C11600, 25 oz/ton (g) C12000, 0.008 P; C12100, 0.008 P and 4 oz/ton Ag; (h) C12700, 8 oz/ton Ag; C12800,10 oz/ton; C12900,16 oz/ton; C13000, 25 oz/ton. (i) 0.98.30 oz/ton Ag. (j) C18200, 0.9 Cr, C18400, 0.9 Cr; C18500, 0.7 Cr (k) Rod, 61.0 Cu min. ©2001 CRC Press LLC 8.16 Mechanical Page 713 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 201. HARDNESS OF WROUGHT (SHEET 1 OF 5) ALUMINUM ALLOYS Alloy AA No. Temper Hardness (BHN) 1060 0 H12 H14 H16 H18 19 23 26 30 35 1100 0 H12 H14 H16 H18 23 28 32 38 44 2011 T3 T8 95 100 2014 0 T4 T6 45 105 135 2024 0 T3 T4, T351 T361 47 120 120 130 2218 T61 T71 T72 115 105 95 3003 Alclad 3003 0 H12 H14 H16 H18 28 35 40 47 55 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 713 8.16 Mechanical Page 714 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 201. HARDNESS OF WROUGHT (SHEET 2 OF 5) ALUMINUM ALLOYS Alloy AA No. Temper Hardness (BHN) 3004 Alclad 3004 0 H32 H34 H36 H38 T6 45 52 63 70 77 120 5005 0 H32 H34 H36 H38 28 36 41 46 51 5050 0 H32 H34 H36 H38 36 46 53 58 63 5052 0 H32 H34 H36 H38 47 60 68 73 77 5056 0 H18 H38 65 105 100 5154 0 H32 H34 58 67 73 H36 H38 H112 78 80 63 4032 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 714 CRC Handbook of Materials Science & Engineering 8.16 Mechanical Page 715 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 201. HARDNESS OF WROUGHT (SHEET 3 OF 5) ALUMINUM ALLOYS Alloy AA No. Temper Hardness (BHN) 5182 5252 0 H25 H28, H38 0 58 68 75 58 5254 H32 H34 H36 H38 H112 67 73 78 80 63 5454 0 H32 H34 62 73 81 H111 H112 H311 70 62 70 5456 H321, H116 90 5457 0 H25 H28, H38 32 48 55 5652 0 H32 H34 H36 H38 47 60 68 73 77 5657 H25 H28, H38 40 50 6005 6009 6010 T5 T4 T4 95 70 76 5254 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 715 8.16 Mechanical Page 716 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 201. HARDNESS OF WROUGHT (SHEET 4 OF 5) ALUMINUM ALLOYS Alloy AA No. Temper Hardness (BHN) 6061 0 T4, T451 T6, T651 30 65 95 6063 0 T1 T5 T6 25 42 60 73 T83 T831 T832 82 70 95 6066 0 T4, T451 T6, T651 43 90 120 6070 0 T4 T6 35 90 120 6151 6201 6205 T6 T6 T1 T5 71 90 65 95 6262 6351 6463 T9 T6 T1 T5 T6 120 95 42 60 74 7049 7072 T73 0 H12 H14 135 20 28 32 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 716 CRC Handbook of Materials Science & Engineering 8.16 Mechanical Page 717 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 201. HARDNESS OF WROUGHT (SHEET 5 OF 5) ALUMINUM ALLOYS Alloy AA No. Temper Hardness (BHN) 7075 0 T6,T651 60 150 7175 T66 T736 150 145 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 717 8.17 Mechanical L Page 718 Wednesday, December 31, 1969 17:00 Table 202. HARDNESS OF AT WROUGHT TITANIUM ALLOYS ROOM TEMPERATURE (SHEET 1 OF 2) Class Alloy Condition Hardness (HRC) Commercially Pure 99.5 Ti 99.2 Ti 99.1 Ti Annealed Annealed Annealed 120(a) 200(a) 225(a) 99.0 Ti 99.2Ti-0.2Pd Annealed Annealed 265(a) 200(a) Alpha Alloys Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2) Annealed Annealed 36 35 Near Alpha Alloys Ti-8Al-1Mo-1V Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Ti-6Al-2Sn-4Zr-2Mo Ti-6Al-2Nb-1Ta-1Mo Duplex Annealed Duplex Annealed Duplex Annealed As rolled 2.5 cm (1 in.) plate 35 36 32 30 Alpha-Beta Alloys Ti-6Al-4V Annealed Solution + age 36 41 (a) Hardness, HB Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.17 Mechanical L Page 719 Wednesday, December 31, 1969 17:00 Table 202. HARDNESS OF AT Class Beta Alloys WROUGHT TITANIUM ALLOYS ROOM TEMPERATURE (SHEET 2 OF 2) Alloy Condition Hardness (HRC) Ti-6Al-4V(low O2) Annealed 35 Ti-6Al-6V-2Sn Annealed Solution + age 38 42 Ti-7Al-4Mo Solution + age 38 Ti-13V-1Cr-3Al Ti-8Mo-8V-2Fe-3Al Ti-3Al-8V-6Cr-4Mo-4Zr Solution + age Solution + age Solution + age 40 40 42 (a) Hardness, HB Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.18 Mechanical Page 720 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 203. HARDNESS OF CERAMICS (SHEET 1 OF 6) Class Ceramic Hardness Borides Chromium Diboride (CrB2) micro 100g: 1800 kg/mm2 Vickers 50g: 1800 kg/mm2 Knoop 100g: 1700 kg/mm2 Hafnium Diboride (HfB2) (polycrystalline) Knoop 160g : 2400kg/mm at 24 oC (single crystal) Knoop 160g : 3800kg/mm at 24 oC Tantalum Diboride (TaB2) micro : 1700 kg/mm2 Knoop 30g: 2537 kg/mm2 Knoop 100g: 2615 ± 120 kg/mm2 Rockwell A : 89 Titanium Diboride (TiB2) Vickers 50g: 3400 kg/mm2 Knoop 30g: 3370 kg/mm2 Knoop 100g: 2710-3000 kg/mm2 Knoop 160g: 3500 kg/mm2 (single crystal) Knoop 100g: 3250±100 kg/mm2 Zirconium Diboride (ZrB2) Rockwell A: 87-89 Vickers 50g: 2200 kg/mm2 Knoop 100g: 1560 kg/mm2 Knoop 160g: 2100 kg/mm2 Carbides (single crystal) Knoop 160g: 2000 kg/mm2 Boron Carbide (B4C) Knoop 100g: 2800 kg/mm2 Knoop 1000g: 2230 kg/mm2 Vickers : 2400 kg/mm2 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 720 CRC Handbook of Materials Science & Engineering 8.18 Mechanical Page 721 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 203. HARDNESS OF CERAMICS (SHEET 2 OF 6) Class Ceramic Hardness Carbides (Con’t) Hafnium Monocarbide (HfC) Knoop : 1790-1870 kg/mm2 Vickers 50g : 2533-3202 kg/mm2 Silicon Carbide (SiC) Moh : 9.2 Vickers 25g : 3000-3500 kg/mm2 Knoop 100g : 2500-2550 kg/mm2 Knoop 100g : 2960 kg/mm2 (black) Knoop 100g : 2745 kg/mm2 (green) (cubic, CVD) Knoop or Vickers : 2853-4483 kg/mm2 Tantalum Monocarbide (TaC) Knoop 50g: 1800-1952 kg/mm2 Knoop 100g: 825 kg/mm2 Vickers 50g: 1800 kg/mm2 Rockwell A: 89 Brinell: 840 Titanium Monocarbide (TiC) Knoop 100g: 2470 kg/mm2 Knoop 1000g: 1905 kg/mm2 Vickers 50g: 2900-3200 kg/mm2 Vickers 100g: 2850-3390 kg/mm2 (98.6% density) (99.5% density) (100% density) micro 20g: 3200 kg/mm2 Rockwell A: 88-89 Rockwell A: 91-93.5 Rockwell A: 91-93.5 Trichromium Dicarbide (Cr3C2) Knoop or Vickers : 1019-1834 kg/mm2 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 721 8.18 Mechanical Page 722 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 203. HARDNESS OF CERAMICS (SHEET 3 OF 6) Class Ceramic Hardness Carbides (Con’t) Tungsten Monocarbide (WC) Knoop 100g: 1870-1880 kg/mm2 Vickers 50g: 2400 kg/mm2 (6% Co, 1-3µm grain size) (12% Co, 1-3µm grain size) (24% Co, 1-3µm grain size) (6% Co, 2-4µm grain size) (6% Co, 3-6µm grain size) Zirconium Monocarbide (ZrC) Vickers 100g: 1730 kg/mm2 Rockwell A: 92 Rockwell A: 81.4 ± 0.4 Rockwell A: 89.4 ± 0.5 Rockwell A: 86.9 ± 0.6 Rockwell A: 88.6 ± 0.5 Rockwell A: 87.3 ± 0.5 Knoop : 2138 kg/mm2 Vickers 50g : 2600 kg/mm2 Vickers 100g : 2836-3840 kg/mm2 micro : 2090 kg/mm2 Rockwell A: 92.5 Nitrides Aluminum Nitride (AlN) Mohs: 5-5.5 (thick film) (thin film) Knoop 100g: 1225-1230 kg/mm2 Rockwell 15N: 94.5 Rockwell 15N: 94.0 Boron Nitride (BN) Mohs: 2 (hexagonal) Titanium Mononitirde (TiN) Mohs: 8-10 Knoop 30g : 2160 kg/mm2 Knoop 100g : 1770 kg/mm2 Trisilicon tetranitride (Si3N4) Mohs: 9+ (α) Knoop or Vickers: 815-1936kg/mm2 Rockwell A: 99 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 722 CRC Handbook of Materials Science & Engineering 8.18 Mechanical Page 723 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 203. HARDNESS OF CERAMICS (SHEET 4 OF 6) Class Ceramic Hardness Nitrides (Con’t) Zirconium Mononitride (ZrN) Mohs: 8+ Knoop 30g : 1983 kg/mm2 Knoop 100g : 1510 kg/mm2 Aluminum Oxide (Al2O3) (single crystal) Oxides Mohs : 9 Knoop 100g : 2000-2050 kg/mm2 Vickers 20g : 2600 kg/mm2 Vickers 50g : 2720 kg/mm2 R45N : 78-90 Beryllium Oxide (BeO) Knoop 100g : 1300 kg/mm2 R45N : 64-67 Calcium Oxide (CaO) Knoop 100g : 560 kg/mm2 Dichromium Trioxide (Cr2O3) Knoop or Vickers : 2955 kg/mm2 Magnesium Oxide (MgO) Mohs : 5.5 Silicon Dioxide (SiO2) (parallel to optical axis) Knoop 100g : 710 kg/mm2 (normal to optical axis) Knoop 100g : 790 kg/mm2 (parallel to optical axis) Vickers 500g : 1260 kg/mm2 (normal to optical axis) Vickers 500g : 1103 kg/mm2 Vickers 500g : 1120 kg/mm2 (1010 face) 10 µm diagonal Vickers 500g :1120-1230 kg/mm2 (1011 face) 10 µm diagonal Vickers 500g : 1040-1130 kg/mm2 Vickers 500g : 1300 kg/mm2 (polished 1010 face) 10 µm diagonal Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 723 8.18 Mechanical Page 724 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 203. HARDNESS OF CERAMICS (SHEET 5 OF 6) Class Ceramic Hardness Oxides (Con’t) Thorium Dioxide (ThO2) Mohs : 6.5 Knoop 100g : 945 kg/mm2 Titanium Oxide (TiO2) Knoop or Vickers : 713-1121 kg/mm2 Uranium Dioxide (UO2) Mohs : 6-7 Knoop 100g : 600 kg/mm2 Zirconium Oxide (ZrO2) Mohs : 6.5 Knoop 100g : 1200 kg/mm2 (partially stabilized) (fully stabilized) Knoop or Vickers : 1019-1121 kg/mm2 Knoop or Vickers : 1019-1529 kg/mm2 Cordierite (2MgO 2Al2O3 5SiO2) Vickers : 835.6 kg/mm2 (glass) Vickers : 672.5 kg/mm2 Mullite (3Al2O3 2SiO2) Mohs: 7.5 Vickers : 1120 kg/mm2 R45N: 71 Silicides Sillimanite (Al2O3 SiO2) Mohs: 6-7 Zircon (SiO2 ZrO2) Mohs: 7.5 Molybdenum Disilicide (MoSi2) Knoop 100g : 1257 kg/mm2 Vickers 100g : 1290-1550 kg/mm2 Micro 50g : 1200 kg/mm2 Micro 100g : 1290 kg/mm2 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 724 CRC Handbook of Materials Science & Engineering 8.18 Mechanical Page 725 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 203. HARDNESS OF CERAMICS (SHEET 6 OF 6) Class Ceramic Hardness Silicides (Con’t) Tungsten Disilicide (WSi2) Knoop 100g : 1090 kg/mm2 Vickers 100g : 1090 kg/mm2 Vickers 10g : 1632 kg/mm2 Micro 50g : 1260 kg/mm2 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 725 8.18 Mechanical Page 726 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 204. MICROHARDNESS OF (SHEET 1 OF 2) Class Glass SiO2 SiO2 glass GLASS Microhardness (Kg/mm2) Knoop 500–679 SiO2–Na2O glass (25% mol Na2O) (30% mol Na2O) (35% mol Na2O) (40% mol Na2O) (45% mol Na2O) SiO2–B2O3 glass (60% mol B2O3) (65% mol B2O3) (70% mol B2O3) (75% mol B2O3) (80% mol B2O3) (85% mol B2O3) (90% mol B2O3) (95% mol B2O3) Vickers 423±4 413±3 414±4 394±2 378±2 Vickers 328–345 293–297 251–279 237–269–345 239–271 239–267 231–257 227–253 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 726 CRC Handbook of Materials Science & Engineering 8.18 Mechanical Page 727 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 204. MICROHARDNESS OF (SHEET 2 OF 2) Class Glass B2O3 B2O3 glass GLASS Microhardness (Kg/mm2) Vickers 194–205 B2O3–Na2O glass (5% mol Na2O) (10% mol Na2O) (15% mol Na2O) (20% mol Na2O) (25% mol Na2O) (30% mol Na2O) Vickers 276 292 297 380 460 503 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 727 8.18 Mechanical Page 728 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 205. HARDNESS OF POLYMERS (SHEET 1 OF 7) Class Polymer Hardness, (ASTM D785) (Rockwell) ABS Resins; Molded, Extruded Medium impact R108—115 High impact Very high impact Low temperature impact Heat resistant R95—113 R85—105 R75—95 R107—116 Acrylics; Cast, Molded, Extruded Cast Resin Sheets, Rods: General purpose, type I General purpose, type II Moldings: Grades 5, 6, 8 High impact grade M80—103 M38—45 Thermoset Carbonate Allyl diglycol carbonate M95—M100 (Barcol) Alkyds; Molded Putty (encapsulating) Rope (general purpose) 60—70 (Barcol) 70—75 (Barcol) Granular (high speed molding) Glass reinforced (heavy duty parts) 60—70 (Barcol) Cellulose Acetate; Molded, Extruded M80—90 M96—102 70—80 (Barcol) ASTM Grade: H4—1 H2—1 R103—120 R89—112 MH—1, MH—2 MS—1, MS—2 S2—1 R74—104 R54—96 R49—88 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 728 CRC Handbook of Materials Science & Engineering 8.18 Mechanical Page 729 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 205. HARDNESS OF POLYMERS (SHEET 2 OF 7) Class Polymer Cellulose Acetate Butyrate; Molded, Extruded ASTM Grade: H4 MH S2 Cellusose Acetate Propionate; Molded, Extruded Chlorinated Polymers Chlorinated polyether Chlorinated polyvinyl chloride Diallyl Phthalates; Molded Fluorocarbons; Molded,Extruded R114 R80—100 R23—42 ASTM Grade: 1 3 6 Polycarbonates Hardness, (ASTM D785) (Rockwell) 100—109 92—96 57 R100 R118 Polycarbonate Polycarbonate (40% glass fiber reinforced) M70 Orlon filled M108 Asbestos filled Glass fiber filled M107 M108 Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) R110—115 Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) 57—58D M97 52D R35—55 109—110R Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 729 8.18 Mechanical Page 730 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 205. HARDNESS OF POLYMERS (SHEET 3 OF 7) Class Polymer Hardness, (ASTM D785) (Rockwell) Epoxies; Cast, Molded, Reinforced Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded 106M 50-100M 75-80 (Barcol) General purpose glass cloth laminate High strength laminate Filament wound composite Epoxies—Molded, Extruded Melamines; Molded Nylons; Molded, Extruded 115—117M 70—72 (Barcol) 98-120M High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate 107—112 94—96D 75—80 Filler & type Unfilled Cellulose electrical E110 M115—125 Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers R118—R120 R93—121 R116 R72—Rll9 Type 11 Type 12 Rl00—R108 R106 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 730 CRC Handbook of Materials Science & Engineering 8.18 Mechanical Page 731 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 205. HARDNESS OF POLYMERS (SHEET 4 OF 7) Class Polymer Nylons; Molded, Extruded 6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion 6/10 Nylon General purpose Glass fiber (30%) reinforced Phenolics; Molded Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber Hardness, (ASTM D785) (Rockwell) R118—120, R108 E60—E80 M95—100 R118—108 R111 E40—50 E85—100 E85—95 E80—90 E50—70 Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos M105—115 ABS–Polycarbonate Alloy ABS–Polycarbonate Alloy R118 PVC–Acrylic Alloy PVC–Acrylic Alloy PVC–acrylic sheet PVC–acrylic injection molded R105 R104 Polymide Glass reinforced 114E M40—90 M57 M50 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 731 8.18 Mechanical Page 732 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 205. HARDNESS OF POLYMERS (SHEET 5 OF 7) Class Polymer Hardness, (ASTM D785) (Rockwell) Polyacetals Homopolymer: Standard 20% glass reinforced 22% TFE reinforced M94 M90 M78 Copolymer: Standard 25% glass reinforced High flow M80 M79 M80 Polyester; Thermoplastic Polyesters: Thermosets Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing R117 R118—M90 General purpose grade Glass reinforced grade Asbestos—filled grade R117 R117—M85 M85 Cast polyyester Rigid Flexible 35—50 (Barcol) 6—40 (Barcol) Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistant (asbestos) Sheet molding compounds, general purpose R119 60—80 (Barcol) 40—70 (Barcol) 45—60 (Barcol) Phenylene Oxides SE—100 SE—1 Glass fiber reinforced R115 R119 L106, L108 Phenylene oxides (Noryl) Standard Glass fiber reinforced R120 M84 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 732 CRC Handbook of Materials Science & Engineering 8.18 Mechanical Page 733 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 205. HARDNESS OF POLYMERS (SHEET 6 OF 7) Class Polymer Hardness, (ASTM D785) (Rockwell) Polyarylsulfone Polyarylsulfone M85—110 Polypropylene: General purpose High impact R80—R100 R28—95 Asbestos filled Glass reinforced Flame retardant R90—R110 R90—R115 R60—R105 Polyphenylene sulfide: Standard 40% glass reinforced R120—124 R123 Polyethylenes; Molded, Extruded Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200 C73, D50—52 (Shore) C73, D47—53 (Shore) D45 (Shore) Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9 D55 (Shore) D55—D56 (Shore) Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight D68—70 (Shore) D60—70 (Shore) D68—70 (Shore) D60—65 (Shore) EEA (ethylene ethyl acrylate) D35 (Shore) EVA (ethylene vinyl acetate) Ethylene butene Propylene—ethylene ionomer D36 (Shore) D65 (Shore) D60 (Shore) Olefin Copolymers; Molded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 733 8.18 Mechanical Page 734 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 205. HARDNESS OF POLYMERS (SHEET 7 OF 7) Class Polymer Hardness, (ASTM D785) (Rockwell) Polystyrenes; Molded Polystyrenes General purpose Medium impact High impact M72 M47—65 M3—43 Polyvinyl Chloride And Copolymers; Molded, Extruded Silicones; Molded, Laminated Ureas; Molded Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN M90—123 Rigid—normal impact R110—120 Vinylidene chloride M50—65 Polyvinyl Chloride And Copolymers; Molded, Extruded: Nonrigid—general Nonrigid—electrical Rigid—normal impact Vinylidene chloride (ASTM D676) Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate Alpha—cellulose filled (ASTM Type l) Woodflour filled M85—95 M75—85 A50—100 (Shore) A78—100 (Shore) D70—85 (Shore) >A95 (Shore) M87 M71—95 75 (Barcol) E94—97, M116—120 M116—120 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 734 CRC Handbook of Materials Science & Engineering 8.18 Mechanical Page 735 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 206. HARDNESS OF SI3N4 AND AL2O3 COMPOSITES Matrix Dispersed Phase Knoop Hardness (GPa) Si3N4+ 6 wt % Y2O3 None 13.4 ± 0.3 Si3N4+ 6 wt % Y2O3 TiC (Ti, W) C WC 15.21 ± 0.3 14.06 ± 0.3 14.4 ± 0.4 TaC HfC SiC 12.6 ± 0.2 14.1 ± 0.4 13.6 ± 0.2 TiC 17.2 ± 0.2 Al2O3 Containing 30 Vol % of Metal Carbide Dispersoid (2 µm average particle diameter) Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p169,(1994). ©2001 CRC Press LLC Shackelford & Alexander 735 8.18 Mechanical Page 736 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 207. COEFFICIENT OF STATIC FRICTION FOR POLYMERS Class Polymer Coefficient of Static Friction (Against Self) (Dimensionless) ABS–Polycarbonate Alloy ABS–Polycarbonate Alloy 0.2 Polycarbonates Polycarbonate 0.52 Nylons; Molded, Extruded Type 6 Polyacetals Cast 0.32 (dynamic ) 6/6 Nylon General purpose molding 0.04—0.13 Homopolymer: Standard 20% glass reinforced 22% TFE reinforced Copolymer: Standard 25% glass reinforced High flow Polyester; Thermoplastic 0.15 (against steel) 0.15 (against steel) 0.15 (against steel) (ASTM D1894) Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing Polyester; Thermoplastic 0.1—0.3 (against steel) 0.1—0.3 (against steel) 0.05—0.15 (against steel) Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing 0.17 0.16 0.16 0.13 (against steel) 0.14 (against steel) 0.14 (against steel) Phenylene oxides (Noryl) Standard 0.67 Polyarylsulfone Polyarylsulfone 0.1—0.3 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3 , CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 736 CRC Handbook of Materials Science & Engineering 8.18 Mechanical Page 737 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 208. ABRASION RESISTANCE OF (SHEET 1 OF 2) POLYMERS Class Polymer Abrasion Resistance (Taber, CS—17 wheel, ASTM D1044) (mg / 1000 cycles) Fluorocarbons; Molded,Extruded Polytrifluoro chloroethylene (PTFCE) 0.008 (g/cycle) Polyvinylidene— fluoride (PVDF) 0.0006—0.0012 (g/cycle) Polycarbonate Polycarbonate (40% glass fiber reinforced) 10 Polycarbonates Nylons; Molded, Extruded Type 6 General purpose Cast Nylons; Molded, Extruded 40 5 2.7 6/6 Nylon General purpose molding General purpose extrusion 3—8 3—5 PVC–Acrylic Alloy PVC–acrylic sheet PVC–acrylic injection molded 0.073 (CS—10 wheel) 0.0058 (CS—10 wheel) Polymides Unreinforced Unreinforced 2nd value Glass reinforced 0.08 0.004 20 Polyacetals Homopolymer: Standard 20% glass reinforced 22% TFE reinforced Copolymer: Standard 25% glass reinforced High flow 14—20 33 9 14 40 14 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 737 8.18 Mechanical Page 738 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 208. ABRASION RESISTANCE OF (SHEET 2 OF 2) POLYMERS Abrasion Resistance (Taber, CS—17 wheel, ASTM D1044) (mg / 1000 cycles) Class Polymer Polyester; Thermoplastic Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing 6.5 9—50 11 Phenylene Oxides SE—100 SE—1 Glass fiber reinforced 100 20 35 Phenylene oxides (Noryl) Standard 20 Polyarylsulfone Polyarylsulfone 40 Polystyrenes; Molded Glass fiber -30% reinforced 164 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 738 CRC Handbook of Materials Science & Engineering 8.18 Mechanical Page 739 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 209. FATIGUE STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 4) Alloy AA No. Temper Fatigue Strength (MPa) 1060 0 H12 H14 H16 H18 21 28 34 45 45 1100 0 H12 H14 H16 H18 34 41 48 62 62 1350 2011 H19 T3 T8 48 125 125 2014 0 T4 T6 90 140 125 2024 0 T3 T4, T351 T361 90 140 140 125 2036 2048 T4 125 220 2219 T62 T81, T851 T87 105 105 105 2618 3003 Alclad All 0 H12 125 48 55 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 739 8.18 Mechanical Page 740 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 209. FATIGUE STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 4) Alloy AA No. Temper Fatigue Strength (MPa) 3003 H14 H16 H18 62 69 69 3004 Alclad 0 H32 97 105 3004 H34 H36 H38 T6 105 110 110 110 5050 0 H32 H34 H36 H38 83 90 90 97 97 5052 0 H32 H34 H36 H38 110 115 125 130 140 5056 0 H18 H38 H321 140 150 150 160 5154 0 H32 H34 H36 H38 H112 115 125 130 140 145 115 5182 5254 0 0 140 115 4032 5083 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 740 CRC Handbook of Materials Science & Engineering 8.18 Mechanical Page 741 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 209. FATIGUE STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 4) Alloy AA No. Temper Fatigue Strength (MPa) 5254 H32 H34 H36 H38 H112 125 130 140 145 115 5652 0 H32 H34 H36 H38 110 115 125 130 140 6005 T1 T5 97 97 6009 6010 T4 T4 115 115 6061 0 T4, T451 T6, T651 62 97 97 6063 0 T1 T5 T6 55 62 69 69 6066 6070 T6, T651 0 T4 T6 110 62 90 97 6205 6262 6351 T5 T9 T6 105 90 90 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 741 8.18 Mechanical Page 742 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 209. FATIGUE STRENGTH OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 4) Alloy AA No. Temper Fatigue Strength (MPa) 6463 T1 T5 T6 69 69 69 7005 T53 T6,T63,T6351 140 125 7049 7050 7075 T73 T736 T6,T651 295 240 160 7175 T66 T736 T7351 160 160 220 7475 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 742 CRC Handbook of Materials Science & Engineering 8.18 Mechanical Page 743 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 210. REVERSED BENDING FATIGUE LIMIT OF GRAY CAST IRON BARS ASTM Class Reversed Bending Fatigue Limit (MPa) 20 25 30 69 79 97 35 40 50 60 110 128 148 169 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). ©2001 CRC Press LLC Shackelford & Alexander 743 8.18 Mechanical Page 744 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 211. IMPACT ENERGY OF (SHEET 1 OF 2) TOOL STEELS Type Condition Impact Energy (J) L2 Oil quenched from 855 ˚C and single tempered at: 205 ˚C 315 ˚C 425 ˚C 540 ˚C 650 ˚C 28(a) 19(a) 26(a) 39(a) 125(a) Annealed 93 HRB Oil quenched from 845 ˚C and single tempered at: 315 ˚C 425 ˚C 540 ˚C 650 ˚C 12(a) 18(a) 23(a) 81(a) L6 S1 S5 Oil quenched from 930 ˚C and single tempered at: 205 ˚C 315 ˚C 425 ˚C 540 ˚C 650 ˚C 249(b) 233(b) 203(b) 230(b) Oil quenched from 870 ˚C and single tempered at: 205 ˚C 315 ˚C 425 ˚C 540 ˚C 650 ˚C 206(b) 232(b) 243(b) 188(b) (a) Charpy V-notch. (b) Charpy unnotched. Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984). ©2001 CRC Press LLC 744 CRC Handbook of Materials Science & Engineering 8.18 Mechanical Page 745 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 211. IMPACT ENERGY OF (SHEET 2 OF 2) TOOL STEELS Type Condition Impact Energy (J) S7 Fan cooled from 940 ˚C and single tempered at: 205 ˚C 315 ˚C 425 ˚C 540 ˚C 650 ˚C 244(b) 309(b) 243(b) 324(b) 358(b) (a) Charpy V-notch. (b) Charpy unnotched. Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984). ©2001 CRC Press LLC Shackelford & Alexander 745 8.19 Mechanical L Page 746 Wednesday, December 31, 1969 17:00 Table 212. IMPACT STRENGTH OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE Class Alloy Condition Charpy Impact Strength (J) Commercially Pure 99.2Ti 99.1Ti 99.0 Ti 99.2Ti-0.2Pd Annealed Annealed Annealed Annealed 43 38 20 43 Alpha Alloys Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2) Annealed Annealed 26 27 Near alpha alloys Ti-8Al-1Mo-1V Ti-6Al-2Nb-1Ta-1Mo Duplex Annealed As rolled 2.5 cm (1 in.) plate 32 31 Alpha-Beta Alloys Ti-6Al-4V Ti-6Al-4V(low O2) Ti-6Al-6V-2Sn Ti-7Al-4Mo Annealed Annealed Annealed Solution + age 19 24 18 18 Beta Alloys Ti-13V-1Cr-3Al Ti-3Al-8V-6Cr-4Mo-4Zr Solution + age Solution + age 11 10 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.20 Mechanical Page 747 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 213. IMPACT STRENGTH OF (SHEET 1 OF 7) POLYMERS Class Polymer Impact Strength (Izod notched, ASTM D256) (ft—lb / in.) ABS Resins; Molded, Extruded Medium impact 2.0—4.0 High impact Very high impact Low temperature impact Heat resistant 3.0—5.0 5.0—7.5 6—10 2.0—4.0 Acrylics; Cast, Molded, Extruded Cast Resin Sheets, Rods: General purpose, type I General purpose, type II 0.4 0.4 Moldings: Grades 5, 6, 8 High impact grade 0.2—0.4 0.8—2.3 Thermoset Carbonate Allyl diglycol carbonate 0.2—0.4 Alkyds; Molded Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts) 0.25—0.35 2.2 Cellulose Acetate Butyrate; Molded, Extruded 0.30—0.35 8—12 ASTM Grade: H4 MH S2 3 4.4—6.9 7.5—10.0 To convert ft—lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 747 8.20 Mechanical Page 748 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 213. IMPACT STRENGTH OF (SHEET 2 OF 7) Class Polymer Cellusose Acetate Propionate; Molded, Extruded ASTM Grade: Chlorinated Polymers Polycarbonate Diallyl Phthalates; Molded Fluorocarbons; Molded,Extruded Epoxies; Cast, Molded, Reinforced POLYMERS Impact Strength (Izod notched, ASTM D256) (ft—lb / in.) 1 3 6 1.7—2.7 3.5—5.6 9.4 Chlorinated polyether Chlorinated polyvinyl chloride 0.4 (D758) Polycarbonate 12—16 6.3 Orlon filled 0.5—1.2 Dacron filled Asbestos filled Glass fiber filled 1.7—5.0 0.30—0.50 0.5—15.0 Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) 3.50—3.62 Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible 2.0—4.0 No break 3.0—10.3 0.2—0.5 0.3—0.2 To convert ft—lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 748 CRC Handbook of Materials Science & Engineering 8.20 Mechanical Page 749 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 213. IMPACT STRENGTH OF (SHEET 3 OF 7) POLYMERS Class Polymer Impact Strength (Izod notched, ASTM D256) (ft—lb / in.) Epoxies; Cast, Molded, Reinforced (Con’t) Molded 0.4—0.5 General purpose glass cloth laminate High strength laminate 12—15 Epoxies—Molded, Extruded 60—61 High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded 0.5 0.3—0.5 Epoxy novolacs Cast, rigid 13—17 Melamines; Molded Filler & type Cellulose electrical Glass fiber Alpha cellulose and mineral 0.27—0.36 0.5—12.0 0.30—0.35, 0.2(mineral) Nylons; Molded, Extruded Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers 0.6—1.2 2.2—3.4 1.2 1.5—19 Type 8 Type 11 Type 12 >16 3.3—3.6 1.2—4.2 6/6 Nylon General purpose molding Glass fiber reinforced General purpose extrusion (ASTM D638) 0.55—1.0,2.0 2.5—3.4 1.3 To convert ft—lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 749 8.20 Mechanical Page 750 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 213. IMPACT STRENGTH OF (SHEET 4 OF 7) Class Polymer Nylons; Molded, Extruded (Con’t) 6/10 Nylon Impact Strength (Izod notched, ASTM D256) (ft—lb / in.) General purpose Glass fiber (30%) reinforced Phenolics; Molded POLYMERS Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber 0.6–1.6 3.4 0.24—0.50 0.4—1.0 0.6—8.0 10—33 Arc resistant—mineral Rubber phenolic— woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos 0.30—0.45 ABS–Polycarbonate Alloy ABS–Polycarbonate Alloy 10 (ASTM D638) PVC–Acrylic Alloy PVC–acrylic sheet PVC–acrylic injection molded 15 Unreinforced Unreinforced 2nd value Glass reinforced 0.5 0.5 17 Polymides Polyacetals 0.34—1.0 2.0—2.3 0.3—0.4 15 (ASTM D638) Homopolymer: Standard 20% glass reinforced 22% TFE reinforced 1.4 0.8 0.7 To convert ft—lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 750 CRC Handbook of Materials Science & Engineering 8.20 Mechanical Page 751 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 213. IMPACT STRENGTH OF (SHEET 5 OF 7) POLYMERS Class Polymer Impact Strength (Izod notched, ASTM D256) (ft—lb / in.) Polyacetals (Con’t) Copolymer: Standard 25% glass reinforced High flow 1.3 1.8 1 Polyester; Thermoplastic Polyesters: Thermosets Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing 1.8 General purpose grade Glass reinforced grade Asbestos—filled grade 1 1 0.5 Cast polyyester Rigid Flexible 0.18—0.40 4 Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistsnt (asbestos) Sheet molding compounds, general purpose Phenylene Oxides Phenylene oxides (Noryl) 1.0—1.2 1.3—2.2 1—10 0.45—1.0 5—15 SE—100 SE—1 Glass fiber reinforced (ASTM D638) 5 5 2.3 Standard 1.2—1.3 Glass fiber reinforced 1.8—2.0 To convert ft—lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 751 8.20 Mechanical Page 752 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 213. IMPACT STRENGTH OF (SHEET 6 OF 7) POLYMERS Class Polymer Impact Strength (Izod notched, ASTM D256) (ft—lb / in.) Polyarylsulfone Polyarylsulfone 1.6—5.0 Polypropylene General purpose High impact 0.4—2.2 1.5—12 Asbestos filled Glass reinforced Flame retardant 0.5—1.5 0.5—2 2.2 Polyphenylene sulfide Standard 40% glass reinforced 0.3 1.09 Polyethylenes; Molded, Extruded Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight 4.0—14 0.4—6.0 1.2—2.5 >20 Ethylene butene 0.4 Propylene—ethylene Ionomer Polyallomer 1.1 9—14 1.5 Polystyrenes General purpose Medium impact High impact (ASTM D638) 0.2—0.4 0.5—1.2 0.8—1.8 Glass fiber —30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN 2.5 0.29—0.54 Olefin Copolymers; Molded Polystyrenes; Molded 1.35—3.0 To convert ft—lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 752 CRC Handbook of Materials Science & Engineering 8.20 Mechanical Page 753 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 213. IMPACT STRENGTH OF (SHEET 7 OF 7) POLYMERS Class Polymer Impact Strength (Izod notched, ASTM D256) (ft—lb / in.) Polyvinyl Chloride And Copolymers; Molded, Extruded Nonrigid—general Variable Nonrigid—electrical Rigid—normal impact Vinylidene chloride Variable 0.5—10 2—8 Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate 10 Silicones; Molded, Laminated Ureas; Molded Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) Woodflour filled 0.34 10—25 0.20—0.35 0.20—0.275 0.25—0.35 To convert ft—lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 753 8.20 Mechanical Page 754 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 214. IMPACT STRENGTH OF FIBERGLASS REINFORCED PLASTICS Class Material Glass fiber content (wt%) Glass fiber reinforced thermosets Sheet molding compound (SMC) 15 to 30 8 to 22 Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester 15 to 35 25 to 50 20 to 30 2 to 10 10 to 20 9 to 12 Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic 30 to 50 30 to 80 40 to 80 5 to 25 4 to 12 40 to 60 45 to 60 1 to 8 Glass–fiber–reinforced thermoplastics Izod Impact strength (ft • Ib/in. of notch) Acetal 20 to 40 0.8 to 2.8 Nylon Polycarbonate Polyethylene 6 to 60 20 to 40 10 to 40 0.8 to 4.5 1.5 to 3.5 1.2 to 4.0 Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene) 20 to 40 20 to 35 20 to 40 20 to 40 1 to 4 0.4 to 4.5 1.3 to 2.5 1 to 2.4 PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester 15 to 35 20 to 40 20 to 40 20 to 35 0.8 to 1.6 1.6 to 2.2 0.4 to 2.4 1.0 to 2.7 To convert (ft • Ib/in. of notch) to (J/cm of notch), multiply by 0.534 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994). ©2001 CRC Press LLC 754 CRC Handbook of Materials Science & Engineering 8.20 Mechanical Page 755 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 215. IMPACT STRENGTH OF CARBON - AND GLASS REINFORCED ENGINEERING THERMOPLASTICS (SHEET 1 OF 2) Class Resin Type Composition Impact Strength, Notched/Unnotched (J/cm) Amorphous Acrylonitrile-butadiene-styrene(ABS) 30% glass fiber 30% carbon fiber 0.75/3.5 0.59/2.4 Nylon 30% glass fiber 30% carbon fiber 0.64/3.7 0.64/4.3 Polycarbonate 30% glass fiber 30% carbon fiber 2.0/9.34 0.96/5.34 Polyetherimide 30% glass fiber 30% carbon fiber 0.75/5.60 0.75/6.67 Polyphenylene oxide (PPO) 30% glass fiber 30% carbon fiber 1.2/5.1 0.53/3.0 Polysulfone 30% glass fiber 30% carbon fiber 0.96/7.5 0.64/3.5 Styrene-maleic-anhydride (SMA) 30% glass fiber 0.59/2.4 Thermoplastic polyurethane 30% glass fiber 5.1/15 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994). ©2001 CRC Press LLC Shackelford & Alexander 755 8.20 Mechanical Page 756 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 215. IMPACT STRENGTH OF CARBON - AND GLASS REINFORCED ENGINEERING THERMOPLASTICS (SHEET 2 OF 2) Class Resin Type Composition Impact Strength, Notched/Unnotched (J/cm) Crystalline Acetal 30% glass fiber 20% carbon fiber 0.96/4.8 0.53/1.6 Nylon 66 30% glass fiber 30% carbon fiber 1.5/11 0.80/6.4 Polybutylene telphthalate (PBT) 30% glass fiber 30% carbon fiber 1.4/9.1 0.64/3.5 Polythylene terephthalate (PET) 30% glass fiber 1.0/— Polyphenylene sulfide (PPS) 30% glass fiber 30% carbon fiber 0.75/4.5 0.59/2.9 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994). ©2001 CRC Press LLC 756 CRC Handbook of Materials Science & Engineering 8.20 Mechanical Page 757 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 216. FRACTURE TOUGHNESS OF SI3N4 AND AL2O3 COMPOSITES Matrix Dispersed Phase Fracture Toughness (KIc), (MPa √m) Si3N4+ 6 wt % Y2O3 None 4.8 ± 0.3 Si3N4+ 6 wt % Y2O3 TiC (Ti, W) C WC 4.4 ± 0.5 3.5 ± 0.3 5.2 ± 0.4 TaC HfC SiC 4.6 ± 0.4 3.6 ± 0.2 3.65 ± 0.5 TiC 3.2 ± 0.4 Al2O3 Containing 30 Vol % of Metal Carbide Dispersoid (2 µm average particle diameter) Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p169,(1994). ©2001 CRC Press LLC Shackelford & Alexander 757 8.20 Mechanical Page 758 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 217. TENSILE MODULUS OF GRAY CAST IRONS ASTM Class Tensile Modulus (GPa) 20 25 30 35 66 to 97 79 to 102 90 to 113 100 to 119 40 50 60 110 to 138 130 to 157 141 to 162 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). Table 218. TENSION MODULUS OF TREATED DUCTILE IRONS Treatment Tension Modulus (MPa) 60-40-18 65-45-12 80-55-06 120 90-02 169 168 168 164 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984). ©2001 CRC Press LLC 758 CRC Handbook of Materials Science & Engineering 8.20 Mechanical Page 759 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 219. TENSILE MODULUS OF FIBERGLASS REINFORCED PLASTICS Tensile modulus (105 psi) Class Material Glass fiber content (wt%) Glass fiber reinforced thermosets Sheet molding compound (SMC) 15 to 30 16 to 25 Bulk molding compound(BMC) Preform/mat(compression molded) 15 to 35 25 to 50 16 to 25 9 to 20 Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic 30 to 50 30 to 80 40 to 80 5 to 25 8 to l8 40 to 90 40 to 60 26 to 29 Acetal 20 to 40 8 to 15 Nylon Polycarbonate Polyethylene 6 to 60 20 to 40 10 to 40 2 to 20 7.5 to 17 4 to 9 Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene) 20 to 40 20 to 35 20 to 40 20 to 40 4.5 to 9 8.4 to 12.1 15 6 to 10 PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester 15 to 35 20 to 40 20 to 40 20 to 35 10 to 18 9.5 to 15 9 to 18.5 13 to 15.5 Glass–fiber–reinforced thermoplastics To convert from psi to MPa, multiply by 145. Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994). ©2001 CRC Press LLC Shackelford & Alexander 759 8.20 Mechanical Page 760 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 220. TENSILE MODULUS OF GRAPHITE /ALUMINUM COMPOSITES Composite Fiber loading (vol %) Wire diameter (mm) Tensile Modulus (GPa) VS0054/201 Al GY70SE/201 Al 48 to 52 37 to 38 0.64 (2-strand) 0.71(8-strand) 345 207 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). Table 221. TENSILE MODULUS OF INVESTMENT CAST SILICON CARBIDE SCS–AL Fiber orientation Fiber vol (%) Tensile Modulus (GPa) Range of Measurement (%) 0°3/90°6/0°3 90°3/0°6/90°3 0° 33 33 34 122.0 124.8 172.4 107 110 100 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994). ©2001 CRC Press LLC 760 CRC Handbook of Materials Science & Engineering 8.20 Mechanical Page 761 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 222. TENSILE MODULUS OF SILICON CARBIDE SCS–2–AL Fiber orientation No. of plies Tensile Modulus (GPa) 0° 90° 6, 8, 12 6, 12,40 204.1 118.0 [0°/90°/0°/90°]s [02 °99°20°]s [902/0°/90°]s 8 8 8 136.5 180.0 96.5 ± 45° [0°±45°/0°]s+2s [0°±45°/90°]s 8, 12, 40 8, 16 8 94.5 146.2 127.0 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994). ©2001 CRC Press LLC Shackelford & Alexander 761 8.20 Mechanical Page 762 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 223. YOUNG’S MODULUS OF (SHEET 1 OF 7) Class Ceramic Borides Chromium Diboride (CrB2) CERAMICS Young’s Modulus (psi) Tantalum Diboride (TaB2) 30.6x106 37 x106 Titanium Diboride (TiB2) 53.2x106 (6.0 µm grain size, ρ=4.46g/cm3) 81.6x106 (3.5 µm grain size, ρ=4.37g/cm3, 75.0x106 0.8wt% Ni) (6.0 µm grain size, ρ=4.56g/cm3, 0.16wt% Ni) (12.0 µm grain size, ρ=4.66g/cm3, 9.6wt% Ni) Carbides Temperature 77.9x106 6.29x106 Zirconium Diboride (ZrB2) 49.8-63.8x106 (22.4% density,foam) 3.305x106 Boron Carbide (B4C) 42-65.2x106 room temp. (ρ = 11.94 g/cm3) 61.55x106 room temp. Silicon Carbide (SiC) (pressureless sintered) 43.9x106 room temp. room temp. room temp. room temp. Hafnium Monocarbide (HfC) (hot pressed) 63.8x106 (self bonded) 59.5x106 (cubic, CVD) 60.2-63.9x106 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 762 CRC Handbook of Materials Science & Engineering 8.20 Mechanical Page 763 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 223. YOUNG’S MODULUS OF (SHEET 2 OF 7) CERAMICS Class Ceramic Young’s Modulus (psi) Temperature Carbides (Con’t) (ρ = 3.128 g/cm3) 58.2x106 room temp. (ρ = 3.120 g/cm3) (hot pressed) 59.52x106 62.4-65.3x106 (sintered) 54.38-60.9x106 room temp. 20˚C 20˚C (reaction sintered) 50.75-54.38x106 55x106 53x106 51x106 55.1x106 20˚C 400˚C 800˚C 1200˚C (sintered) 43.5-58.0x10 (reaction sintered) 29-46.4x106 1400˚C 1400˚C 1400˚C Tantalum Monocarbide (TaC) 41.3-91.3x106 room temp. Titanium Monocarbide (TiC) 63.715x106 room temp. 1000˚C (hot pressed) 6 45-55x106 Trichromium Dicarbide (Cr3C2) 54.1x106 Tungsten Monocarbide (WC) 96.91-103.5x106 Zirconium Monocarbide (ZrC) 28.3-69.6x106 room temp. room temp. To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 763 8.20 Mechanical Page 764 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 223. YOUNG’S MODULUS OF (SHEET 3 OF 7) Class Ceramic Nitrides Aluminum Nitride (AlN) Boron Nitride (BN) parallel to c axis parallel to a axis CERAMICS Young’s Modulus (psi) Temperature 50x106 46x106 25˚C 1000˚C 40x106 1400˚C 4.91x106 3.47x106 23˚C 300˚C 0.51x106 700˚C 12.46x106 23˚C 8.79x106 300˚C 1.54x106 700˚C 1000˚C 1.65x106 Titanium Mononitride (TiN) 11.47-36.3x106 Trisilicon tetranitride (Si3N4) Oxides (hot pressed) 36.25-47.13x106 (sintered) 28.28-45.68x106 (reaction sintered) 14.5-31.9x106 20˚C 20˚C (hot pressed) 25.38-36.25x10 (reaction sintered) 17.4-29.0x106 20˚C 1400˚C 1400˚C Aluminum Oxide (Al2O3) 50-59.3x106 room temp. 50-57.275 x106 500˚C 800˚C 1000˚C 6 51.2 x106 45.5-50 x106 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 764 CRC Handbook of Materials Science & Engineering 8.20 Mechanical Page 765 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 223. YOUNG’S MODULUS OF (SHEET 4 OF 7) CERAMICS Class Ceramic Young’s Modulus (psi) Temperature Oxides (Con’t) Aluminum Oxide (Al2O3) (Con’t) 39.8-53.65 x106 1200˚C 32 x106 1250˚C 1400˚C 1500˚C 32.7 x106 25.6 x106 Beryllium Oxide (BeO) 42.8-45.5x106 40 x106 33 x106 20 x106 Cerium Dioxide (CeO2) 24.9x106 Dichromium Trioxide (Cr2O3) >14.9x106 Hafnium Dioxide (HfO2) 8.2x106 Magnesium Oxide (MgO) 30.5-36.3x106 4 x106 room temp. 600˚C 1000˚C 1200˚C 1300˚C 42.74x106 room temp. 29.5 x106 21 x106 10 x106 (ρ = 3.506 g/cm3) room temp. 800˚C 1000˚C 1145˚C To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 765 8.20 Mechanical Page 766 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 223. YOUNG’S MODULUS OF (SHEET 5 OF 7) CERAMICS Class Ceramic Young’s Modulus (psi) Temperature Oxides (Con’t) Thorium Dioxide (ThO2) 17.9-34.87x106 room temp. 18-18.5x106 800˚C 1000˚C 1200˚C 17.1x106 12.8x106 Titanium Oxide (TiO2) 41x106 Uranium Dioxide (UO2) 21x106 25x106 (ρ=10.37 g/cm3) 27.98x106 0-1000˚C 20˚C room temp. Zirconium Oxide (ZrO2) (partially stabilized) 29.7x106 (fully stabilized) 14.1-30.0x106 (plasma sprayed) 6.96x106 24.8-27x106 36x106 2x106 18.9x106 18.5-25x106 3.05x106 17.1-18.0x106 14.2x106 12.8x106 room temp. room temp. room temp. room temp. 20˚C 500˚C 800˚C 1000˚C 1100˚C 1200˚C 1400˚C 1500˚C To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 766 CRC Handbook of Materials Science & Engineering 8.20 Mechanical Page 767 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 223. YOUNG’S MODULUS OF (SHEET 6 OF 7) CERAMICS Young’s Modulus (psi) Temperature (stabilized, ρ=5.634 g/cm3) 19.96x106 room temp. Cordierite (2MgO 2Al2O3 5SiO2) 20.16x106 (glass) 13.92x106 Class Ceramic Oxides (Con’t) Uranium Dioxide (UO2) (Con’t) Mullite (3Al2O3 2SiO2) (ρ=2.779 g/cm3) 20.75x106 (ρ=2.77 g/cm3) 18.42x106 (ρ=2.77 g/cm3) 18.89x106 (ρ=2.77 g/cm3) 14.79x106 (ρ=2.77 g/cm3) 4.00x106 (full density) 33.35x106 Spinel (Al2O3 MgO) 34.5x106 34.4x106 34.5x106 34x106 32.9x106 30.4x106 25.0x106 20.1x106 (ρ=3.510 g/cm3) 38.23x106 room temp. 25˚C 400˚C 800˚C 1200˚C room temp. room temp. 200˚C 400˚C 600˚C 800˚C 1000˚C 1200˚C 1300˚C room temp. To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 767 8.20 Mechanical Page 768 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 223. YOUNG’S MODULUS OF (SHEET 7 OF 7) CERAMICS Class Ceramic Young’s Modulus (psi) Temperature Oxides (Con’t) Zircon (SiO2 ZrO2) 24x106 room temp. Silicide Molybdenum Disilicide (MoSi2) 39.3-56.36x106 room temp. To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 768 CRC Handbook of Materials Science & Engineering 8.20 Mechanical Page 769 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 224. YOUNG’S MODULUS OF (SHEET 1 OF 2) Class GLASS Young’s Modulus (GPa) Temperature 72.76–74.15 79.87 80.80 20˚C 998˚C (annealing point) 1096˚C (straining point) 64.4 62.0 room temp. room temp. (25% mol Na2O) 56.9 61.4 53.9 –196˚C room temp. 200–250˚C (30% mol Na2O) 60.5 room temp. (33% mol Na2O) (33% mol Na2O) 54.9 60.3 51.0 –196˚C room temp. 200–250˚C (35% mol Na2O) 60.2 room temp. (40% mol Na2O) (40% mol Na2O) 51.9 46.1 –196˚C 200–250˚C SiO2–PbO glass (24.6% mol PbO) (30.0% mol PbO) (35.7% mol PbO) 47.1 50.1 46.3 (38.4% mol PbO) (45.0% mol PbO) (50.0% mol PbO) 52.8 51.7 44.1 (55.0% mol PbO) (60.0% mol PbO) (65.0% mol PbO) 49.3 43.6 41.2 Glass SiO2 glass SiO2–Na2O glass (15% mol Na2O) (20% mol Na2O) (25% mol Na2O) (25% mol Na2O) (33% mol Na2O) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 769 8.20 Mechanical Page 770 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 224. YOUNG’S MODULUS OF (SHEET 2 OF 2) Class Glass SiO2–B2O3 glass (60% mol B2O3) (65% mol B2O3) (70% mol B2O3) (75% mol B2O3) (80% mol B2O3) (85% mol B2O3) Temperature 23.3 22.5 23.5 24.1 22.8 (95% mol B2O3) 21.2 20.9 21.2 B2O3 glass 17.2–17.7 room temp. 31.4 43.2 15˚C 15˚C 53.7 59.4 57.1 15˚C 15˚C 15˚C (90% mol B2O3) B2O3 glass Young’s Modulus (GPa) GLASS B2O3–Na2O glass (10% mol Na2O) (20% mol Na2O) (25% mol Na2O) (33.3% mol Na2O) (37% mol Na2O) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 770 CRC Handbook of Materials Science & Engineering 8.20 Mechanical Page 771 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 225. ELASTIC MODULUS OF WROUGHT STAINLESS STEELS * (SHEET 1 OF 2) Type UNS Designation Elastic Modulus (GPa) 201 205 301 302 S20100 S20500 S30100 S30200 197 197 193 193 302B 303 304 S30430 S30215 S30300 S30400 S30430 193 193 193 193 304N 305 308 309 S30451 S30500 S30800 S30900 196 193 193 200 310 314 316 316N S31000 S31400 S31600 S31651 200 200 193 196 317 317L 321 330 S31700 S31703 S32100 N08330 193 200 193 196 347 384 405 410 S34700 S38400 S40500 S41000 193 193 200 200 414 416 420 429 S41400 S41600 S42000 S42900 200 200 200 200 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p360, (1993). ©2001 CRC Press LLC Shackelford & Alexander 771 8.20 Mechanical Page 772 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 225. ELASTIC MODULUS OF WROUGHT STAINLESS STEELS * (SHEET 2 OF 2) Type UNS Designation Elastic Modulus (GPa) 430 430F 431 434 436 440A S43000 S43020 S43100 S43400 S43600 S44002 200 200 200 200 200 200 440C 444 446 PH 13–8 Mo S44004 S44400 S44600 S13800 200 200 200 203 15–5 PH 17–4 PH 17–7 PH S15500 S17400 S17700 196 196 204 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p360, (1993). * Annealed Condition. ©2001 CRC Press LLC 772 CRC Handbook of Materials Science & Engineering 8.20 Mechanical Page 773 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 226. MODULUS OF ELASTICITY OF WROUGHT TITANIUM ALLOYS Class Metal or Alloy Modulus of Elasticity (GPa) Commercially Pure 99.5 Ti 99.2 Ti 99.1 Ti 102.7 102.7 103.4 99.0Ti 99.2 Ti–0.2Pd 104.1 102.7 Alpha Alloys Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2) 110.3 110.3 Near Alpha Alloys Ti-8Al-1Mo-1V Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Ti-6Al-2Sn-4Zr-2Mo 124.1 113.8 113.8 Ti-5Al-5Sn-2Zr-2Mo-0.25Si Ti-6Al-2Nb-1Ta-1Mo 113.8 113.8 Ti-8Mn Ti-3Al-2.5V Ti-6Al-4V Ti-6Al-4V (low O2) 113.1 106.9 113.8 113.8 Ti-6Al-6V-2Sn Ti-7Al-4Mo Ti-6Al-2Sn-4Zr-6Mo 110.3 113.8 113.8 Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25Si Ti-10V-2Fe-3Al 122.0 111.7 Ti-13V-11Cr-3Al Ti-8Mo-8V-2Fe-3Al Ti-3Al-8V-6Cr-4Mo-4Zr Ti-11.5Mo-6Zr-4.5Sn 101.4 106.9 105.5 103.4 Alpha-Beta Alloys Beta Alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p511, (1993). ©2001 CRC Press LLC Shackelford & Alexander 773 8.21 Mechanical L Page 774 Wednesday, December 31, 1969 17:00 Table 227. MODULUS OF ELASTICITY IN TENSION FOR POLYMERS (SHEET 1 OF 6) Class Polymer Modulus of Elasticity in Tension, (ASTM D638) (l05 psi) ABS Resins; Molded, Extruded Medium impact High impact Very high impact Low temperature impact Heat resistant 3.3—4.0 2.6—3.2 2.0—3.1 2.0—3.1 3.5—4.2 Acrylics; Cast, Molded, Extruded Cast Resin Sheets, Rods: General purpose, type I General purpose, type II Moldings: Grades 5, 6, 8 High impact grade 3.5—5.0 2.3—3.3 Chlorinated polyether Chlorinated polyvinyl chloride 1.5 3.7 Chlorinated Polymers 3.5—4.5 4.0—5.0 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.21 Mechanical L Page 775 Wednesday, December 31, 1969 17:00 Table 227. MODULUS OF ELASTICITY IN TENSION FOR POLYMERS (SHEET 2 OF 6) Class Polymer Modulus of Elasticity in Tension, (ASTM D638) (l05 psi) Polycarbonates Polycarbonate Polycarbonate (40% glass fiber reinforced) 3.45 17 Diallyl Phthalates; Molded Orlon filled Asbestos filled 6 12 Fluorocarbons; Molded,Extruded Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) 1.9—3.0 0.38—0.65 1.5—2.0 0.5—0.7 1.7—2 Epoxies; Cast, Molded, Reinforced Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible 4.5 0.5—2.5 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.21 Mechanical L Page 776 Wednesday, December 31, 1969 17:00 Table 227. MODULUS OF ELASTICITY IN TENSION FOR POLYMERS (SHEET 3 OF 6) Class Polymer Modulus of Elasticity in Tension, (ASTM D638) (l05 psi) Epoxies; Cast, Molded, Reinforced (Con’t) Molded: General purpose glass cloth laminate High strength laminate Filament wound composite 33—36 57—58 72—64 Melamines; Molded High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate Epoxy novolacs Cast, rigid Glass cloth laminate 4.8—5.0 27.5 Unfilled Cellulose electrical 10—11 4—5 32—33 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.21 Mechanical L Page 777 Wednesday, December 31, 1969 17:00 Table 227. MODULUS OF ELASTICITY IN TENSION FOR POLYMERS (SHEET 4 OF 6) Class Polymer Modulus of Elasticity in Tension, (ASTM D638) (l05 psi) Phenolics; Molded Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber 8—13 8—12 9—14 30—33 Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos 10—30 4—6 3.5—6 5—9 Cast polyyester Rigid Flexible 1.5—6.5 0.001—0.10 Polyesters: Thermosets To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.21 Mechanical L Page 778 Wednesday, December 31, 1969 17:00 Table 227. MODULUS OF ELASTICITY IN TENSION FOR POLYMERS (SHEET 5 OF 6) Class Polymer Modulus of Elasticity in Tension, (ASTM D638) (l05 psi) Polyesters: Thermosets (Con’t) Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistsnt (asbestos) Sheet molding compounds, general purpose 16—20 12—15 15—20 Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 0.21—0.27 0.20—0.24 Polystyrenes General purpose Medium impact High impact Glass fiber -30% reinforced D638 4.6—5.0 2.6—4.7 1.50—3.80 12.1 Polyethylenes; Molded, Extruded Polystyrenes; Molded To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.21 Mechanical L Page 779 Wednesday, December 31, 1969 17:00 Table 227. MODULUS OF ELASTICITY IN TENSION FOR POLYMERS (SHEET 6 OF 6) Class Polymer Modulus of Elasticity in Tension, (ASTM D638) (l05 psi) SAN Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN 4.0—5.2 17.5 Polyvinyl Chloride And Copolymers; ASTM D412 Molded, Extruded Nonrigid—general Nonrigid—electrical Rigid—normal impact Vinylidene chloride 0.004—0.03 0.01—0.03 3 5—4.0 0.7—2.0 Woven glass fabric/ silicone laminate ASTM D651 28 Alpha—cellulose filled (ASTM Type l) Woodflour filled 13—16 11—14 Silicones; Molded, Laminated Ureas; Molded To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.21 Mechanical L Page 780 Wednesday, December 31, 1969 17:00 Table 228. MODULUS OF ELASTICITY OF 55MSI GRAPHITE /6061 ALUMINUM COMPOSITES Material Reinforcement content (vol % ) Fiber orientation Modulus of Elasticity (GPa) 55MSI graphite/6061 aluminum composites 55MSI graphite/6061 aluminum composites 34 34 0° 90° 182.2±6.6 33 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). ©2001 CRC Press LLC 8.21 Mechanical L Page 781 Wednesday, December 31, 1969 17:00 Table 229. MODULUS OF ELASTICITY OF GRAPHITE /MAGNESIUM CASTINGS * Fiber Type Fiber content Fiber orientation P75 40% plus 9% 40% ±16° 90° ± 16° 40% 30% 10% 20% 20% 0° 0° plus 90° 0° plus 90° P100 P55 Modulus of Elasticity, 0° (GPa) Modulus of Elasticity,90° (GPa) 179 86 Hollow cylinder Filament wound Filament wound Filament wound 228 30 Plate Plate Prepreg Prepreg 159 83 21 34 Plate Prepreg 90 90 Casting Hollow cylinder Fiber Preform Method Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). * Pitch-base fibers ©2001 CRC Press LLC 8.22 Mechanical Page 782 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 230. MODULUS OF ELASTICITY OF GRAPHITE /ALUMINUM COMPOSITES Thornel Fiber Longitudinal Modulus of Elasticity (GPa) Transverse Modulus of Elasticity (GPa) P55 P75 P100 207 to 221 276 to 296 379 to 414 28 to 41 28 to 41 28 to 41 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). Table 231. MODULUS OF ELASTICITY OF GRAPHITE FIBER REINFORCED METALS Composite Fiber content (vol%) Modulus of Elasticity (106psi) Graphite(a)/lead Graphite(b)/lead Graphite(a)/zinc Graphite(a)/magnesium 41 35 35 42 29.0 17.4 16.9 26.6 (a) Thornel 75 fiber (b) Courtaulds HM fiber To convert from psi to MPa, multiply by 145. Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). ©2001 CRC Press LLC 782 CRC Handbook of Materials Science & Engineering 8.22 Mechanical Page 783 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 232. MODULUS OF ELASTICITY OF SIC-WHISKER –REINFORCED ALUMINUM ALLOY Modulus of Elasticity Fiber Content (vol %) (GPa) Standard Deviation Range of Measurement 0 12 16 20 71.9 95.3 90.0 111.0 4.5 1.6 3.7 5.0 13 6 9 13 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p150,(1994). ©2001 CRC Press LLC Shackelford & Alexander 783 8.22 Mechanical Page 784 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 233. MODULUS OF ELASTICITY OF POLYCRYSTALLINE –ALUMINA–REINFORCED ALUMINUM ALLOY Modulus of Elasticity Fiber Content (vol %) (GPa) Standard Deviation Range of Measurement 0 5 12 20 71.9 78.4 83.0 95.2 4.5 2.3 7.8 2.7 13 6 21 7 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p154,(1994). Table 234. MODULUS OF ELASTICITY OF BORON/ALUMINUM COMPOSITES * Matrix Fiber Orientation Modulus of Elasticity (GPa) Al-6061 0° 90° 207 138 Al-2024 0° 90° 207 145 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157,(1994). * These samples contain 48% Avco (142 µm) boron. Longitudinal tensile specimens are 152 mm by 7.9 mm by 6 ply. Transverse tensile bars are 152 mm by 12.7 mm by 6 ply. ©2001 CRC Press LLC 784 CRC Handbook of Materials Science & Engineering 8.22 Mechanical Page 785 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 235. COMPRESSION MODULUS OF TREATED DUCTILE IRONS Treatment Compression Modulus (MPa) 60-40-18 65-45-12 80-55-06 120 90-02 164 163 165 164 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984). Table 236. MODULUS OF ELASTICITY IN COMPRESSION FOR POLYMERS Polymer Modulus of Elasticity in Compression, (ASTM D638) (l05 psi) Fluorocarbons; Molded,Extruded Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) 1.8 0 70—0.90 1.5—2.0 0.6—0.8 1.7—2 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 785 8.22 Mechanical Page 786 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 237. BULK Glass MODULUS OF GLASS Bulk Modulus (GPa) Temperature SiO2 glass SiO2-Na2O glass (15% mol Na2O) (20% mol Na2O) (25% mol Na2O) 31.01-37.62 33.8 34.8 36.5 room temp. room temp. room temp. (30% mol Na2O) (35% mol Na2O) 38.2 40.1 39.8 room temp. room temp. room temp. SiO2-PbO glass (24.6% mol PbO) (30.0% mol PbO) (35.7% mol PbO) 33.9 25.6 31.1 (38.4% mol PbO) (45.0% mol PbO) (50.0% mol PbO) 25.1 30.6 30.5 (55.0% mol PbO) (60.0% mol PbO) (65.0% mol PbO) 29.5 33.1 31.6 (33% mol Na2O) B2O3-Na2O glass (10% mol Na2O) (20% mol Na2O) (25% mol Na2O) (33.3% mol Na2O) (37% mol Na2O) 23.2 33.6 15˚C 15˚C 39.2 44.4 42.1 15˚C 15˚C 15˚C Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 786 CRC Handbook of Materials Science & Engineering 8.22 Mechanical Page 787 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 238. SHEAR MODULUS OF (SHEET 1 OF 2) GLASS Shear Modulus (GPa) Temperature SiO2 glass 31.38 33.57 34.15 20˚C 998˚C (annealing point) 1096˚C (straining point) (5% mol Na2O) 27.2 27.4 27.6 27.2 –100˚C 0˚C 80˚C 160˚C 26.9 27.2 –100—160˚C room temp. 25.8 25.0 24.8 24.2 –100˚C 0˚C 80˚C 160˚C 25.8 25.2 room temp. room temp. 24.5 24.2 24.1 room temp. room temp. room temp. Class Glass SiO2 glass SiO2–Na2O glass (5% mol Na2O) (5% mol Na2O) (5% mol Na2O) (7.5% mol Na2O) (15% mol Na2O) (18% mol Na2O) (18% mol Na2O) (18% mol Na2O) (18% mol Na2O) (20% mol Na2O) (25% mol Na2O) (30% mol Na2O) (33% mol Na2O) (35% mol Na2O) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 787 8.22 Mechanical Page 788 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 238. SHEAR MODULUS OF (SHEET 2 OF 2) Class Glass Shear Modulus (GPa) SiO2–PbO glass (24.6% mol PbO) (30.0% mol PbO) (35.7% mol PbO) 20.4 21.4 18.5 (38.4% mol PbO) (45.0% mol PbO) (50.0% mol PbO) 23.0 21.2 17.5 (55.0% mol PbO) (60.0% mol PbO) (65.0% mol PbO) 20.2 17.0 16.1 B2O3 glass B2O3–Na2O glass (10% mol Na2O) (20% mol Na2O) (25% mol Na2O) (33.3% mol Na2O) (37% mol Na2O) GLASS Temperature 6.55 6.29 6.07 5.78 room temp. 250˚C 260˚C 270˚C 5.49 5.15 4.75 280˚C 290˚C 300˚C 12.3 16.8 15˚C 15˚C 21.1 23.2 22.4 15˚C 15˚C 15˚C Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 788 CRC Handbook of Materials Science & Engineering 8.22 Mechanical Page 789 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 239. TORSIONAL MODULUS OF GRAY CAST IRONS ASTM Class Torsional Modulus (GPa) 20 25 30 27 to 39 32 to 41 36 to 45 35 40 50 60 40 to 48 44 to 54 50 to 55 54 to 59 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). Table 240. TORSION MODULUS OF TREATED DUCTILE IRONS Treatment Torsion Modulus (MPa) 60-40-18 65-45-12 80-55-06 120 90-02 63 64 62 63.4 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984). ©2001 CRC Press LLC Shackelford & Alexander 789 8.23 Mechanical L Page 790 Wednesday, December 31, 1969 17:00 Table 241. MODULUS OF FOR ELASTICITY IN FLEXURE POLYMERS (SHEET 1 OF 13) Polymer Class Polymer Modulus of Elasticity in Flexure (ASTM D790) (105 psi) ABS Resins; Molded, Extruded Medium impact High impact Very high impact 3.5—4.0 2.5—3.2 2.0—3.2 Low temperature impact Heat resistant 2.0—3.2 3.5—4.2 Cast Resin Sheets, Rods: General purpose, type I General purpose, type II 3.5—4.5 4.0—5.0 Moldings: Grades 5, 6, 8 High impact grade 3.5—5.0 2.7—3.6 Acrylics; Cast, Molded, Extruded To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.23 Mechanical L Page 791 Wednesday, December 31, 1969 17:00 Table 241. MODULUS OF FOR ELASTICITY IN FLEXURE POLYMERS (SHEET 2 OF 13) Polymer Class Polymer Modulus of Elasticity in Flexure (ASTM D790) (105 psi) Thermoset Carbonate Allyl diglycol carbonate 2.5—3.3 Alkyds; Molded Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts) 22—27 22—27 22—28 Cellulose Acetate; Molded, Extruded ASTM Grade: H4—1 H2—1 (ASTM D747) 2.0—2.55 1.50—2.35 MH—1, MH—2 MS—1, MS—2 S2—1 1.50—2.15 1.25—1.90 1.05—1.65 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.23 Mechanical L Page 792 Wednesday, December 31, 1969 17:00 Table 241. MODULUS OF FOR Polymer Class ELASTICITY IN FLEXURE POLYMERS (SHEET 3 OF 13) Polymer Cellulose Acetate Butyrate; Molded, Extruded Modulus of Elasticity in Flexure (ASTM D790) (105 psi) (ASTM D747) ASTM Grade: H4 MH S2 1.8 1.20—1.40 0.70—0.90 ASTM Grade: 1 3 6 1.7—1.8 1.45—1.55 1.1 Chlorinated Polymers Chlorinated polyether Chlorinated polyvinyl chloride 1.3 (0.1% offset) 3.85 Polycarbonates Polycarbonate Polycarbonate (40% glass fiber reinforced) 3.4 12 Cellusose Acetate Propionate; Molded, Extruded To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.23 Mechanical L Page 793 Wednesday, December 31, 1969 17:00 Table 241. MODULUS OF FOR ELASTICITY IN FLEXURE POLYMERS (SHEET 4 OF 13) Polymer Class Polymer Modulus of Elasticity in Flexure (ASTM D790) (105 psi) Fluorocarbons; Molded,Extruded Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) 2.0—2.5 0.6—1.1 4.64 Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) 0.8 1.75—2.0 Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded 4.5—5.4 0.36—3.9 15—25 General purpose glass cloth laminate High strength laminate Filament wound composite 36—39 53—55 69—75 Epoxies; Cast, Molded, Reinforced To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.23 Mechanical L Page 794 Wednesday, December 31, 1969 17:00 Table 241. MODULUS OF FOR ELASTICITY IN FLEXURE POLYMERS (SHEET 5 OF 13) Modulus of Elasticity in Flexure (ASTM D790) (105 psi) Polymer Class Polymer Epoxies—Molded, Extruded High performance resins (cycloaliphatic diepoxides) Cast, rigid Glass cloth laminate Epoxy novolacs Cast, rigid Glass cloth laminate 4.4—4.8 32—35 Filler & type Unfilled Cellulose electrical Glass fiber 10—13 10—13 24 Melamines; Molded 4—5 28—31 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.23 Mechanical L Page 795 Wednesday, December 31, 1969 17:00 Table 241. MODULUS OF FOR ELASTICITY IN FLEXURE POLYMERS (SHEET 6 OF 13) Polymer Class Polymer Modulus of Elasticity in Flexure (ASTM D790) (105 psi) Nylons; Molded, Extruded Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers 1.4—3.9 1.0—1.4 5.05 0.92—3.2 Type 8 Type 11 0.4 1.51 6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion 1.75–4.5 10—18 11—13 1.75—4.1 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.23 Mechanical L Page 796 Wednesday, December 31, 1969 17:00 Table 241. MODULUS OF FOR ELASTICITY IN FLEXURE POLYMERS (SHEET 7 OF 13) Polymer Class Polymer Modulus of Elasticity in Flexure (ASTM D790) (105 psi) Nylons; Molded, Extruded (Con’t) 6/10 Nylon General purpose Glass fiber (30%) reinforced 1.6–2.8 8.5 Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber 8—12 8—12 9—13 30—33 Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos 10—30 4—6 3.5 5 ABS–Polycarbonate Alloy 4 Phenolics; Molded ABS–Polycarbonate Alloy To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.23 Mechanical L Page 797 Wednesday, December 31, 1969 17:00 Table 241. MODULUS OF FOR ELASTICITY IN FLEXURE POLYMERS (SHEET 8 OF 13) Polymer Class Polymer Modulus of Elasticity in Flexure (ASTM D790) (105 psi) PVC–Acrylic Alloy PVC–acrylic sheet PVC–acrylic injection molded 4 3 Polymides Unreinforced Unreinforced 2nd value Glass reinforced 7 5 38.4 Polyacetals Homopolymer: Standard 20% glass reinforced 22% TFE reinforced 4.1 8.8 4 Copolymer: Standard 25% glass reinforced High flow 3.75 11 3.75 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.23 Mechanical L Page 798 Wednesday, December 31, 1969 17:00 Table 241. MODULUS OF FOR ELASTICITY IN FLEXURE POLYMERS (SHEET 9 OF 13) Polymer Class Polymer Modulus of Elasticity in Flexure (ASTM D790) (105 psi) Polyester; Thermoplastic Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing 3.4 12—15 12 General purpose grade Glass reinforced grade Asbestos—filled grade 33 87 90 Cast polyyester Rigid Flexible 1—9 0.001—0.39 Reinforced polyester moldings High strength (glass fibers) Sheet molding compounds, general purpose 15—25 15—18 Polyesters: Thermosets To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.23 Mechanical L Page 799 Wednesday, December 31, 1969 17:00 Table 241. MODULUS OF FOR ELASTICITY IN FLEXURE POLYMERS (SHEET 10 OF 13) Polymer Class Polymer Modulus of Elasticity in Flexure (ASTM D790) (105 psi) Phenylene Oxides SE—100 SE—1 Glass fiber reinforced 3.6 3.6 7.4—10.4 Phenylene oxides (Noryl) Standard Glass fiber reinforced 3.9 12, 15.5 Polyarylsulfone 4 General purpose High impact 1.7—2.5 1.0—2.0 Asbestos filled Glass reinforced Flame retardant 3.4—6.5 4—8.2 1.9—6.1 Polypropylene: To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.23 Mechanical L Page 800 Wednesday, December 31, 1969 17:00 Table 241. MODULUS OF FOR ELASTICITY IN FLEXURE POLYMERS (SHEET 11 OF 13) Polymer Class Polymer Modulus of Elasticity in Flexure (ASTM D790) (105 psi) Polyphenylene sulfide: Standard 40% glass reinforced 5.5—6.0 17—22 Polyethylenes; Molded, Extruded (ASTM D747) Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200 0.13—0.27 0.12—0.3 0.1 Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9 0.35—0.5 0.35—0.5 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.23 Mechanical L Page 801 Wednesday, December 31, 1969 17:00 Table 241. MODULUS OF FOR ELASTICITY IN FLEXURE POLYMERS (SHEET 12 OF 13) Polymer Class Polymer Modulus of Elasticity in Flexure (ASTM D790) (105 psi) Polyethylenes; Molded, Extruded (Con’t) Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight 1.3—1.5 0.9—0.25 1.5 0.75 Olefin Copolymers; Molded Ethylene butene Propylene—ethylene Polyallomer 165 (psi) 140 (psi) 0.7—1.3 Polystyrenes; Molded Polystyrenes: General purpose Medium impact High impact Glass fiber -30% reinforced 4—5 3.5—5.0 2.3—4.0 12 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.23 Mechanical L Page 802 Wednesday, December 31, 1969 17:00 Table 241. MODULUS OF FOR ELASTICITY IN FLEXURE POLYMERS (SHEET 13 OF 13) Polymer Class Polymer Modulus of Elasticity in Flexure (ASTM D790) (105 psi) Styrene acrylonitrile (SAN): Glass fiber (30%) reinforced SAN 14.5 Polyvinyl Chloride And Copolymers; Molded, Extruded Rigid—normal impact 3.8—5.4 Silicones; Molded, Laminated Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate 25 14—17 26—32 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.24 Mechanical Page 803 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 242. FLEXURAL MODULUS OF FIBERGLASS REINFORCED PLASTICS Flexural modulus (105 psi) Class Material Glass fiber content (wt%) Glass fiber reinforced thermosets Sheet molding compound (SMC) 15 to 30 14 to 20 Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester 15 to 35 25 to 50 20 to 30 14 to 20 13 to 18 13 to 19 Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic 30 to 50 30 to 80 40 to 80 5 to 25 10 to 12 50 to 70 40 to 60 30 Acetal 20 to 40 8 to 13 Nylon Polycarbonate Polyethylene 6 to 60 20 to 40 10 to 40 2 to 28 7.5 to 15 2.1 to 6 Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene) 20 to 40 20 to 35 20 to 40 20 to 40 3.5 to 8.2 8 to 12 8 to 15 9.2 to 15 PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester 15 to 35 20 to 40 20 to 40 20 to 35 9 to 16 8 to 15 8.0 to 18 8.7 to 15 Glass–fiber–reinforced thermoplastics To convert from psi to MPa, multiply by 145. Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994). ©2001 CRC Press LLC Shackelford & Alexander 803 8.24 Mechanical Page 804 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 243. FLEXURAL MODULUS OF CARBON - AND GLASS REINFORCED ENGINEERING THERMOPLASTICS (SHEET 1 OF 2) Class Resin Type Composition Flexural Modulus (GPa) Amorphous Acrylonitrile-butadiene-styrene(ABS) 30% glass fiber 30% carbon fiber 7.6 12.4 Nylon 30% glass fiber 30% carbon fiber 7.9 15.2 Polycarbonate 30% glass fiber 30% carbon fiber 8.3 13.1 Polyetherimide 30% glass fiber 30% carbon fiber 8.6 17.2 Polyphenylene oxide (PPO) 30% glass fiber 30% carbon fiber 9.0 11.7 Polysulfone 30% glass fiber 30% carbon fiber 8.3 14.5 Styrene-maleic-anhydride (SMA) 30% glass fiber 9.0 Thermoplastic polyurethane 30% glass fiber 1.3 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994). ©2001 CRC Press LLC 804 CRC Handbook of Materials Science & Engineering 8.24 Mechanical Page 805 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 243. FLEXURAL MODULUS OF CARBON - AND GLASS REINFORCED ENGINEERING THERMOPLASTICS (SHEET 2 OF 2) Class Resin Type Composition Flexural Modulus (GPa) Crystalline Acetal 30% glass fiber 20% carbon fiber 9.7 9.3 Nylon 66 30% glass fiber 30% carbon fiber 9.0 20.0 Polybutylene telphthalate (PBT) 30% glass fiber 30% carbon fiber 9.7 15.9 Polythylene terephthalate (PET) 30% glass fiber 9.0 Polyphenylene sulfide (PPS) 30% glass fiber 30% carbon fiber 11.0 16.9 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p111–112, (1994). ©2001 CRC Press LLC Shackelford & Alexander 805 8.25 Mechanical L Page 806 Wednesday, December 31, 1969 17:00 Table 244. MODULUS OF RUPTURE FOR (SHEET 1 OF 10) CERAMICS Class Ceramic Modulus of Rupture (psi) Borides Titanium Diboride (TiB2) 19x103 (98% dense) 5.37x103 (6.0 µm grain size, ρ=4.46g/cm3) 6.2x103 (3.5 µm grain size, ρ=4.37g/cm3, 0.8wt% Ni) 5.7x103 11.0x103 6.29x103 (6.0 µm grain size, ρ=4.56g/cm3, 0.16wt% Ni) (12.0 µm grain size, ρ=4.66g/cm3, 9.6wt% Ni) Carbides Temperature Hafnium Monocarbide (HfC) (ρ = 11.9 g/cm3) (ρ = 11.9 g/cm3) (ρ = 11.9 g/cm3) 34.67x103 12.64x103 4.78x103 room temp. 2000 oC 2200 oC To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 8.25 Mechanical L Page 807 Wednesday, December 31, 1969 17:00 Table 244. MODULUS OF RUPTURE FOR (SHEET 2 OF 10) CERAMICS Class Ceramic Modulus of Rupture (psi) Temperature Carbides (Con’t) Silicon Carbide (SiC) 27x103 room temp. 25x103 1300 oC 1400 oC 1800 oC 11x103 15x103 (with 1 wt% Be addictive) 58x103 (with 1wt% B addictive) 42x103 (with 1wt% Al addictive) 136x103 Titanium Monocarbide (TiC) (ρ = 4.85 g/cm3) (ρ = 4.85 g/cm3) 32.67x103 13.6x103 room temp. 2000oC To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 8.25 Mechanical L Page 808 Wednesday, December 31, 1969 17:00 Table 244. MODULUS OF RUPTURE FOR (SHEET 3 OF 10) CERAMICS Class Ceramic Modulus of Rupture (psi) Temperature Carbides (Con’t) Tungsten Monocarbide (WC) 55.65-84x103 room temp. Carbides (Con’t) Zirconium Monocarbide (ZrC) 16.6-22.5x103 room temp. 8.3x103 1250 oC 1750 oC 2000 oC 5.14x103 2.5x103 Nitrides Aluminum Nitride (AlN) (hot pressed) 38.5x103 27x103 18.1x103 25oC 1000oC 1400oC To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 8.25 Mechanical L Page 809 Wednesday, December 31, 1969 17:00 Table 244. MODULUS OF RUPTURE FOR (SHEET 4 OF 10) CERAMICS Class Ceramic Modulus of Rupture (psi) Nitrides (Con’t) Boron Nitride (BN) parallel to c axis 7.28-13.2x103 7.03x103 1.90x103 1.08x103 1.25x103 1.50x103 2.45x103 Temperature 25 oC 300 oC 700 oC 1000 oC 1500 oC 1800 oC 2000 oC To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 8.25 Mechanical L Page 810 Wednesday, December 31, 1969 17:00 Table 244. MODULUS OF RUPTURE FOR (SHEET 5 OF 10) CERAMICS Class Ceramic Modulus of Rupture (psi) Nitrides (Con’t) parallel to a axis 15.88x103 15.14x103 3.84x103 2.18x103 Titanium Mononitride (TiN) 34x103 (10wt% AlO and 10wt% AlN) 13.34x103 (30wt% AlO and 10wt% AlN) 23.93x103 (30wt% AlO and 30wt% AlN) 33.25x103 Temperature 25 oC 300 oC 700 oC 1000 oC To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 8.25 Mechanical L Page 811 Wednesday, December 31, 1969 17:00 Table 244. MODULUS OF RUPTURE FOR (SHEET 6 OF 10) Class Ceramic Nitrides (Con’t) Trisilicon Tetranitride (Si3N4) CERAMICS Modulus of Rupture (psi) (hot pressed) 65.3-159.5x103 (sintered) 39.9-121.8x103 (reaction sintered) 7.25-43.5x103 Temperature 20oC 20oC 20oC Aluminum Oxide (Al2O3) Oxides (single crystal) (80% dense, 3µm grain size) (80% dense, 3µm grain size) (80% dense, 3µm grain size) (80% dense, 3µm grain size) 131 x103 60 x103 room temp. 56x103 62x103 58x103 42x103 20 oC 600 oC 900 oC 1100 oC To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 8.25 Mechanical L Page 812 Wednesday, December 31, 1969 17:00 Table 244. MODULUS OF RUPTURE FOR (SHEET 7 OF 10) Class Ceramic Oxides (Con’t) Aluminum Oxide (Al2O3) (Con’t) (80% dense, 20µm grain size) (80% dense, 20µm grain size) (80% dense, 20µm grain size) (80% dense, 20µm grain size) (zirconia toughened alumina, 15 vol% ZrO2) (zirconia toughened alumina, 25 vol% ZrO2) (zirconia toughened alumina, 50 vol% ZrO2) CERAMICS Modulus of Rupture (psi) Temperature 30x103 28x103 31x103 30x103 20 oC 600 oC 900 oC 1100 oC 137x103 139x103 145x103 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 8.25 Mechanical L Page 813 Wednesday, December 31, 1969 17:00 Table 244. MODULUS OF RUPTURE FOR (SHEET 8 OF 10) CERAMICS Class Ceramic Modulus of Rupture (psi) Temperature Oxides (Con’t) Beryllium Oxide (BeO) 24-29 x103 room temp. Dichromium Trioxide (Cr2O3) >38x103 Hafnium Dioxide (HfO2) 10x103 10-14.9x103 Titanium Oxide (TiO2) room temp. Zirconium Oxide (ZrO2) (5-10 CaO stabilized) 20-35x103 3 (MgO stabilized) 30x10 (hot pressed yittria doped zirconia) 222x103 (sintered yittria doped zirconia) 148x103 room temp. room temp. To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 8.25 Mechanical L Page 814 Wednesday, December 31, 1969 17:00 Table 244. MODULUS OF RUPTURE FOR (SHEET 9 OF 10) Class Ceramic Oxides (Con’t) Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.51g/cm3) (ρ=2.3g/cm3) (ρ=2.1g/cm3) (ρ=1.8g/cm3) Mullite (3Al2O3 2SiO2) (ρ=2.77g/cm3) (ρ=2.77g/cm3) (ρ=2.77g/cm3) (ρ=2.77g/cm3) CERAMICS Modulus of Rupture (psi) Temperature 16x103 15x103 8x103 3.4x103 25oC 400oC 800oC 1200oC 6-27x103 8.5x103 13.5x103 16.7x103 11.5x103 25oC 25oC 400oC 800oC 1200oC To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 8.25 Mechanical L Page 815 Wednesday, December 31, 1969 17:00 Table 244. MODULUS OF RUPTURE FOR (SHEET 10 OF 10) CERAMICS Modulus of Rupture (psi) Temperature (ρ = 5.57 g/cm3) 18.57x103 room temp. (sintered) 50.7x103 room temp. (sintered) 67.25x103 (sintered) 86.00x103 980oC 1090oC (hot pressed) 36-57x103 room temp. (hot pressed) 3 72.00x10 (hot pressed) 55.00x103 Class Ceramic Silicide Molybdenum Disilicide (MoSi2) 1090oC 1200oC To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 8.25 Mechanical L Page 816 Wednesday, December 31, 1969 17:00 Table 245. RUPTURE STRENGTH OF REFRACTORY METAL ALLOYS (SHEET 1 OF 2) Class Alloy Alloying Additions (%) Form Condition Temperature (°F) 10-h rupture (ksi) Niobium and Niobium Alloys Pure Niobium — All Recrystallized 2000 5.4 Nb–1Zr SCb291 1 Zr 10 Ta, 10 W All Bar, Sheet Recrystallized Recrystallized 2000 2000 14 9 C129 FS85 SU31 10 W, 10 Hf, 0.1 Y 28 Ta, 11 W, 0.8 Zr 17 W, 3.5 Hf, 0.12 C, 0.03 Si Sheet Sheet Bar, Sheet Recrystallized Recrystallized Special Thermal Processing 2400 2400 2400 15 12 22 Pure Molybdenum — All Stress-relieved Annealed 1800 25 Low C Mo TZM None 0.5 Ti, 0.08 Zr, 0.015 C All All Stress-relieved Annealed Stress-relieved Annealed 1800 2400 24 23 TZC Mo–5Re Mo–30W 1.0 Ti, 0.14 Zr, 0.02 to 0.08 C 5 Re 30 W All All All Stress-relieved Annealed Stress-relieved Annealed Stress-relieved Annealed 2400 3000 2000 28 1 20 Molybdenum and Molybdenum Alloys To convert (ksi) to (MPa), multiply by 6.89 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994). ©2001 CRC Press LLC 8.25 Mechanical L Page 817 Wednesday, December 31, 1969 17:00 Table 245. RUPTURE STRENGTH OF REFRACTORY METAL ALLOYS (SHEET 2 OF 2) Class Alloy Alloying Additions (%) Form Condition Temperature (°F) 10-h rupture (ksi) Tantalum Alloys Unalloyed TA–10W None 10 W All All Recrystallized Recrystallized 2400 2400 2.5 20 Tungsten Alloys Unalloyed None Stress-relieved Annealed 3000 6.8 W–2 ThO2 2 ThO2 Stress-relieved Annealed 3000 18 W–3 ThO2 W–4 ThO2 3 ThO2 4 ThO2 Bar, Sheet, Wire Bar, Sheet, Wire Bar, Wire Bar Stress-relieved Annealed Stress-relieved Annealed 3000 3000 18 18 W–15 Mo W–50 Mo 15 Mo 50 Mo Stress-relieved Annealed Stress-relieved Annealed 3000 3000 12 12 W–25 Re 25 Re Bar, Wire Bar, Wire Bar, Sheet, Wire Stress-relieved Annealed 3000 10 To convert (ksi) to (MPa), multiply by 6.89 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994). ©2001 CRC Press LLC 8.26 Mechanical Page 818 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 246. RUPTURE STRENGTH OF SUPERALLOYS (SHEET 1 OF 3) Stress Rupture Alloy * Temperature (°C) 100 h (MPa) 1000 h (MPa) Incoloy 800 650 760 870 220 115 45 145 69 33 Incoloy 801 650 730 815 250 145 62 — — — Incoloy 802 650 760 870 240 145 97 170 105 62 Inconel 600 815 870 55 37 39 24 Inconel 601(a) 540 870 980 — 48 23 400 30 14 Inconel 617(b) 815 925 980 140 62 41 97 — — Inconel 625(a) 650 815 870 440 130 72 370 93 48 Inconel 718(c) 540 595 650 — 860 690 951 760 585 Inconel 751(d) 815 870 200 120 125 69 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p391, (1993). ©2001 CRC Press LLC 818 CRC Handbook of Materials Science & Engineering 8.26 Mechanical Page 819 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 246. RUPTURE STRENGTH OF SUPERALLOYS (SHEET 2 OF 3) Stress Rupture Alloy * Temperature (°C) 100 h (MPa) 1000 h (MPa) Inconel X–750(e) 540 870 925 — 83 58 827 45 21 N–155, bar(f) 650 730 870 360 195 97 295 150 66 N–155(g) 650 380 290 N–155, sheet(f) 980 39 20 Nimonic 75(h) 815 870 925 980 38 23 14 — 24 15 10 7.6 Nimonic 80A(j) 540 815 870 — 185 105 825 115 — Nimonic 90(j) 815 870 925 240 150 69 155 69 — Nimonic 105(k) 815 870 325 210 225 135 Nimonic 115(m) 815 870 925 425 315 205 315 205 130 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p391, (1993). ©2001 CRC Press LLC Shackelford & Alexander 819 8.26 Mechanical Page 820 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 246. RUPTURE STRENGTH OF SUPERALLOYS (SHEET 3 OF 3) Stress Rupture Alloy * Temperature (°C) 100 h (MPa) 1000 h (MPa) Nimonic 263(n) 815 870 925 170 93 45 105 46 — Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p391, (1993). * (a) Solution treat 1150 °C. (b) Solution treat 1175 °C. (c) Heat treat to 980 °C plus 720 °C hold for 8 h, furnace cool to 620 °C hold for 8 h. (d) 730 °C hold for 2h. (e) Heat treat to 1150 °C plus 840 °C hold for 24h, plus 705 °C hold for 20h. (f) Solution treated and aged. (g) Stress-relieved forging. (h) Heat treat to 1050 °C hold for 1 h. (j) Heat treat to 1080 °C hold for 8 h, plus 700 °C hold for 16 h. (k) Heat treat to 1150 °C hold for 4 h, plus 1050 °C hold for 16 h, plus 850 °C hold for 16 h. (m) Heat treat to 1190 °C hold for 1.5 h, plus 1100 °C hold for 6 h. (n) Heat treat to 1150 °C hold for 2 h, water quench, plus 800 °C hold for 8 h. ©2001 CRC Press LLC 820 CRC Handbook of Materials Science & Engineering 8.26 Mechanical Page 821 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 247. MODULUS OF RUPTURE FOR SI3N4 AND AL2O3COMPOSITES Modulus of Rupture (MPa) Matrix Dispersed Phase RT 1000 °C 1200 °C Si3N4+ 6 wt % Y2O3 None 110.9 ± 1.6 88.3 ± 3.5 49.2 ± 5.0 Si3N4+ 6 wt % Y2O3 TiC (Ti, W) C WC 80.6 ± 5.9 75.5 ± 3.2 89.1 ± 31.8 120.4 ± 12.2 86 ± 0 136.4 ± 1.6 64.4 ± 2.9 52.9 ± 0.5 55.7 ± 0.5 TaC HfC SiC 86.2 ± 7.3 86 ± 0.8 97.6 ± 8.5 124.5 ± 16.0 — 94.0 ± 4.9 43.2 ± 2.0 68.6 ± 0.5 52.3 ± 3.2 TiC 72.2 ± 13.0 69.4 ± 4.3 57.0 ± 4.1 Al2O3 Containing 30 Vol % of Metal Carbide Dispersoid (2 µm average particle diameter) Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p169,(1994). ©2001 CRC Press LLC Shackelford & Alexander 821 8.26 Mechanical Page 822 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 248. POISSON ' S RATIO OF WROUGHT TITANIUM ALLOYS Class Metal or Alloy Poisson's Ratio Commercially Pure 99.5 Ti 99.2 Ti 99.1 Ti 0.34 0.34 0.34 99.0Ti 99.2 Ti–0.2Pd 0.34 0.34 Near Alpha Alloys Ti-8Al-1Mo-1V Ti-5Al-5Sn-2Zr-2Mo-0.25Si 0.32 0.326 Alpha-Beta Alloys Ti-6Al-4V Ti-6Al-4V (low O2) Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25Si 0.342 0.342 0.327 Beta Alloys Ti-13V-11Cr-3Al 0.304 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p511, (1993). ©2001 CRC Press LLC 822 CRC Handbook of Materials Science & Engineering 8.26 Mechanical Page 823 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 249. POISSON ’S RATIO FOR (SHEET 1 OF 2) CERAMICS Class Ceramic Poisson’s Ratio Borides Titanium Diboride (TiB2) 0.09-0.28 (6.0 µm grain size, ρ=4.46g/cm3) (12.0 µm grain size, ρ=4.66g/cm3, 9.6wt% Ni) 0.10 0.12 0.11 0.15 Zirconium Diboride (ZrB2) 0.144 Boron Carbide (B4C) Hafnium Monocarbide (HfC) 0.207 0.166 (3.5 µm grain size, ρ=4.37g/cm3, 0.8wt% Ni) (6.0 µm grain size, ρ=4.56g/cm3, 0.16wt% Ni) Carbides Silicon Carbide (SiC) (ρ = 3.128 g/cm3) 0.183-0.192 at room temp. Tantalum Monocarbide (TaC) Titanium Monocarbide (TiC) Tungsten Monocarbide (WC) 0.1719 -0.24 0.187-189 0.24 Zirconium Monocarbide (ZrC) (ρ = 6.118 g/cm3) 0.257 Nitrides Trisilicon tetranitride (Si3N4) (presureless sintered) 0.24 0.22-0.27 Oxides Aluminum Oxide (Al2O3) Beryllium Oxide (BeO) Cerium Dioxide (CeO2) 0.21-0.27 0.26-0.34 0.27-0.31 Magnesium Oxide (MgO) (ρ = 3.506 g/cm3) 0.163 at room temp. Thorium Dioxide (ThO2) (ρ=9.722 g/cm3) 0.275 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 823 8.26 Mechanical Page 824 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 249. POISSON ’S RATIO FOR (SHEET 2 OF 2) CERAMICS Class Ceramic Poisson’s Ratio Oxides (Con’t) Titanium Oxide (TiO2) 0.28 Uranium Dioxide (UO2) (ρ=10.37 g/cm3) 0.302 Zirconium Oxide (ZrO2) (partially stabilized) (fully stabilized) (plasma sprayed) 0.324-0.337 at room temp. 0.23 0.23-0.32 0.25 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) (ρ=2.1g/cm3) 0.21 0.17 (glass) 0.26 Mullite (3Al2O3 2SiO2) (ρ=2.779 g/cm3) 0.238 Spinel (Al2O3 MgO) Silicide (ρ=3.510 g/cm3) 0.294 Molybdenum Disilicide (MoSi2) 0.158-0.172 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 824 CRC Handbook of Materials Science & Engineering 8.26 Mechanical Page 825 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 250. POISSON ’S RATIO OF (SHEET 1 OF 2) Class Composition Poisson’s Ratio Temperature 0.166–0.177 room temp. 0.183 0.203 0.219 room temp. room temp. room temp. (35% mol Na2O) 0.236 0.249 0.248 room temp. room temp. room temp. (24.6% mol PbO) (30.0% mol PbO) (35.7% mol PbO) 0.249 0.174 0.252 (38.4% mol PbO) (45.0% mol PbO) (50.0% mol PbO) 0.150 0.219 0.259 (55.0% mol PbO) (60.0% mol PbO) (65.0% mol PbO) 0.222 0.281 0.283 SiO2 glass SiO2–Na2O glass (15% mol Na2O) (20% mol Na2O) (25% mol Na2O) (30% mol Na2O) (33% mol Na2O) SiO2–PbO glass B2O3 glass GLASS 0.288–0.309 room temp. Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 825 8.26 Mechanical Page 826 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 250. POISSON ’S RATIO OF (SHEET 2 OF 2) GLASS Class Composition Poisson’s Ratio Temperature B2O3–Na2O glass (5.5% mol Na2O) 0.279 0.2740 0.271 15˚C (10% mol Na2O) (15.4% mol Na2O) (20% mol Na2O) 0.2860 0.272 0.2713 0.274 (22.8% mol Na2O) (25% mol Na2O) (29.8% mol Na2O) (33.3% mol Na2O) 15˚C 15˚C 0.2771 0.2739 0.292 (37% mol Na2O) (37.25% mol Na2O) 15˚C 15˚C Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 Table 251. POISSON ' S RATIO OF SILICON CARBIDE SCS–2–AL Fiber orientation No. of plies Poisson's Ratio 0° 90° ± 45° 6, 8, 12 6, 12,40 8, 12, 40 0.268 0.124 0.395 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994). ©2001 CRC Press LLC 826 CRC Handbook of Materials Science & Engineering 8.26 Mechanical Page 827 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 252. COMPRESSION POISSON ’S RATIO OF TREATED DUCTILE IRONS Treatment Compression Poisson’s Ratio 60-40-18 65-45-12 80-55-06 120 90-02 0.26 0.31 0.31 0.27 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984). Table 253. TORSION POISSON ’S RATIO OF TREATED DUCTILE IRONS Treatment Torsion Poisson’s Ratio 60-40-18 65-45-12 80-55-06 120 90-02 0.29 0.29 0.31 0.28 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984). ©2001 CRC Press LLC Shackelford & Alexander 827 8.26 Mechanical Page 828 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 254. ELONGATION OF TOOL STEELS Elongation (%) Type Condition L2 Annealed Oil quenched from 855 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C 25 Annealed Oil quenched from 845 •C and single tempered at: 315 •C 425 •C 540 •C 650 •C 25 Annealed Oil quenched from 930 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C 24 Annealed Oil quenched from 870 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C 25 Annealed Fan cooled from 940 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C 25 L6 S1 S5 S7 5 10 12 15 25 4 8 12 20 4 5 9 12 5 7 9 10 15 7 9 10 10 14 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984). ©2001 CRC Press LLC 828 CRC Handbook of Materials Science & Engineering 8.26 Mechanical Page 829 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 255. ELONGATION OF DUCTILE IRONS Specification Number Grade or Class Elongation (%) ASTM A395-76 ASME SA395 60-40-18 18 ASTM A476-70(d); SAE AMS5316 80-60-03 3 60-40-18 65-45-12 18 12 80-55-06 100-70-03 120-90-02 6 3 2 SAE J434c D4018 D4512 D5506 D7003 18 12 6 3 MlL-I-24137(Ships) Class A Class B Class C 15 7 20 ASTM A536-72, MIL-1-11466B(MR) Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984). ©2001 CRC Press LLC Shackelford & Alexander 829 8.26 Mechanical Page 830 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 256. ELONGATION OF Specification Number Ferritic ASTM A47, A338; ANSI G48.1; FED QQ-I-666c MALLEABLE IRON CASTINGS Grade or Class 32510 35018 10 18 5 40010 45008 45006 50005 10 8 6 5 60004 70003 80002 90001 4 3 2 1 M3210 M4504(a) M5003(a) 10 4 3 M5503(b) M7002(b) M8501(b) 3 2 1 ASTM A197 Pearlitic and Martensitic ASTM A220; ANSI C48.2; MIL-I-11444B Automotive ASTM A602; SAE J158 Elongation (%) (a) Air quenched and tempered (b) Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984). ©2001 CRC Press LLC 830 CRC Handbook of Materials Science & Engineering 8.27 Mechanical L Page 831 Wednesday, December 31, 1969 17:00 Table 257. ELONGATION OF FERRITIC (SHEET 1 OF 2) STAINLESS STEELS Type ASTM Specification Form Condition Elongation (%) Type 405 (UNS S40500) A580 A580 Wire Annealed Annealed, Cold Finished 20 16 Type 409 (UNS S40900) Type 429 (UNS S42900) — — Bar Bar Annealed Annealed 25(a) 30(a) Type 430 (UNS S43000) A276 A276 Bar Annealed, Hot Finished Annealed, Cold Finished 20 16 Type 430Ti(UNS S43036) — Bar Annealed 30(a) Type 434 (UNS S43400) Type 436 (UNS S43600) — — Wire Sheet, Strip Annealed Annealed 33(a) 23(a) (a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993). ©2001 CRC Press LLC 8.27 Mechanical L Page 832 Wednesday, December 31, 1969 17:00 Table 257. ELONGATION OF FERRITIC (SHEET 2 OF 2) STAINLESS STEELS Type ASTM Specification Form Condition Elongation (%) Type 442 (UNS S44200) Type 444 (UNS S44400) — A176 Bar Plate, Sheet, Strip Annealed Annealed 20(a) 20 Type 446 (UNS S44600) A276 A276 Bar Annealed, Hot Finished Annealed, Cold Finished 20 16 (a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993). ©2001 CRC Press LLC 8.27 Mechanical L Page 833 Wednesday, December 31, 1969 17:00 Table 258. ELONGATION OF MARTENSITIC (SHEET 1 OF 3) STAINLESS STEELS Type ASTM Specification Form Condition Elongation (%) Type 403 (UNS S40300) A276 A276 A276 A276 A276 A276 Bar Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished 20 16 15 12 12 12 Type 410 (UNS S41000) A276 A276 A276 A276 A276 A276 Bar Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished 20 16 15 12 12 12 Type 410S (UNS S41008) A176 Plate, Sheet, Strip Annealed 22 Type 410Cb (UNS S41040) A276 A276 A276 A276 Bar Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished 13 12 13 12 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993). ©2001 CRC Press LLC 8.27 Mechanical L Page 834 Wednesday, December 31, 1969 17:00 Table 258. ELONGATION OF MARTENSITIC (SHEET 2 OF 3) STAINLESS STEELS Type ASTM Specification Form Condition Elongation (%) Type 414 (UNS S41400) A276 A276 Bar Intermediate temper, hot finished Intermediate temper, cold finished 15 15 Type 414L Type 420 (UNS S42000) — — Bar Bar Annealed Tempered 205 °C 20 8 Type 422 (UNS S42200) A565 Bar for high-temperature service 13 Type 431 (UNS S43100) — — Bar Tempered 260 °C Tempered 595 °C 16 19 Type 440A (UNS S44002) — — Bar Annealed Tempered 315 °C 20 5 Type 440B (UNS S44003) — — Bar Annealed Tempered 315 °C 18 3 Type 440C (UNS S44004) — — Bar Annealed Tempered 315 °C 14 2 Intermediate and hard tempers Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993). ©2001 CRC Press LLC 8.27 Mechanical L Page 835 Wednesday, December 31, 1969 17:00 Table 258. ELONGATION OF MARTENSITIC (SHEET 3 OF 3) STAINLESS STEELS Type ASTM Specification Form Condition Elongation (%) Type 501 (UNS S50100) — — Bar, Plate Annealed Tempered 540 °C 28 15 Type 502 (UNS S50200) — Bar, Plate Annealed 30 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993). ©2001 CRC Press LLC 8.27 Mechanical L Page 836 Wednesday, December 31, 1969 17:00 Table 259. ELONGATION OF PRECIPITATION -HARDENING AUSTENITIC STAINLESS STEELS Type Form Condition Elongation (%) PH 13–8 Mo (UNS S13800) Bar, Plate, Sheet, Strip H950 H1000 6-10 6-10 15–5 PH (UNS S15500) and 17–4 PH (UNS S17400) Bar, Plate, Sheet, Stript H900 H925 H1025 H1075 10(a) 10(a) 12(a) 13(a) H1100 H1150 H1150M 14(a) 16(a) 18(a) RH950 TH1050 6 6 17–7 PH (UNS S17700) Bar (a) For flat rolled products, value varies with thickness. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p371 (1993). ©2001 CRC Press LLC 8.27 Mechanical L Page 837 Wednesday, December 31, 1969 17:00 Table 260. ELONGATION OF HIGH–NITROGEN AUSTENITIC STAINLESS STEELS Type ASTM Specification Form Condition Elongation (%) Type 201 (UNS S20100) A276 Bar Annealed 40 Type 202 (UNS S20200) A276 Bar Annealed 40 Type 205 (UNS S20500) — Plate Annealed* 58 Type 304N (UNS S30451) A276 Bar Annealed 30 Type 304HN (UNS S30452) — Bar Annealed 30 Type 316N (UNS S31651) A276 Bar Annealed 30 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p367 (1993). * Typical values ©2001 CRC Press LLC 8.28 Mechanical Page 838 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 261. TOTAL ELONGATION OF CAST ALUMINUM ALLOYS (SHEET 1 OF 3) Alloy AA No. Temper Elongation (in 2 in.) (%) 201.0 T4 T6 T7 20 7 4.5 206.0, A206.0 208.0 T7 F 11.7 2.5 242.0 T21 T571 T77 1.0 0.5 2.0 T571 T61 1.0 0.5 295.0 T4 T6 T62 8.5 5.0 2.0 296.0 T4 T6 T7 F 9.0 5.0 4.5 2.0 319.0 F T6 F T6 2.0 2.0 2.5 3.0 336.0 T551 T65 T61 0.5 0.5 6.0 T51 T6 T61 T7 1.5 3.0 1.0 0.5 308.0 354.0 355.0 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 838 CRC Handbook of Materials Science & Engineering 8.28 Mechanical Page 839 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 261. TOTAL ELONGATION OF CAST ALUMINUM ALLOYS (SHEET 2 OF 3) Alloy AA No. Temper Elongation (in 2 in.) (%) 355.0 (Con’t) T71 T51 T6 1.5 2.0 4.0 T62 T7 T71 1.5 2.0 3.0 T51 T6 T7 2.0 3.5 2.0 T71 T6 T7 3.5 5.0 6.0 357.0, A357.0 359.0 T62 T61 T62 8.0 6.0 5.5 360.0 A360.0 380.0 F F F 3.0 5.0 3.0 383.0 384.0, A384.0 390.0 F F F T5 3.5 2.5 1.0 1.0 A390.0 F,T5 T6 T7 <1.0 <1.0 <1.0 F,T5 T6 T7 1.0 <1.0 <1.0 356.0 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 839 8.28 Mechanical Page 840 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 261. TOTAL ELONGATION OF CAST ALUMINUM ALLOYS (SHEET 3 OF 3) Alloy AA No. Temper Elongation (in 2 in.) (%) 413.0 A413.0 443.0 B443.0 F F F F 2.5 3.5 8.0 10.0 C443.0 514.0 518.0 520.0 F F F T4 9.0 9.0 5.0—8.0 16 535.0 712.0 713.0 F F T5 T5 13 5.0 3.0 4.0 771.0 850.0 T6 T5 9.0 10.0 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 840 CRC Handbook of Materials Science & Engineering 8.29 Mechanical L Page 841 Wednesday, December 31, 1969 17:00 Table 262. ELONGATION OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 1 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Elongation in 2 In (%) C10100 Oxygen-free electronic C10200 Oxygen-free copper C10300 Oxygen-free extra-low phosporus C10400, C10500, C10700 Oxygen-free, silver-bearing 99.99 Cu 99.95 Cu 99.95 Cu, 0.003 P 99.95 Cu(e) F, R, W, T, P, S F, R, W, T, P, S F, R, T, P, S F, R, W, S 55(4) 55(4) 50(6) 55(4) C10800 Oxygen-free, low phosporus CS11000 Electrolytic tough pitch copper C11100 Electrolytic tough pitch, anneal resistant C11300, C11400, C11500, C11600 Silver-bearing tough pitch copper 99.95 Cu, 0.009 P 99.90 Cu, 0.04 O 99.90 Cu, 0.04 O, 0.01 Cd 99.90 Cu, 0.04 O, Ag(f) F, R, T, P F, R, W, T, P, S W F, R, W, T, S 50(4) 55(4) (60) 55(4) C12000, C12100 C12200 Phosphorus deoxidized copper, high residual phosphorus C12500, C12700, C12800, C12900, C13000 Fire-refined tough pitch with silver C14200 Phosphorus deoxidized, arsenical 99.9 Cu(g) 99.90 Cu, 0.02 P 99.88 Cu(h) 99.68 Cu, 0.3 As, 0.02 P F, T, P F, R, T, P F, R, W, S F, R, T 55(4) 45(8) 55(4) 45(8) (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.29 Mechanical L Page 842 Wednesday, December 31, 1969 17:00 Table 262. ELONGATION OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 2 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Elongation in 2 In (%) C19200 C14300 C14310 C14500 Phosphorus deoxidized, tellurium bearing 98.97 Cu, 1.0 Fe, 0.03 P 99.9 Cu, 0.1 Cd 99.8 Cu, 0.2 Cd 99.5 Cu, 0.50 Te, 0.008 P F, T F F F, R, W, T 40 42(l) 42(l) 50(3) C14700 Sulfur bearing C15000 Zirconium copper C15500 C15710 99.6 Cu, 0.40 S 99.8 Cu, 0.15 Zr 99.75 Cu, 0.06 P, 0.11 Mg, Ag(i) 99.8 Cu, 0.2 Al2O3 R, W R, W F R, W 52(8) 54(1.5) 40(3) 20(10) C15720 C15735 C15760 C16200 Cadmium copper 99.6 Cu, 0.4 Al2O3 99.3 Cu, 0.7 Al2O3 98.9 Cu, 1.1 Al2O3 99.0 Cu, 1.0 Cd F, R R F, R F, R, W 20(3.5) 16(10) 20(8) 57(1) (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.29 Mechanical L Page 843 Wednesday, December 31, 1969 17:00 Table 262. ELONGATION OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 3 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Elongation in 2 In (%) C16500 C17000 Beryllium copper C17200 Beryllium copper C17300 Beryllium copper 98.6 Cu, 0.8 Cd, 0.6 Sn 99.5 Cu, 1.7 Be, 0.20 Co 99.5 Cu, 1.9 Be , 0.20 Co 99.5 Cu, 1.9 Be, 0.40 Pb F, R, W F, R F, R, W, T, P, S R 53(1.5) 45(3) 48(1) 48(3) C17500 Copper-cobalt-beryllium alloy C18200, C18400, C18500 Chromium copper C18700 leaded copper C18900 99.5 Cu, 2.5 Co, 0.6 Be 99.5 Cu(j) 99.0 Cu, 1.0 Pb 98.75 Cu, 0.75 Sn, 0.3 Si, 0.20 Mn F, R F, W, R, S, T R R, W 28(5) 40(5) 45(8) 48(14) C19000 Copper-nickel-phosphorus alloy C19100 Copper-nickel-phosphorus-tellurium alloy C19400 98.7 Cu, 1.1 Ni, 0.25 P 98.15 Cu, 1.1 Ni, 0.50 Te, 0.25 P 97.5 Cu, 2.4 Fe, 0.13 Zn, 0.03 P F, R, W R, F F 50 27(6) 32 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.29 Mechanical L Page 844 Wednesday, December 31, 1969 17:00 Table 262. ELONGATION OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 4 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Elongation in 2 In (%) C19500 C21000 Gilding, 95% C22000 Commercial bronze, 90% C22600 Jewelry bronze, 87.5% 97.0 Cu, 1.5 Fe, 0.6 Sn, 0.10 P, 0.80 Co 95.0 Cu, 5.0 Zn 90.0 Cu, 10.0 Zn 87.5 Cu, 12.5 Zn F F, W F, R, W, T F, W 15 45(4) 50(3) 46(3) C23000 Red brass, 85% C24000 Low brass, 80% C26000 Cartridge brass, 70% C26800, C27000 Yellow brass 85.0 Cu, 15.0 Zn 80.0 Cu, 20.0 Zn 70.0 Cu, 30.0 Zn 65.0 Cu, 35.0 Zn F, W, T, P F, W F, R, W, T F, R, W 55(3) 55(3) 66(3) 65(3) C28000 Muntz metal C31400 Leaded commercial bronze C31600 Leaded commercial bronze, nickel-bearing C33000 Low-leaded brass tube 60.0 Cu, 40.0 Zn 89.0 Cu, 1.75 Pb, 9.25 Zn 89.0 Cu, 1.9 Pb, 1.0 Ni, 8.1 Zn 66.0 Cu, 0.5 Pb, 33.5 Zn F, R, T F, R F, R T 52(10) 45(10) 45(12) 60(7) (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.29 Mechanical L Page 845 Wednesday, December 31, 1969 17:00 Table 262. ELONGATION OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 5 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Elongation in 2 In (%) C33200 High-leaded brass tube C33500 Low-leaded brass C34000 Medium-leaded brass C34200 High-leaded brass 66.0 Cu, 1.6 Pb, 32.4 Zn 65.0 Cu, 0.5 Pb, 34.5 Zn 65.0 Cu, 1.0 Pb, 34.0 Zn 64.5 Cu, 2.0 Pb, 33.5 Zn T F F, R, W, S F, R 50(7) 65(8) 60(7) 52(5) C34900 C35000 Medium-leaded brass C35300 High-leaded brass C35600 Extra-high-leaded brass 62.2 Cu, 0.35 Pb, 37.45 Zn 62.5 Cu, 1.1 Pb, 36.4 Zn 62.0 Cu, 1.8 Pb, 36.2 Zn 63.0 Cu, 2.5 Pb, 34.5 Zn R, W F, R F, R F 72(18) 66(1) 52(5) 50(7) C36000 Free-cutting brass C36500 to C36800 Leaded Muntz metal C37000 Free-cutting Muntz metal C37700 Forging brass 61.5 Cu, 3.0 Pb, 35.5 Zn 60.0 Cu(k), 0.6 Pb, 39.4 Zn 60.0 Cu, 1.0 Pb, 39.0 Zn 59.0 Cu, 2.0 Pb, 39.0 Zn F, R, S F T R, S 53(18) 45 40(6) 45 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.29 Mechanical L Page 846 Wednesday, December 31, 1969 17:00 Table 262. ELONGATION OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 6 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Elongation in 2 In (%) C38500 Architectural bronze C40500 C40800 C41100 57.0 Cu, 3.0 Pb, 40.0 Zn 95 Cu, 1 Sn, 4 Zn 95 Cu, 2 Sn, 3 Zn 91 Cu, 0.5 Sn, 8.5 Zn R, S F F F, W 30 49(3) 43(3) 13 C41300 C41500 C42200 C42500 90.0 Cu, 1.0 Sn, 9.0 Zn 91 Cu, 1.8 Sn, 7.2 Zn 87.5 Cu, 1.1 Sn, 11.4 Zn 88.5 Cu, 2.0 Sn, 9.5 Zn F, R, W F F F 45 44 46 49 C43000 C43400 C43500 C44300, C44400, C44500 Inhibited admiralty 87.0 Cu, 2.2 Sn, 10.8 Zn 85.0 Cu, 0.7 Sn, 14.3 Zn 81.0 Cu, 0.9 Sn, 18.1 Zn 71.0 Cu, 28.0 Zn, 1.0 Sn F F F, T F, W, T 55(3) 49(3) 46(7) 65(0) (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.29 Mechanical L Page 847 Wednesday, December 31, 1969 17:00 Table 262. ELONGATION OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 7 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Elongation in 2 In (%) C46400 to C46700 Naval brass C48200 Naval brass, medium-leaded C48500 Leaded naval brass C50500 Phosphor bronze, 1.25% E 60.0 Cu, 39.25 Zn, 0.75 Sn 60.5 Cu, 0.7 Pb, 0.8 Sn, 38.0 Zn 60.0 Cu, 1.75 Pb, 37.5 Zn, 0.75 Sn 98.75 Cu, 1.25 Sn, trace P F, R, T, S F, R, S F, R, S F, W 50(17) 43(15) 40(15) 48(4) C51000 Phosphor bronze, 5% A C51100 C52100 Phosphor bronze, 8% C C52400 Phosphor bronze, 10% D 95.0 Cu, 5.0 Sn, trace P 95.6 Cu, 4.2 Sn, 0.2 P 92.0 Cu, 8.0 Sn, trace P 90.0 Cu, 10.0 Sn, trace P F, R, W, T F F, R, W F, R, W 64 48 70 70(3) C54400 Free-cutting phosphor bronze C60800 Aluminum bronze, 5% C61000 C61300 88.0 Cu, 4.0 Pb, 4.0 Zn, 4.0 Sn 95.0 Cu, 5.0 Al 92.0 Cu, 8.0 Al 92.65 Cu, 0.35 Sn, 7.0 Al F, R T R, W F, R, T, P, S 50(15) 55 65(25) 42(35) (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.29 Mechanical L Page 848 Wednesday, December 31, 1969 17:00 Table 262. ELONGATION OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 8 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Elongation in 2 In (%) C61400 Aluminum bronze, D C61500 C61800 C61900 91.0 Cu, 7.0 Al, 2.0 Fe 90.0 Cu, 8.0 Al, 2.0 Ni 89.0 Cu, 1.0 Fe, 10.0 Al 86.5 Cu, 4.0 Fe, 9.5 Al F, R, W, T, P, S F R F 45(32) 55(1) 28(23) 30(1) C62300 C62400 C62500 C63000 87.0 Cu, 10.0 Al, 3.0 Fe 86.0 Cu, 3.0 Fe, 11.0 Al 82.7 Cu, 4.3 Fe, 13.0 Al 82.0 Cu, 3.0 Fe, 10.0 Al, 5.0 Ni F, R F, R F, R F, R 35(22) 18(14) 1 20(15) C63200 C63600 C63800 C64200 82.0 Cu, 4.0 Fe, 9.0 Al, 5.0 Ni 95.5 Cu, 3.5 Al, 1.0 Si 99.5 Cu, 2.8 Al, 1.8 Si, 0.40 Co 91.2 Cu, 7.0 Al F, R R, W F F, R 25(20) 64(29) 36(4) 32(22) (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.29 Mechanical L Page 849 Wednesday, December 31, 1969 17:00 Table 262. ELONGATION OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 9 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Elongation in 2 In (%) C65100 Low-silicon bronze, B C65500 High-silicon bronze, A C66700 Manganese brass C67400 98.5 Cu, 1.5 Si 97.0 Cu, 3.0 Si 70.0 Cu, 28.8 Zn, 1.2 Mn 58.5 Cu, 36.5 Zn, 1.2 Al, 2.8 Mn, 1.0 Sn R, W, T F, R, W, T F, W F, R 55(11) 63(3) 60 28(20) C67500 Manganese bronze, A C68700 Aluninum brass, arsenical C68800 C69000 58.5 Cu, 1.4 Fe, 39.0 Zn, 1.0 Sn, 0.1 Mn 77.5 Cu, 20.5 Zn, 2.0 Al, 0.1 As 73.5 Cu, 22.7 Zn, 3.4 Al, 0.40 Co 73.3 Cu, 3.4 Al, 0.6 Ni, 22.7 Zn R, S T F F 33(19) 55 36 40 C69400 Silicon red brass C70400 C70600 Copper nickel, 10% C71000 Copper nickel, 20% 81.5 Cu, 14.5 Zn, 4.0 Si 92.4 Cu, 1.5 Fe, 5.5 Ni, 0.6 Mn 88.7 Cu, 1.3 Fe, 10.0 Ni 79.00 Cu, 21.0 Ni R F, T F, T F, W, T 25(20) 46 42(10) 40(3) (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.29 Mechanical L Page 850 Wednesday, December 31, 1969 17:00 Table 262. ELONGATION OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 10 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Elongation in 2 In (%) C71500 Copper nickel, 30% C71700 C72500 C73500 70.0 Cu, 30.0 Ni 67.8 Cu, 0.7 Fe, 31.0 Ni, 0.5 Be 88.20 Cu, 9.5 Ni, 2.3 Sn 72.0 Cu, 18.0 Ni , 10.0 Zn F, R, T F, R, W F, R, W, T F, R, W, T 45(15) 40(4) 35(1) 37(1) C74500 Nickel silver, 65-10 C75200 Nickel silver, 65-18 C75400 Nickel silver, 65-15 C75700 Nickel silver, 65-12 65.0 Cu, 25.0 Zn, 10.0 Ni 65.0 Cu, 17.0 Zn, 18.0 Ni 65.0 Cu, 20.0 Zn, 15.0 Ni 65.0 Cu, 23.0 Zn, 12.0 Ni F, W F, R, W F F, W 50(1) 45(3) 43 48 (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 8.29 Mechanical L Page 851 Wednesday, December 31, 1969 17:00 Table 262. ELONGATION OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 11 OF 11) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Elongation in 2 In (%) C76200 C77000 Nickel silver, 55-18 C72200 C78200 Leaded nickel silver, 65-8-2 59.0 Cu, 29.0 Zn, 12.0 Ni 55.0 Cu, 27.0 Zn, 18.0 Ni 82.0 Cu, 16.0 Ni, 0.5 Cr, 0.8 Fe, 0.5 Mn 65.0 Cu, 2.0 Pb, 25.0 Zn, 8.0 Ni F, T F, R, W F, T F 50(1) 40 46(6) 40(3) (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). (d) Based on 100% for C360000. (e) C10400, 8 oz/ton Ag; C10500, 10 oz/ton; C10700, 25 oz/ton . (f) C11300, 8 oz/ton Ag; C11400,10 oz/ton; C11500, 16 oz/ton; C11600, 25 oz/ton (g) C12000, 0.008 P; C12100, 0.008 P and 4 oz/ton Ag; (h) C12700, 8 oz/ton Ag; C12800,10 oz/ton; C12900,16 oz/ton; C13000, 25 oz/ton. (i) 8.30 oz/ton Ag. (j) C18200, 0.9 Cr; C18400, 0.8 Cr; C18500, 0.7 Cr (k) Rod, 61.0 Cu min. ©2001 CRC Press LLC 8.30 Mechanical Page 852 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 263. ELONGATION OF COMMERCIALLY PURE TIN Temperature (°C) Elongation in 25mm (%) Strained at 0.2 mm/m • min -200 -160 -120 -80 -40 0 23 6 15 60 89 86 64 57 Strained at 0.4 mm/m • min 15 50 100 150 200 75 85 55 55 45 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p488, (1993). ©2001 CRC Press LLC 852 CRC Handbook of Materials Science & Engineering 8.30 Mechanical Page 853 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 264. ELONGATION OF COBALT -BASE SUPERALLOYS Temperature (°C) Elongation (%) Haynes 25 (L–605) sheet 21 540 650 760 870 64 59 35 12 30 Haynes 188, sheet 21 540 650 760 870 56 70 61 43 73 S-816, bar 21 540 650 760 870 30 27 25 21 16 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387, (1993). ©2001 CRC Press LLC Shackelford & Alexander 853 8.30 Mechanical Page 854 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 265. ELONGATION OF NICKEL -BASE SUPERALLOYS (SHEET 1 OF 5) Temperature (°C) Elongation (%) Astroloy, bar 21 540 650 760 870 16 16 18 21 25 D–979, bar 21 540 650 760 870 15 15 21 17 18 Hastelloy X, sheet 21 540 650 760 870 43 45 37 37 50 IN–102, bar 21 540 650 760 870 47 48 64 110 110 Inconel 600, bar 21 540 650 760 870 47 47 39 46 80 Inconel 601, sheet 21 540 650 760 870 45 38 45 73 92 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993). ©2001 CRC Press LLC 854 CRC Handbook of Materials Science & Engineering 8.30 Mechanical Page 855 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 265. ELONGATION OF NICKEL -BASE SUPERALLOYS (SHEET 2 OF 5) Temperature (°C) Elongation (%) Inconel 625, bar 21 540 650 760 870 50 50 35 42 125 Inconel 706, bar 21 540 650 760 19 19 21 32 Inconel 718, bar 21 540 650 760 870 21 18 19 25 88 Inconel 718, sheet 21 540 650 760 22 26 15 8 Inconel X-750, bar 21 540 650 760 870 24 22 9 9 47 M-252, bar 21 540 650 760 870 16 15 11 10 18 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993). ©2001 CRC Press LLC Shackelford & Alexander 855 8.30 Mechanical Page 856 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 265. ELONGATION OF NICKEL -BASE SUPERALLOYS (SHEET 3 OF 5) Temperature (°C) Elongation (%) Nimonic 75, bar 21 540 650 760 870 41 41 42 70 68 Nimonic 80A, bar 21 540 650 760 870 24 24 18 20 34 Nimonic 90, bar 21 540 650 760 870 23 23 20 10 16 Nimonic 105, bar 21 540 650 760 870 12 18 24 22 25 Nimonic 115, bar 21 540 650 760 870 25 26 25 22 18 Pyromet 860, bar 21 540 650 760 22 15 17 18 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993). ©2001 CRC Press LLC 856 CRC Handbook of Materials Science & Engineering 8.30 Mechanical Page 857 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 265. ELONGATION OF NICKEL -BASE SUPERALLOYS (SHEET 4 OF 5) Temperature (°C) Elongation (%) René 41, bar 21 540 650 760 870 14 14 14 11 19 René 95, bar 21 540 650 760 15 12 14 15 Udimet 500, bar 21 540 650 760 870 32 28 28 39 20 Udimet 520, bar 21 540 650 760 870 21 20 17 15 20 Udimet 700, bar 21 540 650 760 870 17 16 16 20 27 Udimet 710, bar 21 540 650 760 870 7 10 15 25 29 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993). ©2001 CRC Press LLC Shackelford & Alexander 857 8.30 Mechanical Page 858 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 265. ELONGATION OF NICKEL -BASE SUPERALLOYS (SHEET 5 OF 5) Temperature (°C) Elongation (%) Unitemp AF2–1DA, bar 21 540 650 760 870 10 13 13 8 8 Waspaloy, bar 21 540 650 760 870 25 23 34 28 35 Alloy Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p387-389, (1993). ©2001 CRC Press LLC 858 CRC Handbook of Materials Science & Engineering 8.31 Mechanical L Page 859 Wednesday, December 31, 1969 17:00 Table 266. DUCTILITY OF REFRACTORY (SHEET 1 OF 3) METAL ALLOYS Form Condition Low Temperature Ductility* Class Alloy Alloying Additions (%) Niobium and Niobium Alloys Pure Niobium — All Recrystallized A Nb–1Zr C103(KbI–3) SCb291 1 Zr 10 Hf, 1 Ti 0.7 Zr 10 Ta, 10 W All All Bar, Sheet Recrystallized Recrystallized Recrystallized A A A C129 FS85 SU31 10 W, 10 Hf, 0.1 Y 28 Ta, 11 W, 0.8 Zr 17 W, 3.5 Hf, 0.12 C, 0.03 Si Sheet Sheet Bar, Sheet Recrystallized Recrystallized Special Thermal Processing A A C Pure Molybdenum — All Stress-relieved Annealed B–C Doped Mo Low C Mo TZM K, Si; ppm levels None 0.5 Ti, 0.08 Zr, 0.015 C Wire, Sheet All All Cold Worked Stress-relieved Annealed Stress-relieved Annealed B B B–C Molybdenum and Molybdenum Alloys *A B C D excellent cryogenic ductility; excellent room-temperature ductility; may have marginal ductility at room temperature; normally brittle at room temperature. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p390, (1993). ©2001 CRC Press LLC 8.31 Mechanical L Page 860 Wednesday, December 31, 1969 17:00 Table 266. DUCTILITY OF REFRACTORY (SHEET 2 OF 3) Class Tantalum Alloys Tungsten Alloys *A B C D METAL ALLOYS Alloy Alloying Additions (%) Form Condition Low Temperature Ductility* TZC Mo–5Re Mo–30W 1.0 Ti, 0.14 Zr, 0.02 to 0.08 C 5 Re 30 W All All All Stress-relieved Annealed Stress-relieved Annealed Stress-relieved Annealed B–C B B–C Unalloyed FS61 FS63 None 7.5 W(P/M) 2.5 W, 0.15 Nb All Wire, Sheet All Recrystallized Cold Worked Recrystallized A A A TA–10W KBI–40 10 W 40 Nb All All Recrystallized Recrystallized A A Unalloyed None Stress-relieved Annealed D Doped K, Si, Al; ppm levels Bar, Sheet, Wire Wire Cold Worked C excellent cryogenic ductility; excellent room-temperature ductility; may have marginal ductility at room temperature; normally brittle at room temperature. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p390, (1993). ©2001 CRC Press LLC 8.31 Mechanical L Page 861 Wednesday, December 31, 1969 17:00 Table 266. DUCTILITY OF REFRACTORY (SHEET 3 OF 3) Class *A B C D METAL ALLOYS Form Condition Low Temperature Ductility* Stress-relieved Annealed D Stress-relieved Annealed D 3 ThO2 4 ThO2 Bar, Sheet, Wire Bar, Sheet, Wire Bar, Wire Bar Stress-relieved Annealed Stress-relieved Annealed D D W–15 Mo W–50 Mo 15 Mo 50 Mo Bar, Wire Bar, Wire Stress-relieved Annealed Stress-relieved Annealed D D W–3 Re 3 Re Cold Worked C W–25 Re 25 Re Wire Bar, Sheet, Wire Stress-relieved Annealed B Alloy Alloying Additions (%) W–1 ThO2 1ThO2 W–2 ThO2 2 ThO2 W–3 ThO2 W–4 ThO2 excellent cryogenic ductility; excellent room-temperature ductility; may have marginal ductility at room temperature; normally brittle at room temperature. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p390, (1993). ©2001 CRC Press LLC 8.31 Mechanical L Page 862 Wednesday, December 31, 1969 17:00 Table 267. ELONGATION OF AT WROUGHT TITANIUM ALLOYS ROOM TEMPERATURE (SHEET 1 OF 3) Class Alloy Condition Elongation (%) Commercially Pure 99.5 Ti 99.2 Ti 99.1 Ti Annealed Annealed Annealed 30 28 25 99.0 Ti 99.2Ti-0.2Pd Ti-0.8Ni-0.3Mo Annealed Annealed Annealed 20 28 25 Alpha Alloys Ti-5Al-2.5Sn Ti-5Al-2.5Sn (low O2) Annealed Annealed 16 16 Near Alpha Alloys Ti-8Al-1Mo-1V Duplex Annealed 15 Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Duplex Annealed 15 Ti-6Al-2Sn-4Zr-2Mo Ti-5Al-2Sn-2Zr-2Mo-0.25Si Duplex Annealed 975 ˚C (1/2h), AC + 595 ˚C (2h), AC 15 13 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.31 Mechanical L Page 863 Wednesday, December 31, 1969 17:00 Table 267. ELONGATION OF AT Class Alpha-Beta Alloys WROUGHT TITANIUM ALLOYS ROOM TEMPERATURE (SHEET 2 OF 3) Alloy Condition Elongation (%) Ti-6Al-2Nb-1Ta-1Mo Ti-6Al-2Sn-1.5Zr-1Mo- 0.35Bi-0.1Si As rolled 2.5 cm (1 in.) plate Beta forge + duplex anneal 13 11 Ti-8Mn Ti-3Al-2.5V Annealed Annealed 15 20 Ti-6Al-4V Annealed Solution + age 14 10 Ti-6Al-4V(low O2) Annealed 15 Ti-6Al-6V-2Sn Annealed Solution + age 14 10 Ti-7Al-4Mo Solution + age 16 Ti-6Al-2Sn-4Zr-6Mo Ti-6Al-2Sn-2Zr-2Mo- 2Cr-0.25Si Ti-10V-2Fe-3Al Solution + age Solution + age Solution + age 10 11 10 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.31 Mechanical L Page 864 Wednesday, December 31, 1969 17:00 Table 267. ELONGATION OF AT WROUGHT TITANIUM ALLOYS ROOM TEMPERATURE (SHEET 3 OF 3) Class Alloy Condition Elongation (%) Beta Alloys Ti-13V-1Cr-3Al Solution + age 8 Ti-8Mo-8V-2Fe-3Al Ti-3Al-8V-6Cr-4Mo-4Zr Solution + age Solution + age Annealed 8 7 15 Ti-11.5Mo-6Zr-4.5Sn Solution + age 11 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.31 Mechanical L Page 865 Wednesday, December 31, 1969 17:00 Table 268. ELONGATION OF AT WROUGHT TITANIUM ALLOYS HIGH TEMPERATURE (SHEET 1 OF 4) Class Alloy Condition Test Temperature (°C) Commercially Pure 99.5 Ti 99.2 Ti 99.1 Ti Annealed Annealed Annealed 315 315 315 32 35 34 99.0 Ti 99.2Ti-0.2Pd Ti-0.8Ni-0.3Mo Ti-0.8Ni-0.3Mo Annealed Annealed Annealed Annealed 315 315 205 315 25 37 37 32 Ti-5Al-2.5Sn Annealed 315 18 Ti-5Al-2.5Sn (low O2) Annealed -195 -255 16 15 Ti-8Al-1Mo-1V Duplex Annealed 315 425 540 20 20 25 Alpha Alloys Near Alpha Alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC Elongation (%) 8.31 Mechanical L Page 866 Wednesday, December 31, 1969 17:00 Table 268. ELONGATION OF AT Class WROUGHT TITANIUM ALLOYS HIGH TEMPERATURE (SHEET 2 OF 4) Test Temperature (°C) Elongation (%) Alloy Condition Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Duplex Annealed 315 425 540 20 22 24 Ti-6Al-2Sn-4Zr-2Mo Duplex Annealed 315 425 540 16 21 26 Ti-5Al-2Sn-2Zr-2Mo-0.25Si 975 ˚C (1/2h), AC + 595 ˚C (2h), AC 315 425 540 15 17 19 Ti-6Al-2Nb-1Ta-1Mo As rolled 2.5 cm (1 in.) plate 315 425 540 20 20 20 Ti-6Al-2Sn-1.5Zr-1Mo- 0.35Bi-0.1Si Beta forge + duplex anneal 480 15 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.31 Mechanical L Page 867 Wednesday, December 31, 1969 17:00 Table 268. ELONGATION OF AT WROUGHT TITANIUM ALLOYS HIGH TEMPERATURE (SHEET 3 OF 4) Class Alloy Condition Test Temperature (°C) Alpha-Beta Alloys Ti-8Mn Ti-3Al-2.5V Annealed Annealed 315 315 18 25 Ti-6Al-4V Annealed Annealed Annealed 315 425 540 14 18 35 Solution + age Solution + age Solution + age 315 425 540 10 12 22 Ti-6Al-4V(low O2) Ti-6Al-6V-2Sn Annealed Annealed Solution + age 160 315 315 14 18 12 Ti-7Al-4Mo Solution + age 315 425 18 20 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC Elongation (%) 8.31 Mechanical L Page 868 Wednesday, December 31, 1969 17:00 Table 268. ELONGATION OF AT Class Beta Alloys WROUGHT TITANIUM ALLOYS HIGH TEMPERATURE (SHEET 4 OF 4) Test Temperature (°C) Elongation (%) Alloy Condition Ti-6Al-2Sn-4Zr-6Mo Solution + age 315 425 540 18 19 19 Ti-6Al-2Sn-2Zr-2Mo- 2Cr-0.25Si Solution + age 315 14 Ti-10V-2Fe-3Al Solution + age 205 315 13 13 Ti-13V-1Cr-3Al Solution + age 315 425 19 12 Ti-8Mo-8V-2Fe-3Al Solution + age 315 15 Ti-3Al-8V-6Cr-4Mo-4Zr Solution + age 315 425 20 17 Ti-11.5Mo-6Zr-4.5Sn Annealed Solution + age 315 315 22 16 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.31 Mechanical L Page 869 Wednesday, December 31, 1969 17:00 Table 269. TOTAL ELONGATION OF POLYMERS (SHEET 1 OF 10) Class Polymer Elongation (in 2 in.), (ASTM D638) (%) ABS Resins; Molded, Extruded Medium impact High impact Very high impact 5—20 5—50 20—50 Low temperature impact Heat resistant 30—200 20 Cast Resin Sheets, Rods: General purpose, type I General purpose, type II 2—7 2—7 Moldings: Grades 5, 6, 8 High impact grade 3—5 >25 Chlorinated Polymers Chlorinated polyether 130 Acrylics; Cast, Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.31 Mechanical L Page 870 Wednesday, December 31, 1969 17:00 Table 269. TOTAL ELONGATION OF POLYMERS (SHEET 2 OF 10) Class Polymer Elongation (in 2 in.), (ASTM D638) (%) Polycarbonates Polycarbonate Polycarbonate (40% glass fiber reinforced) 110 0—5 Fluorocarbons; Molded,Extruded Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) 125—175 250—350 Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) 10—200 250—330 200—300 Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible 4.4 1.5-60 Epoxies; Cast, Molded, Reinforced Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.31 Mechanical L Page 871 Wednesday, December 31, 1969 17:00 Table 269. TOTAL ELONGATION OF POLYMERS (SHEET 3 OF 10) Elongation (in 2 in.), (ASTM D638) (%) Class Polymer Epoxies—Molded, Extruded High performance resins (cycloaliphatic diepoxides) Cast, rigid Epoxy novolacs Glass cloth laminate Cellulose electrical 2.2—4.8 0.6 Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers 30—100 2.2—3.6 20 200—320 Type 8 Type 11 Type 12 400 100—120 120—350 Melamines; Molded Nylons; Molded, Extruded 2—5 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.31 Mechanical L Page 872 Wednesday, December 31, 1969 17:00 Table 269. TOTAL ELONGATION OF POLYMERS (SHEET 4 OF 10) Class Nylons; Molded, Extruded (Con’t) Phenolics; Molded ABS–Polycarbonate Alloy Polymer Elongation (in 2 in.), (ASTM D638) (%) 6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion 15—300 1.8—2.2 3 90—240 6/10 Nylon General purpose Glass fiber (30%) reinforced 85—220 1.9 Type and filler General: woodflour and flock High shock: chopped fabric or cord Very high shock: glass fiber 0.4—0.8 0.37—0.57 0.2 Rubber phenolic—woodflour or flock 0.75—2.25 ABS–Polycarbonate Alloy 110 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.31 Mechanical L Page 873 Wednesday, December 31, 1969 17:00 Table 269. TOTAL ELONGATION OF POLYMERS (SHEET 5 OF 10) Class Polymer Elongation (in 2 in.), (ASTM D638) (%) PVC–Acrylic Alloy PVC–acrylic sheet PVC–acrylic injection molded >100 150 Polymides Unreinforced Unreinforced 2nd value Glass reinforced <1 1.2 <1 Polyacetals Homopolymer: Standard 20% glass reinforced 22% TFE reinforced 25 7 12 Copolymer: Standard 25% glass reinforced High flow 60—75 3 40 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.31 Mechanical L Page 874 Wednesday, December 31, 1969 17:00 Table 269. TOTAL ELONGATION OF POLYMERS (SHEET 6 OF 10) Class Polymer Elongation (in 2 in.), (ASTM D638) (%) Polyester; Thermoplastic Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing 300 1—5 5 General purpose grade Glass reinforced grade Asbestos—filled grade 250 <5 <5 Cast polyyester Rigid Flexible 1.7—2.6 25—300 Reinforced polyester moldings High strength (glass fibers) 0.3—0.5 Phenylene Oxides SE—100 SE—1 Glass fiber reinforced 50 60 4—6 Polyesters: Thermosets Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.31 Mechanical L Page 875 Wednesday, December 31, 1969 17:00 Table 269. TOTAL ELONGATION OF POLYMERS (SHEET 7 OF 10) Class Polymer Elongation (in 2 in.), (ASTM D638) (%) Phenylene oxides (Noryl) Standard 50—100 Polyarylsulfone Polyarylsulfone 15—40 Polypropylene General purpose High impact 100—600 30—>200 Polypropylene (Con’t) Asbestos filled Glass reinforced Flame retardant 3—20 2—4 3—15 Polyphenylene sulfide Standard 40% glass reinforced 3 3—9 Polyethylenes; Molded, Extruded Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200 (ASTM D412) 500—725 125—675 80—100 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.31 Mechanical L Page 876 Wednesday, December 31, 1969 17:00 Table 269. TOTAL ELONGATION OF POLYMERS (SHEET 8 OF 10) Class Polyethylenes; Molded, Extruded (Con’t) Olefin Copolymers; Molded Polymer Elongation (in 2 in.), (ASTM D638) (%) Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9 200 200—425 Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight 700—1,000 50—l,000 100—700 400 EEA (ethylene ethyl acrylate) EVA (ethylene vinyl acetate) 650 650 Ethylene butene Ionomer Polyallomer 20 450 300—400 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.31 Mechanical L Page 877 Wednesday, December 31, 1969 17:00 Table 269. TOTAL ELONGATION OF POLYMERS (SHEET 9 OF 10) Class Polymer Elongation (in 2 in.), (ASTM D638) (%) Polystyrenes; Molded General purpose Medium impact 1.0—2.3 3.0—40 Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN 1.1 0.5—4.5 1.4—1.6 Nonrigid—general 200—450 Nonrigid—electrical Rigid—normal impact Vinylidene chloride 220—360 1—10 15—30 Polyvinyl Chloride And Copolymers; Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.31 Mechanical L Page 878 Wednesday, December 31, 1969 17:00 Table 269. TOTAL ELONGATION OF POLYMERS (SHEET 10 OF 10) Class Polymer Elongation (in 2 in.), (ASTM D638) (%) Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones (ASTM D651) <3 <3 Alpha—cellulose filled (ASTM Type l) 1 Silicones; Molded, Laminated Ureas; Molded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.31 Mechanical L Page 879 Wednesday, December 31, 1969 17:00 Table 270. ELONGATION AT YIELD FOR (SHEET 1 OF 3) POLYMERS Class Polymer Elongation at Yield, (ASTM D638) (%) Chlorinated polyether Chlorinated polyether 15 Polycarbonates Polycarbonate 5 Nylons; Molded, Extruded Type 6 Cast 5 Type 12 5.8 6/6 Nylon: General purpose molding General purpose extrusion 6/10 Nylon: General purpose 5—25 5—30 5—30 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.31 Mechanical L Page 880 Wednesday, December 31, 1969 17:00 Table 270. ELONGATION AT YIELD FOR (SHEET 2 OF 3) Class Polymer Polyacetals Homopolymer: Standard Copolymer: Standard 25% glass reinforced High flow POLYMERS Elongation at Yield, (ASTM D638) (%) 12 12 3 12 Phenylene oxides (Noryl) Standard Glass fiber reinforced 5.6 1.6—2 Polyarylsulfone Polyarylsulfone 6.5—13 Polypropylene: General purpose High impact Asbestos filled 9—15 7—13 5 Polyphenylene sulfide: Standard 40% glass reinforced 1.6 1.25 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.31 Mechanical L Page 881 Wednesday, December 31, 1969 17:00 Table 270. ELONGATION AT YIELD FOR (SHEET 3 OF 3) POLYMERS Class Polymer Elongation at Yield, (ASTM D638) (%) Polystyrenes; Molded General purpose Medium impact High impact Glass fiber -30% reinforced Glass fiber (30%) reinforced SAN 1.0—2.3 1.2—3.0 1.5—2.0 1.1 1.4—1.6 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 8.32 Mechanical Page 882 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 271. ULTIMATE TENSILE ELONGATION OF FIBERGLASS REINFORCED PLASTICS Class Material Glass fiber content (wt%) Glass fiber reinforced thermosets Sheet molding compound (SMC) 15 to 30 0.3 to 1.5 Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester 15 to 35 25 to 50 20 to 30 0.3 to 5 1 to 2 1 to 2 Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic 30 to 50 30 to 80 40 to 80 5 to 25 1.0 to 1.2 1.6 to 2.8 1.6 to 2.5 0.25 to 0.6 Glass–fiber–reinforced thermoplastics Ultimate tensile elongation (%) Acetal 20 to 40 2 Nylon Polycarbonate Polyethylene 6 to 60 20 to 40 10 to 40 2 to 10 2 1.5 to 3.5 Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene) 20 to 40 20 to 35 20 to 40 20 to 40 1 to 3 1.0 to 1.4 2 to 3 3 to 3.4 PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester 15 to 35 20 to 40 20 to 40 20 to 35 2 to 4 1.7 to 5 1.1 to 1.6 1 to 5 To convert (ksi) to (Mpa), multiply by 6.89 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994). ©2001 CRC Press LLC 882 CRC Handbook of Materials Science & Engineering 8.32 Mechanical Page 883 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 272. TOTAL STRAIN OF SILICON CARBIDE SCS–2–AL Fiber orientation No. of plies Total Strain 0° 90° 6, 8, 12 6, 12,40 0.89 0.08 [0°/90°/0°/90°]s [02 °99°20°]s [902/90°/90°]s 8 8 8 0.90 0.92 1.01 ± 45° [0°±45°/0°]s+2s [0°±45°/90°]s 8, 12, 40 8, 16 8 10.6 0.86 1.0 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994). ©2001 CRC Press LLC Shackelford & Alexander 883 8.32 Mechanical Page 884 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 273. AREA REDUCTION OF TOOL STEELS (SHEET 1 OF 2) Area Reduction (%) Type Condition L2 Annealed Oil quenched from 855 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C 50 Annealed Oil quenched from 845 •C and single tempered at: 315 •C 425 •C 540 •C 650 •C 55 Annealed Oil quenched from 930 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C 52 Annealed Oil quenched from 870 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C 50 L6 S1 S5 15 30 35 45 55 9 20 30 48 12 17 23 37 20 24 28 30 40 Area Reduction in 50 mm or 2 in. Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984). ©2001 CRC Press LLC 884 CRC Handbook of Materials Science & Engineering 8.32 Mechanical Page 885 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 273. AREA REDUCTION OF TOOL STEELS (SHEET 2 OF 2) Type Condition S7 Annealed Fan cooled from 940 •C and single tempered at: 205 •C 315 •C 425 •C 540 •C 650 •C Area Reduction (%) 55 20 25 29 33 45 Area Reduction in 50 mm or 2 in. Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984). ©2001 CRC Press LLC Shackelford & Alexander 885 8.33 Mechanical L Page 886 Wednesday, December 31, 1969 17:00 Table 274. REDUCTION IN AREA OF AUSTENITIC STAINLESS STEELS (SHEET 1 OF 4) Type Form Condition ASTM Specification Reduction in Area (%) Type 302 (UNS S30200) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 50 40 40 Type 302B (UNS S30215) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 50 40 40 Types 303 (UNS S30300) and 303Se (UNS S30323) Bar Annealed A581 55 Type 304(UNS S30400) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 50 40 40 Type 304L (UNS S30403) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 50 40 40 (a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993). ©2001 CRC Press LLC 8.33 Mechanical L Page 887 Wednesday, December 31, 1969 17:00 Table 274. REDUCTION IN AREA OF AUSTENITIC STAINLESS STEELS (SHEET 2 OF 4) Type Form Condition ASTM Specification Reduction in Area (%) Type 305 (UNS S30500) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 50 40 40 Types 308 (UNS S30800),321(UNS S32100),347(UNS34700) and 348 (UNS S34800) Bar Hot finished and annealed A276 50 Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 40 40 Type 308L Bar Annealed — 70 Types 309 (UNS S30900), 309S (UNS S30908), 310 (UNS S31000) and 310S (UNS S31008) Bar Hot finished and annealed A276 50 Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 40 40 (a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993). ©2001 CRC Press LLC 8.33 Mechanical L Page 888 Wednesday, December 31, 1969 17:00 Table 274. REDUCTION IN AREA OF AUSTENITIC STAINLESS STEELS (SHEET 3 OF 4) Type Form Condition ASTM Specification Reduction in Area (%) Type 314 (UNS S31400) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 50 40 40 Type 316 (UNS S31600) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 50 40 40 Type 316F (UNS S31620) Bar Annealed — 55 Type 316L (UNS S31603) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 50 40 40 Type 316LN Bar Annealed — 70 (a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993). ©2001 CRC Press LLC 8.33 Mechanical L Page 889 Wednesday, December 31, 1969 17:00 Table 274. REDUCTION IN AREA OF AUSTENITIC STAINLESS STEELS (SHEET 4 OF 4) Type Form Condition ASTM Specification Reduction in Area (%) Type 317 (UNS S31700) Bar Hot finished and annealed Cold finished and annealed(a) Cold finished and annealed(b) A276 A276 A276 50 40 40 Type 317L (UNS S31703) Bar Annealed — 65 Type 317LM Bar,Plate,Sheet, Strip Annealed — 50 Type 329 (UNS S32900) Bar Annealed — 50 Type 330HC Bar,Wire,Strip Annealed — 65 (a) Up to 13 mm thick (b) Over 13 mm thick. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p364-366 (1993). ©2001 CRC Press LLC 8.33 Mechanical L Page 890 Wednesday, December 31, 1969 17:00 Table 275. REDUCTION IN AREA OF FERRITIC STAINLESS STEELS Type ASTM Specification Form Condition (%) Type 405 (UNS S40500) A580 A580 Wire Annealed Annealed, Cold Finished 45 45 Type 429 (UNS S42900) — Bar Annealed 65(a) Type 430 (UNS S43000) A276 A276 Bar Annealed, Hot Finished Annealed, Cold Finished 45 45 Type 430Ti(UNS S43036) Type 434 (UNS S43400) — — Bar Wire Annealed Annealed 65(a) 78(a) Type 442 (UNS S44200) — Bar Annealed 40(a) Type 446 (UNS S44600) A276 A276 Bar Annealed, Hot Finished Annealed, Cold Finished 45 45 (a) Typical Values Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p368 (1993). ©2001 CRC Press LLC 8.33 Mechanical L Page 891 Wednesday, December 31, 1969 17:00 Table 276. REDUCTION IN AREA OF HIGH–NITROGEN AUSTENITIC STAINLESS STEELS Type ASTM Specification Form Condition Reduction in Area (%) Type 201 (UNS S20100) A276 Bar Annealed 45 Type 205 (UNS S20500) — Plate Annealed* 62 Type 304HN (UNS S30452) — Bar Annealed 50 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p367 (1993). * Typical values ©2001 CRC Press LLC 8.33 Mechanical L Page 892 Wednesday, December 31, 1969 17:00 Table 277. REDUCTION IN AREA OF PRECIPITATION -HARDENING AUSTENITIC STAINLESS STEELS Type Form Condition Reduction in Area (%) PH 13–8 Mo (UNS S13800) Bar, Plate, Sheet, Strip H950 H1000 45 45 15–5 PH (UNS S15500) and 17–4 PH (UNS S17400) Bar, Plate, Sheet, Stript H900 H925 H1025 H1075 35(a) 38(a) 45(a) 45(a) H1100 H1150 H1150M 45(a) 50(a) 55(a) RH950 TH1050 10 25 17–7 PH (UNS S17700) Bar (a) For flat rolled products, value generally lower and varies with thickness. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p371 (1993). ©2001 CRC Press LLC 8.33 Mechanical L Page 893 Wednesday, December 31, 1969 17:00 Table 278. REDUCTION IN AREA OF MARTENSITIC STAINLESS STEELS (SHEET 1 OF 2) Type ASTM Specification Form Condition Reduction in Area (%) Type 403 (UNS S40300) A276 A276 A276 Bar Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished 45 45 45 Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished 40 40 40 Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished 45 45 45 Intermediate temper, cold finished Hard temper, hot finished Hard temper, cold finished 40 40 40 Annealed, hot finished Annealed, cold finished Intermediate temper, hot finished Intermediate temper, cold finished 45 35 45 35 A276 A276 A276 Type 410 (UNS S41000) A276 A276 A276 Bar A276 A276 A276 Type 410Cb (UNS S41040) A276 A276 A276 A276 Bar Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993). ©2001 CRC Press LLC 8.33 Mechanical L Page 894 Wednesday, December 31, 1969 17:00 Table 278. REDUCTION IN AREA OF MARTENSITIC STAINLESS STEELS (SHEET 2 OF 2) Type ASTM Specification Form Condition Reduction in Area (%) Type 414 (UNS S41400) A276 A276 Bar Intermediate temper, hot finished Intermediate temper, cold finished 45 45 Type 414L Type 420 (UNS S42000) — — Bar Bar Annealed Tempered 205 °C 60 25 Type 422 (UNS S42200) A565 Bar for high-temperature service 30 Type 431 (UNS S43100) — — — Bar Tempered 260 °C Tempered 595 °C Tempered 315 °C 55 57 20 Tempered 315 °C Tempered 315 °C 15 10 — — Intermediate and hard tempers Type 501 (UNS S50100) — — Bar, Plate Annealed Tempered 540 °C 65 50 Type 502 (UNS S50200) — Bar, Plate Annealed 70 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p369-370 (1993). ©2001 CRC Press LLC 8.34 Mechanical Page 895 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 279. REDUCTION IN AREA OF COMMERCIALLY PURE TIN Temperature (°C) Reduction in Area (%) Strained at 0.2 mm/m • min -200 -160 -120 -80 -40 0 23 6 10 97 100 100 100 100 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p488, (1993). ©2001 CRC Press LLC Shackelford & Alexander 895 8.35 Mechanical L Page 896 Wednesday, December 31, 1969 17:00 Table 280. AREA REDUCTION OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE (SHEET 1 OF 2) Class Alloy Condition Reduction in Area (%) Commercially Pure 99.5 Ti 99.2 Ti 99.1 Ti Annealed Annealed Annealed 55 50 45 99.0 Ti 99.2Ti-0.2Pd Ti-0.8Ni-0.3Mo Annealed Annealed Annealed 40 50 42 Alpha Alloys Ti-5Al-2.5Sn Annealed 40 Near Alpha Alloys Ti-8Al-1Mo-1V Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Ti-6Al-2Sn-4Zr-2Mo Ti-6Al-2Nb-1Ta-1Mo Duplex Annealed Duplex Annealed Duplex Annealed As rolled 2.5 cm (1 in.) plate 28 35 35 34 Alpha-Beta Alloys Ti-8Mn Annealed 32 Ti-6Al-4V Annealed Solution + age 30 25 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.35 Mechanical L Page 897 Wednesday, December 31, 1969 17:00 Table 280. AREA REDUCTION OF WROUGHT TITANIUM ALLOYS AT ROOM TEMPERATURE (SHEET 2 OF 2) Class Alloy Condition Reduction in Area (%) Ti-6Al-4V(low O2) Annealed 35 Ti-6Al-6V-2Sn Annealed Solution + age 30 20 Ti-7Al-4Mo Ti-6Al-2Sn-4Zr-6Mo Ti-6Al-2Sn-2Zr-2Mo- 2Cr-0.25Si Ti-10V-2Fe-3Al Solution + age Solution + age Solution + age Solution + age 22 23 33 19 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.35 Mechanical L Page 898 Wednesday, December 31, 1969 17:00 Table 281. AREA REDUCTION OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 1 OF 3) Class Alloy Condition Test Temperature (°C) Commercially Pure 99.5 Ti 99.2 Ti 99.1 Ti Annealed Annealed Annealed 315 315 315 80 75 75 99.0 Ti 99.2Ti-0.2Pd Annealed Annealed 315 315 70 75 Alpha Alloys Ti-5Al-2.5Sn Annealed 315 45 Near Alpha Alloys Ti-8Al-1Mo-1V Duplex Annealed 315 425 540 38 44 55 Ti-11Sn-1Mo-2.25Al-5.0Zr-1Mo-0.2Si Duplex Annealed 315 425 540 44 48 50 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC Reduction in Area (%) 8.35 Mechanical L Page 899 Wednesday, December 31, 1969 17:00 Table 281. AREA REDUCTION OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 2 OF 3) Class Alpha-Beta Alloys Test Temperature (°C) Reduction in Area (%) Alloy Condition Ti-6Al-2Sn-4Zr-2Mo Duplex Annealed 315 425 540 42 55 60 Ti-6Al-4V Annealed Annealed Annealed 315 425 540 35 40 50 Solution + age Solution + age Solution + age 315 425 540 28 35 45 Ti-6Al-6V-2Sn Annealed Solution + age 315 315 42 28 Ti-7Al-4Mo Solution + age 315 425 50 55 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.35 Mechanical L Page 900 Wednesday, December 31, 1969 17:00 Table 281. AREA REDUCTION OF WROUGHT TITANIUM ALLOYS AT HIGH TEMPERATURE (SHEET 3 OF 3) Class Test Temperature (°C) Reduction in Area (%) Alloy Condition Ti-6Al-2Sn-4Zr-6Mo Solution + age 315 425 540 55 67 70 Ti-6Al-2Sn-2Zr-2Mo- 2Cr-0.25Si Solution + age 315 27 Ti-10V-2Fe-3Al Solution + age 205 315 33 42 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p512, (1993). ©2001 CRC Press LLC 8.36 Mechanical Page 901 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 282. STRENGTH DENSITY RATIO OF GRAPHITE FIBER REINFORCED METALS Composite Fiber content (vol%) Strength / Density (106in) Graphite(a)/lead Graphite(b)/lead Graphite(a)/zinc Graphite(a)/magnesium 41 35 35 42 0.385 0.260 0.580 1.016 (a) Thornel 75 fiber (b) Courtaulds HM fiber Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). Table 283. MODULUS DENSITY RATIO OF GRAPHITE FIBER REINFORCED METALS Composite Fiber content (vol%) Modulus/ Density (106in) Graphite(a)/lead Graphite(b)/lead Graphite(a)/zinc Graphite(a)/magnesium 41 35 35 42 107.0 62.3 88.5 393.7 (a) Thornel 75 fiber (b) Courtaulds HM fiber Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p148,(1994). ©2001 CRC Press LLC Shackelford & Alexander 901 8.36 Mechanical Page 902 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 284. VISCOSITY OF (SHEET 1 OF 15) Glass Composition SiO2 glass SiO2-Na2O glass GLASSES Viscosity Temperature ˚C 12.6-14.4 logP 11.4-12.8 logP 10.4-11.83 logP 9.43-10.65 logP 1100 1200 1300 1400 8.54-9.52 logP 7.8-8.53 logP 7.1-7.65 logP 1500 1600 1700 6.43-6.9 logP 5.88-6.2 logP 5.2-5.4 logP 1800 1900 2000 (21.7 % mol Na2O) 4.28 logP 900 (21.7 % mol Na2O) 3.66 logP 1000 (21.7 % mol Na2O) 3.17 logP 1100 (21.7 % mol Na2O) 2.76 logP 1200 (21.7 % mol Na2O) 2.40 logP 1300 (21.7 % mol Na2O) 2.08 logP 1400 (23.8 % mol Na2O) 3.88 logP 900 (23.8 % mol Na2O) 3.28 logP 1000 (23.8 % mol Na2O) 2.82 logP 1100 (23.8 % mol Na2O) 2.44 logP 1200 (23.8 % mol Na2O) 2.10 logP 1300 (23.8 % mol Na2O) 1.84 logP 1400 (27.7 % mol Na2O) 4.33 logP 800 (27.7 % mol Na2O) 3.71 logP 900 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 902 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 903 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 284. VISCOSITY OF (SHEET 2 OF 15) GLASSES Glass Composition Viscosity Temperature ˚C SiO2-Na2O glass (27.7 % mol Na2O) 3.16 logP 1000 (27.7 % mol Na2O) 2.69 logP 1100 (27.7 % mol Na2O) 2.31 logP 1200 (27.7 % mol Na2O) 1.98 logP 1300 (27.7 % mol Na2O) 1.65 logP 1400 (31.7 % mol Na2O) 4.17 logP 800 (31.7 % mol Na2O) 3.45 logP 900 (31.7 % mol Na2O) 2.92 logP 1000 (31.7 % mol Na2O) 2.48 logP 1100 (31.7 % mol Na2O) 2.12 logP 1200 (31.7 % mol Na2O) 1.83 logP 1300 (31.7 % mol Na2O) 1.59 logP 1400 (33.7 % mol Na2O) 4.06 logP 800 (33.7 % mol Na2O) 3.39 logP 900 (33.7 % mol Na2O) 2.66 logP 1000 (33.7 % mol Na2O) 2.20 logP 1100 (33.7 % mol Na2O) 1.81 logP 1200 (33.7 % mol Na2O) 1.52 logP 1300 (36.3 % mol Na2O) 4.13 logP 800 (36.3 % mol Na2O) 3.40 logP 900 (36.3 % mol Na2O) 2.86 logP 1000 (36.3 % mol Na2O) 2.42 logP 1100 (36.3 % mol Na2O) 2.06 logP 1200 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 903 8.36 Mechanical Page 904 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 284. VISCOSITY OF (SHEET 3 OF 15) GLASSES Glass Composition Viscosity Temperature ˚C SiO2-Na2O glass (36.3 % mol Na2O) 1.76 logP 1300 (36.3 % mol Na2O) 1.51 logP 1400 (38.9 % mol Na2O) 3.91 logP 800 (38.9 % mol Na2O) 3.20 logP 900 (38.9 % mol Na2O) 2.63 logP 1000 (38.9 % mol Na2O) 2.18 logP 1100 (38.9 % mol Na2O) 1.78 logP 1200 (38.9 % mol Na2O) 1.47 logP 1300 (41.9 % mol Na2O) 3.56 logP 800 (41.9 % mol Na2O) 2.83 logP 900 (41.9 % mol Na2O) 2.29 logP 1000 (41.9 % mol Na2O) 1.85 logP 1100 (41.9 % mol Na2O) 1.50 logP 1200 (44.0 % mol Na2O) 3.65 logP 800 (44.0 % mol Na2O) 2.81 logP 900 (44.0 % mol Na2O) 2.24 logP 1000 (44.0 % mol Na2O) 1.80 logP 1100 (44.0 % mol Na2O) 1.43 logP 1200 (30.5% mol CaO) (30.5% mol CaO) (30.5% mol CaO) 13.6 P 10.4 P 8.5 P 1700 1750 1800 (34.5% mol CaO) (34.5% mol CaO) 10.0 P 7.8 P 1650 1700 SiO2-CaO glass Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 904 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 905 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 284. VISCOSITY OF (SHEET 4 OF 15) GLASSES Glass Composition Viscosity Temperature ˚C SiO2-CaO glass (34.5% mol CaO) (34.5% mol CaO) 6.05 P 4.5 P 1750 1800 (41.6% mol CaO) (41.6% mol CaO) (41.6% mol CaO) 9.35 P 6.48 P 4.68 P 1500 1550 1600 (41.6% mol CaO) (41.6% mol CaO) (41.6% mol CaO) (41.6% mol CaO) 3.57 P 2.75 P 2.16 P 1.8 P 1650 1700 1750 1800 (48.7% mol CaO) (48.7% mol CaO) (48.7% mol CaO) 4.35 P 3.17 P 2.41 P 1500 1550 1600 (48.7% mol CaO) (48.7% mol CaO) (48.7% mol CaO) (48.7% mol CaO) 1.90 P 1.50 P 1.20 P 0.99 P 1650 1700 1750 1800 (52.7% mol CaO) (52.7% mol CaO) (52.7% mol CaO) 3.03 P 2.20 P 1.66 P 1500 1550 1600 (52.7% mol CaO) (52.7% mol CaO) (52.7% mol CaO) (52.7% mol CaO) 1.28 P 1.01 P 0.83 P 0.72 P 1650 1700 1750 1800 (54.7% mol CaO) (54.7% mol CaO) (54.7% mol CaO) 2.57 P 1.39 P 1.40 P 1500 1550 1600 (54.7% mol CaO) (54.7% mol CaO) 1.10 P 0.90 P 1650 1700 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 905 8.36 Mechanical Page 906 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 284. VISCOSITY OF (SHEET 5 OF 15) GLASSES Glass Composition Viscosity Temperature ˚C SiO2-CaO glass (54.7% mol CaO) (54.7% mol CaO) 0.75 P 0.66 P 1750 1800 (57.7% mol CaO) (57.7% mol CaO) 1.13 P 0.90 P 1600 1650 (57.7% mol CaO) (57.7% mol CaO) (57.7% mol CaO) 0.74 P 0.62 P 0.54 P 1700 1750 1800 (35% mol PbO) (35% mol PbO) (35% mol PbO) 7380 P 1920 P 620 P 840 900 960 (35% mol PbO) (35% mol PbO) (35% mol PbO) (35% mol PbO) 302 P 164 P 100.0 P 62.0 P 1020 1080 1140 1200 (35% mol PbO) (35% mol PbO) (35% mol PbO) (35% mol PbO) 38.2 P 25.0 P 16.2 P 11.8 P 1260 1320 1380 1440 (40% mol PbO) (40% mol PbO) (40% mol PbO) 2970 P 830 P 329 P 780 840 900 (40% mol PbO) (40% mol PbO) (40% mol PbO) 164 P 91.0 P 51.8 P 960 1020 1080 (40% mol PbO) (40% mol PbO) 31.8 P 20.4 P 1140 1200 SiO2-PbO glass Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 906 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 907 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 284. VISCOSITY OF (SHEET 6 OF 15) GLASSES Glass Composition Viscosity Temperature ˚C SiO2-PbO glass (40% mol PbO) (40% mol PbO) 13.5 P 10.2 P 1260 1320 (46% mol PbO) (46% mol PbO) (46% mol PbO) (46% mol PbO) 2260 P 494 P 166 P 85.0 P 720 780 840 900 (46% mol PbO) (46% mol PbO) (46% mol PbO) (46% mol PbO) 47.4 P 29.4 P 18.6 P 12.7 P 960 1020 1080 1140 (46% mol PbO) (46% mol PbO) (46% mol PbO) (46% mol PbO) 8.8 P 6.3 P 5.2 P 4.9 P 1200 1260 1320 1380 (50% mol PbO) (50% mol PbO) (50% mol PbO) 21200 P 1600 P 292 P 600 660 720 (50% mol PbO) (50% mol PbO) (50% mol PbO) (50% mol PbO) 105 P 43.8 P 22.5 P 13.9 P 780 840 900 960 (50% mol PbO) (50% mol PbO) (50% mol PbO) (50% mol PbO) 8.8 P 6.0 P 4.3 P 2.9 P 1020 1080 1140 1200 (55% mol PbO) (55% mol PbO) (55% mol PbO) 51.0 P 22.4 P 12.6 P 720 780 840 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 907 8.36 Mechanical Page 908 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 284. VISCOSITY OF (SHEET 7 OF 15) GLASSES Glass Composition Viscosity Temperature ˚C SiO2-PbO glass (55% mol PbO) (55% mol PbO) (55% mol PbO) 7.10 P 4.44 P 3.00 P 900 960 1020 (55% mol PbO) (55% mol PbO) (55% mol PbO) 2.06 P 1.40 P 0.98 P 1080 1140 1200 (60% mol PbO) (60% mol PbO) (60% mol PbO) (60% mol PbO) (60% mol PbO) (60% mol PbO) (60% mol PbO) (60% mol PbO) 37.6 P 12.4 P 5.8 P 3.2 P 2.2 P 1.5 P 1.00 P 0.7 P 660 720 780 840 900 960 1020 1080 (64% mol PbO) (64% mol PbO) (64% mol PbO) 5.2 P 2.5 P 1.23 P 720 780 840 (64% mol PbO) (64% mol PbO) (64% mol PbO) (64% mol PbO) 1.00 P 0.70 P 0.50 P 0.30 P 900 960 1020 1080 (66.7% mol PbO) (66.7% mol PbO) 1.60 P 1.00 P 780 840 (66.7% mol PbO) (66.7% mol PbO) (66.7% mol PbO) 0.70 P 0.50 P 0.35 P 900 960 1020 (70% mol PbO) (70% mol PbO) (70% mol PbO) 1.80 P 1.17 P 0.80 P 720 780 840 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 908 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 909 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 284. VISCOSITY OF (SHEET 8 OF 15) GLASSES Glass Composition Viscosity Temperature ˚C SiO2-PbO glass (70% mol PbO) (70% mol PbO) 0.40 P 0.20 P 900 960 SiO2-Al2O3 glass (37.1% mol Al2O3) 5.8 P 1850 (37.1% mol Al2O3) 4.1 P 1900 (37.1% mol Al2O3) 3.1 P 1950 (37.1% mol Al2O3) 2.5 P 2000 (37.1% mol Al2O3) 2.2 P 2050 (37.1% mol Al2O3) 1.9 P 2100 (46.9% mol Al2O3) 3.3 P 1850 (46.9% mol Al2O3) 2.4 P 1900 (46.9% mol Al2O3) 1.8 P 1950 (46.9% mol Al2O3) 1.5 P 2000 (46.9% mol Al2O3) 1.3 P 2050 (46.9% mol Al2O3) 1.2 P 2100 (70.2% mol Al2O3) 0.9 P 1950 (70.2% mol Al2O3) 0.8 P 2000 (70.2% mol Al2O3) 0.7 P 2050 (70.2% mol Al2O3) 0.6 P 2100 (6.2% mol B2O3) 33.0 kP 1763 (6.2% mol B2O3) 26.6 kP 1783 (6.2% mol B2O3) 16.9 kP 1815 (6.2% mol B2O3) 13.1 kP 1840 (10.1% mol B2O3) 13.3 kP 1727 (10.1% mol B2O3) 11.2 kP 1730 SiO2-B2O3 glass Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 909 8.36 Mechanical Page 910 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 284. VISCOSITY OF (SHEET 9 OF 15) Glass SiO2-B2O3 glass GLASSES Composition Viscosity Temperature ˚C (10.1% mol B2O3) 10.9 kP 1736 (10.1% mol B2O3) 11.4 kP 1738 (10.1% mol B2O3) 11.0 kP 1740 (10.1% mol B2O3) 9.07 kP 1757 (10.1% mol B2O3) 8.57 kP 1768 (10.1% mol B2O3) 7.78 kP 1775 (10.1% mol B2O3) 6.54 kP 1778 (10.1% mol B2O3) 5.83 kP 1792 (14.5% mol B2O3) 3.51 kP 1691 (14.5% mol B2O3) 3.37 kP 1693 (14.5% mol B2O3) 2.63 kP 1720 (14.5% mol B2O3) 2.45 kP 1725 (14.5% mol B2O3) 1.92 kP 1752 (14.5% mol B2O3) 1.85 kP 1757 (14.5% mol B2O3) 1.47 kP 1778 (14.5% mol B2O3) 1.45 kP 1783 (14.5% mol B2O3) 1.17 kP 1797 (14.5% mol B2O3) 1.14 kP 1800 (14.5% mol B2O3) 1.12 kP 1802 (14.5% mol B2O3) 1.00 kP 1812 (14.5% mol B2O3) 0.97 kP 1816 (25.2% mol B2O3) 127.0 kP 1303 (25.2% mol B2O3) 89.8 kP 1329 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 910 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 911 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 284. VISCOSITY OF GLASSES (SHEET 10 OF 15) Glass SiO2-B2O3 glass Composition Viscosity Temperature ˚C (25.2% mol B2O3) 67.4 kP 1355 (25.2% mol B2O3) 44.5 kP 1376 (25.2% mol B2O3) 32.0 kP 1418 (25.2% mol B2O3) 21.9 kP 1444 (42.4% mol B2O3) -2.37+9823/T log P 1100-1460 (53.1% mol B2O3) -1.96+8239/T log P 1380-1530 (62.4% mol B2O3) -1.99+7687/T log P 1280-1460 (71.9% mol B2O3) -1.24+5740/T log P 1130-1410 (75.4 % mol B2O3) 119000 P 530 (75.4 % mol B2O3) 15230 P 630 (75.4 % mol B2O3) 3400 P 800 (79.7 % mol B2O3) 49500 P 530 (79.7 % mol B2O3) 9300 P 630 (79.7 % mol B2O3) 1400 P 800 (81.9% mol B2O3) 11.61-14.06 log P 243-306 (82.5% mol B2O3) 0.90+4576/T log P 1050-1360 (86.3 % mol B2O3) 17000 P 530 (86.3 % mol B2O3) 4000 P 630 (86.3 % mol B2O3) 425 P 800 (90.0% mol B2O3) 0.42+3434/T log P 1030-1360 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 911 8.36 Mechanical Page 912 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 284. VISCOSITY OF GLASSES (SHEET 11 OF 15) Glass Composition Viscosity Temperature ˚C SiO2-B2O3 glass (90.4 % mol B2O3) 15300 P 530 (90.4 % mol B2O3) 4400 P 630 (90.4 % mol B2O3) 565 P 800 (93.1 % mol B2O3) 7150 P 530 (93.1 % mol B2O3) 2200 P 630 (93.1 % mol B2O3) 420 P 800 (93.91% mol B2O3) 0.68+3655/T log P 1070-1350 (97.7 % mol B2O3) 6900 P 530 (97.7 % mol B2O3) 2730 P 630 (97.7 % mol B2O3) 410 P 800 9.799 log P 8.602 log P 7.602 log P 6.415 log P 325 350 375 411 5.484 log P 4.611 log P 4.029 log P 3.561 log P 450 500 550 600 2.959 log P 2.549 log P 2.245 log P 2.000 log P 700 800 900 1000 1.785 log P 1.603 log P 1.462 log P 1.335 log P 1100 1200 1300 1400 B2O3 glass Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 912 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 913 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 284. VISCOSITY OF GLASSES (SHEET 12 OF 15) Glass Viscosity Temperature ˚C 4.65 P 3.87 P 1829 1863 (32.0 % mol CaO) (32.0 % mol CaO) (32.0 % mol CaO) (32.0 % mol CaO) 12.51 log P 12.02 log P 10.64 log P 9.17 log P 646.5 654.8 674.8 697.2 (34.0 % mol CaO) (34.0 % mol CaO) (34.0 % mol CaO) (34.0 % mol CaO) 11.32 log P 10.68 log P 9.88 log P 10.51 log P 656.1 667.1 681.3 671.3 (34.0 % mol CaO) (34.0 % mol CaO) (34.0 % mol CaO) (34.0 % mol CaO) 11.60 log P 10.48 log P 9.09 log P 11.37 log P 653.6 668.9 691.5 657.2 (55.0 % mol CaO) (55.0 % mol CaO) (55.0 % mol CaO) (55.0 % mol CaO) 12.92 log P 9.84 log P 7.32 log P 5.38 log P 650 700 750 800 (55.0 % mol CaO) (55.0 % mol CaO) (55.0 % mol CaO) (55.0 % mol CaO) (55.0 % mol CaO) 2.60 log P 1.96 log P 1.38 log P 0.96 log P 0.74 log P 900 950 1000 1050 1100 (5% mol Na2O) 7.83x1014 P 285 (5% mol Na2O) 5.86x1013 P 300 Composition B2O3 glass B2O3-CaO glass B2O3-Na2O glass (5% mol Na2O) 1.99x10 P 309 (9.9% mol Na2O) 3.371 log P 630 (9.9% mol Na2O) 3.095 log P 650 (9.9% mol Na2O) 2.586 log P 700 13 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 913 8.36 Mechanical Page 914 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 284. VISCOSITY OF GLASSES (SHEET 13 OF 15) Glass Composition Viscosity Temperature ˚C B2O3-Na2O glass (9.9% mol Na2O) 2.181 log P 750 (9.9% mol Na2O) 1.884 log P 800 (9.9% mol Na2O) 1.647 log P 850 (9.9% mol Na2O) 1.569 log P 870 (10% mol Na2O) 1.28x1015 P 328 (10% mol Na2O) 1.41x1014 P 340 (10% mol Na2O) 2.06x1013 P 351 (12.8% mol Na2O) 3.566 log P 630 (12.8% mol Na2O) 3.257 log P 650 (12.8% mol Na2O) 2.695 log P 700 (12.8% mol Na2O) 2.252 log P 750 (12.8% mol Na2O) 1.923 log P 800 (12.8% mol Na2O) 1.661 log P 850 (12.8% mol Na2O) 1.574 log P 870 (15% mol Na2O) 1.44x1015 P 381 (15% mol Na2O) 1.65x1014 P 394 (15% mol Na2O) 2.75x10 P 405 (15.1% mol Na2O) 3.825 log P 630 (15.1% mol Na2O) 3.457 log P 650 (15.1% mol Na2O) 2.818 log P 700 (15.1% mol Na2O) 2.319 log P 750 (15.1% mol Na2O) 1.942 log P 800 (15.1% mol Na2O) 1.652 log P 850 (15.1% mol Na2O) 1.560 log P 870 13 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 914 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 915 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 284. VISCOSITY OF GLASSES (SHEET 14 OF 15) Glass Composition Viscosity Temperature ˚C B2O3-Na2O glass (17.5% mol Na2O) 4.050 log P 630 (17.5% mol Na2O) 3.623 log P 650 (17.5% mol Na2O) 2.881 log P 700 (17.5% mol Na2O) 2.332 log P 750 (17.5% mol Na2O) 1.931 log P 800 (17.5% mol Na2O) 1.633 log P 850 (17.5% mol Na2O) 1.545 log P 870 (19.7% mol Na2O) 4.110 log P 630 (19.7% mol Na2O) 3.712 log P 650 (19.7% mol Na2O) 2.945 log P 700 (19.7% mol Na2O) 2.324 log P 750 (19.7% mol Na2O) 1.875 log P 800 (19.7% mol Na2O) 1.540 log P 850 (19.7% mol Na2O) 1.435 log P 870 (20% mol Na2O) 5.19x1015 P 435 (20% mol Na2O) 1.31x1014 P 445 (20% mol Na2O) 1.57x10 P 457 (21.9% mol Na2O) 4.185 log P 630 (21.9% mol Na2O) 3.746 log P 650 (21.9% mol Na2O) 2.951 log P 700 (21.9% mol Na2O) 2.324 log P 750 (21.9% mol Na2O) 1.810 log P 800 (21.9% mol Na2O) 1.506 log P 850 (21.9% mol Na2O) 1.392 log P 870 13 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 915 8.36 Mechanical Page 916 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 284. VISCOSITY OF GLASSES (SHEET 15 OF 15) Glass Composition Viscosity Temperature ˚C B2O3-Na2O glass (24.0% mol Na2O) 4.050 log P 630 (24.0% mol Na2O) 3.598 log P 650 (24.0% mol Na2O) 2.824 log P 700 (24.0% mol Na2O) 2.228 log P 750 (24.0% mol Na2O) 1.782 log P 800 (24.0% mol Na2O) 1.455 log P 850 (24.0% mol Na2O) 1.344 log P 870 (25% mol Na2O) 6.67x1014 P 445 (25% mol Na2O) 1.29x1014 P 455 (25% mol Na2O) 1.31x1013 P 466 (26.4% mol Na2O) 3.865 log P 630 (26.4% mol Na2O) 3.448 log P 650 (26.4% mol Na2O) 2.679 log P 700 (26.4% mol Na2O) 2.086 log P 750 (26.4% mol Na2O) 1.684 log P 800 (26.4% mol Na2O) 1.395 log P 850 (26.4% mol Na2O) 1.300 log P 870 (30% mol Na2O) 2.12x1015 P 448 (30% mol Na2O) 8.06x1014 P 457 (30% mol Na2O) 13 1.02x10 P 467 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 916 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 917 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 285. INTERNAL FRICTION OF SIO2 GLASS Glass Internal Friction Temperature SiO2 glass 4-80x10-7 100˚C 200˚C 300˚C 400˚C 500˚C 600˚C 700˚C 800˚C 900˚C 1000˚C 2-60x10-7 2.5-30x10-7 3.5-9x10-7 4.5-5x10-7 5.5-9x10-7 8-15x10-7 10.5-50x10-7 13.5-95x10-7 15-150x10-7 Frequency (1.6 MHz) (1.6 MHz) (1.6 MHz) (1.6 MHz) (1.6 MHz) (1.6 MHz) (1.6 MHz) (1.6 MHz) (1.6 MHz) (1.6 MHz) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 917 8.36 Mechanical Page 918 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 286. SURFACE TENSION OF ELEMENTS AT MELTING (SHEET 1 OF 6) Purity σmp Element (wt. %) (dyn/cm) Atmosphere Ag 99.7 99.99 99.99 99.99 863±25 (785) 860±20 865 Ar vac. Ar vac. 99.99 99.99 99.999 99.999 (825) 866 (828) 873 Ar He vac. He spect. pure spect. pure 921 918 99.999 99.999 (754) 1130 (731) vac. He vac. B 99.8 1060±50 vac. Ba 99.5 276 Bi 99.9 99.98 99.98 380±10 378 380±10 Ar vac., Ar, H2 Ar 99.99 99.999 99.99995 376 380±3 375 vac. Ar Ca p.a. 360 Cd 99.9 (550±10) (525±30) 590±5 Au 99.9999 Ar H2 — Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC 918 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 919 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 286. SURFACE TENSION OF ELEMENTS AT MELTING (SHEET 2 OF 6) Purity σmp Element (wt. %) (dyn/cm) Atmosphere Co 99.99 99.9983 (1520) 1880 H2, He vac. Cr 99.9997 1700±50 Ar Cs 99.995 68.6 He Cu 99.9 99.9 99.98 99.98 (11802±40) (1127) (1085 ) 1270 Ar vac. vac. vac. 99.997 99.997 99.997 99.99999 1352 1355 1358 1300 vac. He, H2 Ar vac. 99.69 99.85 99.93 1760±20 (1619) (1510) He, H2 vac. vac. 99.93 99.985 99.99 1860±40 (1560) (1384) He vac. 99.99 99.99 99.9992 99.9998 (1650) (1700) 1773 1880 He, H2 vac. He, H2 vac. Fr 99.9998 718 650 632±5 vac., Al2O3 vac. N2, He Hf 97.5±2.5 1630 vac. Fe Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC Shackelford & Alexander 919 8.36 Mechanical Page 920 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 286. SURFACE TENSION OF ELEMENTS AT MELTING (SHEET 3 OF 6) Purity σmp Element (wt. %) (dyn/cm) Atmosphere In 99.95 99.995 559 556.0 H2 Ar, He Ir 99.9980 2250 vac. K 99.895 99.895 99.895 101 110.3± 1 117 Ar — vac. 99.936 99.936 99.97±0.64 99.986 (79.2) 95 ±9.5 111.35 116.95 He — He Ar Mg 99.5 99.91 583 (525±10) — Ar Mn 99.9985 1100 ± 50 Ar Mo 99.7 99.98 99.98 99.9996 2080 2049 2130 2250 vac. vac. vac. vac. Na 99.96 99.982 99.995 99.995 99.995 210.12 187.4 191 200.2 ±0.6 202 Ar He Ar — vac. Nb, Cb 99.99 99.9986 2020 1900 vac. vac. 688 Ar Nd Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC 920 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 921 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 286. SURFACE TENSION OF ELEMENTS AT MELTING (SHEET 4 OF 6) Purity σmp Element (wt. %) (dyn/cm) Atmosphere Ni 99.7 99.999 99.999 1725 1770±13 1728±10 vac. vac. vac. 99.999 99.999 99.999 1822±8 (1670) 1760 vac. vac. vac. 99.999 99.99975 – (1687) (1977) 1809±20 vac. He H2, He, Os 99.9998 2500 vac. Pb 99.9 99.98 99.98 (410±5) 450 451 Ar He vac. 99.998 99.999 99.9995 480 470 470 H2 Ar Pd — 99.998 99.998 1470 1500 1460 vac. vac. He Pt — 99.84 99.9980 1869 (1740±20) 1865 CO2 vac. vac. Rb — — 99.92 99.997 (77±5) 99.8 91 17 85.7 vac. Ar Ar He Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC Shackelford & Alexander 921 8.36 Mechanical Page 922 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 286. SURFACE TENSION OF ELEMENTS AT MELTING (SHEET 5 OF 6) Purity σmp Element (wt. %) (dyn/cm) Atmosphere Re 99.4 99.9999 2610 2700 vac. vac. Ru 99.9980 2250 vac. Rh — 99.9975 1940 2000 vac. vac. S — 60.9 vac. Sb 99.15 99.5 99.99 395±20 383 395±20 Ar H2, N2 Ar Sn 99.89 99.89 99.9 543.7 562 (526±10) — vac. Ar 99.96 99.96 99.99 99.99 552 552 537 530 vac. Ar vac. He 99.998 99.998 99.999 99.999 566 610 590 555.8±1.9 H2 vac. vac. — Sr 99.5 303 Ta 99.9 99.9983 — — — (1884) 2150 2360 2030 1910 vac. vac. vac. vac. vac. Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC 922 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 923 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 286. SURFACE TENSION OF ELEMENTS AT MELTING (SHEET 6 OF 6) Purity σmp Element (wt. %) (dyn/cm) Atmosphere Te 99.4 — 186±2 178 Ar — Ti 98.7 99.69 1510 1402 vac. vac. 99.92 99.92 99.9991 1390 1460 1650 Ar vac. vac. Tl — 99.999 464.5 467 Ar — U 99.94 — — (1294) 1500±75 1550 vac. — Ar V 99.9977 — 1950 (1760) vac. vac. W 99.8 99.9 99.9999 — 2220 (2000) 2500 2310 vac. vac. vac. vac. Zn 99.9 99.99 99.999 99.9999 750 ±20 757.0±5 761.0 767.5 Ar vac. vac. vac. Zr — 99.5 99.7 99.9998 1400 1411±70 (1533) 1480 Ar vac. vac. vac. Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC Shackelford & Alexander 923 8.36 Mechanical Page 924 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 287. SURFACE TENSION OF LIQUID ELEMENTS* (SHEET 1 OF 15) Purity σt Temperature Element (wt. %) (dyn/cm) •C Ag 99.7 σ = (863+25) – 0.33 (t–tmp) 99.96 Atmosphere Ar H2 893 862 849 908 1000 1150 1250 1000 vac. 99.72 840 950 vac. 99.99 890 916 1000 1000 Ar, H2 H2 σ = 865–0.14 (t–tmp) σ = 825–0.05 (T–993) * σ = 866–0.15 (t–tmp) vac. Ar He 99.995 907 894 876 1000 1100 1200 H2 99.999 905±10 890±10 725 980 1108 1600 Ar σ = 1136– 0.174 T σ = 918–0.149 (t–tmp) (valid 1300 to 2200 K) σ = 873–0.15 (t–tmp) spect. pure He * T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC 924 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 925 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 287. SURFACE TENSION OF LIQUID ELEMENTS* (SHEET 2 OF 15) Purity σt Temperature Element (wt. %) (dyn/cm) •C Atmosphere Au 99.999 1130±10 1070 1020 1108 1200 1300 Ar He Ba – 720 Ar 224 99.5 σ = 351–0.075 T (valid 1410 to 1880 K) * Be 99.98 1100 1500 vac. Bi 99.9 362 350 350 700 Ar vac. 99.90 343 328 (382) 800 1000 450 H2 vac. 380 379 450 300 – vac. σ = 380–0.142 (t–tmp) σ = 423–0.088 T (valid MP to 555•C) (valid 1352 to 1555 K) * 99.98 99.999 99.99995 Ca Cd – 337 850 Ar Ar p.a. σ = 472–0.100 T (valid 1445 to 1655 K) * 99.9 604 390 Ar 99.99 1836 1800 1550 1520 Ar vac., Al2O3 99.99 99.99 (1630) (1640) 1520 1520 He,Al2O3 He, BeO Co * T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC Shackelford & Alexander 925 8.36 Mechanical Page 926 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 287. SURFACE TENSION OF LIQUID ELEMENTS* (SHEET 3 OF 15) Purity σt Temperature Element (wt. %) (dyn/cm) •C Atmosphere Co (Con’t) 99.99 99.99 99.99 99.99 99.99 (1560) 1780 (1620) (1590) 1870 1815 1812 1520 1520 1520 1520 1500 1600 1600 He, MgO H, Al2O3 He H2 vac. vac. vac., Al2O3 99.99 99.99 1845 1780 1550 1550 H2, He – 99.9997 1590±50 1950 vac. Ar 68.4 67.5 62.9 62 62 146 Ar Ar 69.5 42.8 34.6 39 494 642 Ar σ = 68.6–0.047 (t–tmp) (valid 52 to 1100•C) He 1269±20 1285±10 1120 1120 Ar Ar 1220 1370 (1130) 1100 1150 1183 Ar vac. Ar Cr Cs 99.95 99.995 Cu 99.9 * T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC 926 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 927 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 287. SURFACE TENSION OF LIQUID ELEMENTS* (SHEET 4 OF 15) Purity σt Temperature Element (wt. %) (dyn/cm) •C Atmosphere Cu (Con’t) 99.99 σ = 73.74– 1.791 • 10–2 (t– tmp) (t–tmp)3 (valid 71 to 1011•C) Ar 1301 1295 1287 1100 1165 1255 H2 1285 1298 1230 1120 1440 1600 vac. 1290 1300 1250 1250 He H2 He, H2 –9.610 • 10–5 (t–tmp)2 + 6.629 • 10–8 99.98 99.98 99.99 99.99 99.997 Ar 99.997 σ = 1352–0.17 (t–tmp) vac. 99.997 σ = 1358–0.20 (t–tmp) Ar 99.99 1285±10 1320 1120 1100 Ar, He Ar, H2 99.99 1265 1550 H2, He 99.999 1341 1338 1335 1100 1150 1200 N2 * T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC Shackelford & Alexander 927 8.36 Mechanical Page 928 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 287. SURFACE TENSION OF LIQUID ELEMENTS* (SHEET 5 OF 15) Purity σt Temperature Element (wt. %) (dyn/cm) •C Atmosphere Cu (Con’t) 99.99999 1268±60 1130 vac. Fe Armco 1795 1754 1550 1550 Ar, N2 vac. 99.69 (1727) 1550 He, Al2O3 (1734) 1550 H2, Al2O3 σ = 1760–0.35 (t–tmp) Fr He, H2 99.94 99.97 99.985 99.987 (1710) 1830±6 1788 (1730) 1560 1550 1550 1550 vac., Al2O3 vac., BeO Ar vac. 99.99 (1610) (1430) (1400) 1865 (1430) (1400) (1640) 1650 1650 1650 1550 1650 1650 1650 He He H2 vac., He He H 99.9992 σ = 773+0.65 t (valid 1550 to 1780•C) He, H2 — 58.4 100 — — 718 559 350 1500 99.9998 σ = 718–0.101 (t–tmp) Ar vac. He, Al2O3 vac., Al2O3 * T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC 928 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 929 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 287. SURFACE TENSION OF LIQUID ELEMENTS* (SHEET 6 OF 15) Purity σt Temperature Element (wt. %) (dyn/cm) •C Atmosphere Fr (Con’t) 99.9998 (Con’t) 530 650 1200 1000 vac. vac. (437) (350.5) 20 21 476 472 (464) (516) 25 25 25 25 (435) 488 (498) 476 25 25 25 25 484±1.5 484.9±1.8 449.7 387.1 25 25 103 350 (410) (435.5) (454.7) (542) 16 20 20 20 air air Ar H 473 476 19 25 H2 H2 472 (402) (432) (436) 20 20 20 20 vac vac vac vac. Hg * T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC Shackelford & Alexander 929 8.36 Mechanical Page 930 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 287. SURFACE TENSION OF LIQUID ELEMENTS* (SHEET 7 OF 15) Element Purity σt Temperature (wt. %) (dyn/cm) •C Atmosphere 480 (420) (410) (455) 20 20 20 20 vac. vac. vac. vac. (465.2) 485.5±1.0 (468) 473 20 20 22 25 vac. vac. vac. vac. Hg (Con’t) σ = 489.5–0.20 t 99.9 487 487.3 (500±15) 484.6±1.3 –10 16.5 20 20 482.5 ± 3.0 484.9±0.3 (465) 482.8±9.7 20 21.5 22 23–25 483.5±1.0 485.1 485.4±1.2 480 25 25 25 25 σ=468.7–1.61 • 10–1t–1.815 •10–2 t2 σ = 485.5 – 0.149 t–2.84 • 10–4 t2 * T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC 930 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 931 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 287. SURFACE TENSION OF LIQUID ELEMENTS* (SHEET 8 OF 15) Purity σt Temperature Element (wt. %) (dyn/cm) •C Hg (Con’t) 99.99 475 20 In 99.95 515 540 600 623 H2 99.995 592 514 541 185 600 300 vac H2 99.999 556 535 527.8 539 200 400 550 350 Ar 99.9994 K 99.9999 σ = 568.0–0.04 t–7.08 • 10–5 t2 99.895 σ = 117– 0.66 (t–tmp) vac. vac. 112 80 64.8 99.986 Atmosphere 87 457 677 σ = 116.95– 6.742 •10–2 (t– tmp) Ar – 3.836 •10–5 (t–tmp)2 + 3.707 •10– 8(t–t )3 mp 99.936 (valid 77 to 983•C) Ar (valid 600 to 1126•C) He (σ = 76.8–70.3 • 10–4 (t–400)) * T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC Shackelford & Alexander 931 8.36 Mechanical Page 932 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 287. SURFACE TENSION OF LIQUID ELEMENTS* (SHEET 9 OF 15) Purity σt Temperature Element (wt. %) (dyn/cm) •C Atmosphere K (Con’t) 99.97±0.64 σ = 115.51– 0.0653 t (valid 70 to 713•C) He Li 99.95 397.5 380 351.5 180 300 500 Ar 99.98 386 275 253 287 922 1077 Ar σ = 721–0.149 T* (valid 1125 to 1326•K) 99.8 552 542 528 670 700 740 N2 99.9 550±15 700 Ar Mn 99.94 1030 1010 1550 1550 vac. Na 99.982 σ = 144–0.108 (t–500) (valid 400 to 1125•C) 198 198.5 190 123 129 140 σ = 202– 0.092(t–tmp) (valid 100 to 1000˚C) Mg 99.5 99.995 He vac. vac * T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC 932 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 933 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 287. SURFACE TENSION OF LIQUID ELEMENTS* (SHEET 10 OF 15) Purity σt Temperature Element (wt. %) (dyn/cm) •C Atmosphere Na (Con’t) 99.96 σ = 210.12– 8.105 • 10–2 (t– tmp) + 3 .380 • 10 –8 (t–tmp)3 (valid 141 to 992•C) Ar 144 130 120.4 617 764 855 Ar 674 1186 Ar (1615) (1570) 1470 1470 He H2 1735 1725 (1934) 1470 1475 1550 vac. vac. Ar (1490) (1500) (1530) 1470 1470 1470 He He, BeO He, MgO (1530) 1470 H2 (1600) (1650) 1520 1530 H2,Al2O3 H2 1700 1720 1705 1470 1500 1640 H2, He vac. vac. – 8.064 •10–5 (t–tmp)2 p.a. Nd Ni 99.7 99.99 * T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC Shackelford & Alexander 933 8.36 Mechanical Page 934 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 287. SURFACE TENSION OF LIQUID ELEMENTS* (SHEET 11 OF 15) Purity σt Temperature Element (wt. %) (dyn/cm) •C Ni (Con’t) 99.99 (Con’t) 1740 1520 vac., Al2O3 1770 1520 He,Ar,Al2O3 1780 1550 vac., Al2O3 1810 1560 vac., Al2O3 1745 1500 He σ = 1665 + 0.215 t (valid 1475 to 1650•C) He 69.7 64.95 50 68.7 99.9 388 445 1000 350 H2 Ar 99.98 448 442 340 390 H, N2 439 440 452 360 air 442 435 440 450 340 400 425 350–450 vac. 428 474 455 700 623 362 vac. H2 vac. 99.999 99.99975 P(white) Pb Atmosphere 99.998 σ = 1770–0.39 (t–1550) * T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC 934 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 935 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 287. SURFACE TENSION OF LIQUID ELEMENTS* (SHEET 12 OF 15) Purity σt Temperature Element (wt. %) (dyn/cm) •C Atmosphere Pb (Con’t) 99.999 456 310 390 1600 He σ = 470–0.164 (t–tmp) (valid mp to 535•C) Ar 450 vac 99.9994 Pt 438 99.9995 σ = 538–0.114 T* (valid 1440 to 1970•K) 99.999 (1699±20) 1800 Ar 84 55 46.8 52 477 632 Ar – 3.830 • 10–8 (t–tmp)3 (valid 1104 to 1006•C) Ar 99.997 σ = 85.7– 0.054 (t–tmp) (valid 53 to 1115•C) He – 51.1 250 vac. 349 349 368 640 700 750 H2 Rb 99.92 σ = 91.17– 9.189 10–2 (t– tmp) + 7.228 • 10–5 (t–tmp)2 S Sb * T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC Shackelford & Alexander 935 8.36 Mechanical Page 936 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 287. SURFACE TENSION OF LIQUID ELEMENTS* (SHEET 13 OF 15) Element Purity σt Temperature (wt. %) (dyn/cm) •C 361 342 348 900 974 1100 367.9 364.9 640 762 vac. 99.5 384 380 675 800 H2, N2 99.995 350.2 347.6 345.0 650 700 800 Ar 99.999 359 35l 345 320 800 1000 1100 l600 N2 – 88.0±5 230–250 Ar 99.99 99.9999 725 720 750 825 l450 1550 1550 1500 He vac. vac. Ar 99.9 600 290 vac. 99.93 549 539 526 250 400 600 vac. 1000 vac. (valid MP to 500•C) Ar Sb (Con’t) Se Si Sn 99.96 470 σ =552–0.l67 (t–tmp) Atmosphere He * T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC 936 CRC Handbook of Materials Science & Engineering 8.36 Mechanical Page 937 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 287. SURFACE TENSION OF LIQUID ELEMENTS* (SHEET 14 OF 15) Purity σt Temperature Element (wt. %) (dyn/cm) •C Atmosphere Sn (Con’t) 99.965 508 489.5 479.5 740 950 1115 H2 99.89 99.99 554 524 508 300 500 600 vac. vac. 543 528 503 536 489 572 692 250 H2 530 545 530 450 250 600 H2, He 99.998 559 500 538 546 623 800 300 290 H2 vac. – – 99.999 (520) (524) 290 290 H2 vac. 537 552.7 350 246 vac. H2 σ = 566.84 – 4.76 • 10–2 t 99.9994 99.9999 * T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. ©2001 CRC Press LLC Shackelford & Alexander 937 8.36 Mechanical Page 938 Wednesday, December 31, 1969 17:00 Mechanical Properties Table 287. SURFACE TENSION OF LIQUID ELEMENTS* (SHEET 15 OF 15) Element Purity σt Temperature (wt. %) (dyn/cm) •C Atmosphere 288 282 282 775 830 893 Ar Sr Te 99.5 σ = 392–0.085 T (valid 1152 to 1602 K) 99.4 – 178±1.5 (162) 460 475 vac. vac. σ = 178–0.024 (t–tmp) Ti 99.0 99.99999 1576 1588 1680 1680 vac. vac. Tl – 450 450 vac. 99.999 450 ( σ = 536 – 450 vac. 0.119 T )* (valid 1270 to 1695•K) * T in Kelvin (t in ˚C). Values in parentheses are less certain. Source: data from Lang,G.,in Handbook of Chemistry and Physics, 55th ed., Weast, R.C., Ed., CRC Press, Cleveland, 1974, F-23. * The data are a compilation of several studies and measurements were obtained from the “sessile drop”, “maximum bubble pressure” ,and the “pendant drop” methods. The accuracy varies with both method and the study. ©2001 CRC Press LLC 938 CRC Handbook of Materials Science & Engineering Shackelford, James F. & Alexander, W. “Electrical Properties of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001 9.0 E&M Page 939 Wednesday, December 31, 1969 17:00 CHAPTER 7 List of Tables Electrical Properties of Materials Conductivity and Resistivity Electrical Conductivity of Metals Electrical Resistivity of Metals Electrical Resistivity of Alloy Cast Irons Resistivity of Ceramics Volume Resistivity of Glass Volume Resistivity of Polymers Critical Temperature Critical Temperature of Superconductive Elements Dissipation Factor Dissipation Factor for Polymers Dielectric Strength Dielectric Strength of Polymers Step Dielectric Strength of Polymers Dielectric Constant of Polymers Dielectric Breakdown of Polymers Dielectric Breakdown of Polymers Tangent Loss Tangent Loss in Glass Electrical Permittivity Electrical Permittivity of Glass ©2001 CRC Press LLC 939 9.0 E&M Page 940 Wednesday, December 31, 1969 17:00 Electrical Properties List of Tables (Continued) Arc Resistance Arc Resistance of Polymers ©2001 CRC Press LLC 940 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 941 Wednesday, December 31, 1969 17:00 Electrical Properties Table 288. ELECTRICAL CONDUCTIVITY OF (SHEET 1 OF 7) METALS Class Metal or Alloy Electrical Conductivity (%IACS) Aluminum and Aluminum Alloys Aluminum (99.996%) EC(O, H19) 5052 (O, H38) 5056 (H38) 6101 (T6) 64.95 62 35 27 56 Pure copper Electolytic (ETP) Oxygen–free copper (OF) Free–machining copper 0.5% Te Free–machining copper 1.0% Pb 103.06 101 101 95 98 Cartridge brass, 70% 28 Yellow brass Leaded commercial bronze Phosphor bronze,1.25% Nickel silver, 55–18 27 42 48 5.5 Low–silicon bronze(B) Beryllium copper 12 22 to 30 Chromium copper (1% Cr) 88Cu–8Sn–4Zn 87Cu–10Sn–1Pb–2Zn 80 to 90 11 11 0.04 oxide 1.25 Sn + P 5 Sn+P 100 48 18 8 Sn+P 15 Zn 20 Zn 13 37 32 Copper and Copper Alloys: Wrought Copper Wrought Alloys Copper and copper Alloys: Casting Alloys Electrical Contact Materials: Copper Alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993). ©2001 CRC Press LLC Shackelford & Alexander 941 9.1 E&M Page 942 Wednesday, December 31, 1969 17:00 Electrical Properties Table 288. ELECTRICAL CONDUCTIVITY OF (SHEET 2 OF 7) Class Electrical Contact Materials: Silver and Silver Alloys Electrical Contact Materials: Platinum and Platinum Alloys METALS Metal or Alloy Electrical Conductivity (%IACS) 35 Zn 2 Be+Ni or Co 27 17 to 21 Fine silver 92.5 Ag–7.5Cu 90Ag–10Cu 72Ag–28Cu 106 85 85 87 72Ag–26Cu–2Ni 85Ag–15Cd 97Ag–3Pt 97Ag–3Pd 60 35 50 60 90Ag–10Pd 90Ag–10Au 60Ag–40Pd 70Ag–30Pd 30 40 8 12 Platinum 95Pt–5Ir 90Pt–10Ir 85Pt–15Ir 16 9 7 6 80Pt–20Ir 75Pt–25Ir 70Pt–30Ir 65Pt–35Ir 5.6 5.5 5 5 95Pt–5Ru 90Pt–10Ru 89Pt–11Ru 5.5 4 4 86Pt–14Ru 96Pt–4W 3.5 5 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993). ©2001 CRC Press LLC 942 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 943 Wednesday, December 31, 1969 17:00 Electrical Properties Table 288. ELECTRICAL CONDUCTIVITY OF (SHEET 3 OF 7) Class Electrical Contact Materials: Palladium and Palladium Alloys Electrical Contact Materials: Gold and Gold Alloys METALS Metal or Alloy Electrical Conductivity (%IACS) Palladium 95.5Pd–4.5Ru 90Pd–10Ru 70Pd–30Ag 16 7 6.5 4.3 60Pd 40Ag 50Pd–50Ag 72Pd–26Ag–2Ni 60Pd–40Cu 4.0 5.5 4 5 45Pd–30Ag–20Au–5Pt 35Pd–30Ag–14Cu–l0Pt–l0Au–1Zn 4.5 5 Gold 90Au–10Cu 75Au–25Ag 72.5Au–14Cu–8.5Pt–4Ag–1Zn 69Au–25Ag–6Pt 41.7Au–32.5Cu–18.8Ni–7Zn 75 16 16 10 11 4.5 78.5Ni–20Cr–1.5Si (80–20) 73.5Ni–20Cr–5Al–1.5Si 68Ni–20Cr–8.5Fe–2Si 60Ni–16Cr–22.5Fe–1.5Si 35Ni–20Cr–43.5Fe–1.5Si 1.6 1.2 1.5 1.5 1.7 72Fe–23Cr–5Al 55Fe–37.5Cr–75Al 1.3 1.2 Molybdenum Platinum Tantalum Tungsten 34 16 13.9 30 Electrical Heating Alloys: Ni–Cr and Ni–Cr–Fe Alloys Electrical Heating Alloys: Fe–Cr–Al Alloys Pure Metals Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993). ©2001 CRC Press LLC Shackelford & Alexander 943 9.1 E&M Page 944 Wednesday, December 31, 1969 17:00 Electrical Properties Table 288. ELECTRICAL CONDUCTIVITY OF (SHEET 4 OF 7) METALS Class Metal or Alloy Electrical Conductivity (%IACS) Nonmetallic Heating Element Materials Silicon carbide, SiC 1 to 1.7 Molybdenum disilicide, MoSi2 4.5 98Cu–2Ni 94Cu–6Ni 89Cu–11Ni 35 17 11 78Cu–22Ni 55Cu–45Ni (constantan) 5.7 3.5 87Cu–13Mn(manganin) 83Cu–13Mn 4Ni(manganin) 85Cu–10Mn–4Ni (shunt manganin) 3.5 3.5 45 70Cu–20Ni–10Mn 67Cu–5Ni–27Mn 3.6 1.8 99.8 Ni 71Ni–29Fe 80Ni–20Cr 75Ni–20Cr–3Al+Cu or Fe 23 9 1.5 1.3 76Ni–17Cr–4Si–3Mn 60Ni–16Cr–24Fe 35Ni–20Cr–45Fe 1.3 1.5 1.7 Instrument and Control Alloys: Fe–Cr–Al alloy 72Fe–23Cr–5Al–0.5Co 1.3 Instrument and Control Alloys: Pure Metals Iron(99.99%) 17.75 Instrument and Control Alloys: Cu–Ni Alloys Instrument and Control Alloys: Cu–Mn–Ni Alloys Instrument and Control Alloys: Ni–Base Alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993). ©2001 CRC Press LLC 944 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 945 Wednesday, December 31, 1969 17:00 Electrical Properties Table 288. ELECTRICAL CONDUCTIVITY OF (SHEET 5 OF 7) METALS Class Metal or Alloy Electrical Conductivity (%IACS) Thermostat Metals 75Fe–22Ni–3Cr 72Mn–18Cu–10Ni 67Ni–30Cu–1.4Fe–1Mn 75Fe–22Ni–3Cr 66.5Fe–22Ni–8.5Cr 3 1.5 3.5 12 3.3 Carbon Steel (0.65%) Carbon Steel (1% C) Chromium Steel (3.5% Cr) Tungsten Steel (6% W) Cobalt Steel (17% Co) Cobalt Steel (36% Co) 9.5 8 6.1 6 6.3 6.5 Cunico Cunife Comol 7.5 9.5 3.6 Alnico I Alnico II Alnico III 3.3 3.3 3.3 Alnico IV Alnico V Alnico VI 3.3 3.5 3.5 M–50 M–43 M–36 M–27 9.5 6 to 9 5.5 to 7.5 3.5 to 5.5 M–22 M–19 M–17 M–15 3.5 to 5 3.5 to 5 3 to 3.5 3 to 3.5 Permanent Magnet Materials: Steels Permanent Magnet Materials: Intermediate Alloys Permanent Magnet Materials: Alnico Alloys Magnetically Soft Materials: Electrical Steel Sheet Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993). ©2001 CRC Press LLC Shackelford & Alexander 945 9.1 E&M Page 946 Wednesday, December 31, 1969 17:00 Electrical Properties Table 288. ELECTRICAL CONDUCTIVITY OF (SHEET 6 OF 7) Class Moderately High–Permeability Materials High–Permeability Materials Relay Steels and Alloys After Annealing Low–carbon Iron and Steel METALS Metal or Alloy Electrical Conductivity (%IACS) M–14 M–7 M–6 M–5 3 to 3.5 3 to 3.5 3 to 3.5 3 to 3.5 Thermenol 0.5 16 Alfenol Sinimax Monimax 0.7 2 2.5 Supermalloy 4–79 Moly Pemalloy, Hymu 80 Mumetal 1040 alloy 3 3 3 3 High Permalloy 49, A–L 4750, Armco 48 45 Permalloy 3.6 3.6 Supermendur 2V Pamendur 35% Co, 1% Cr Ingot iron 4.5 4.5 9 17.5 0.5% Si Steel 1.75% Si Steel 3.0% Si Steel Grain–oriented 3.0% Si Steel 6 4.6 3.6 3.5 Grain–oriented 50% Ni iron 50% Ni iron 3.6 3.5 Low–carbon iron 1010 Steel 17.5 14.5 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993). ©2001 CRC Press LLC 946 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 947 Wednesday, December 31, 1969 17:00 Electrical Properties Table 288. ELECTRICAL CONDUCTIVITY OF (SHEET 7 OF 7) METALS Class Metal or Alloy Electrical Conductivity (%IACS) Silicon Steels 1% Si 2.5% Si 3% Si 3% Si, grain–oriented 4% Si 7.5 4 3.5 3.5 3 Stainless Steels Type 410 Type 416 Type 430 Type 443 Type 446 3 3 3 3 3 Nickel Irons 50% Ni 78% Ni 77% Ni (Cu, Cr) 79% Ni (Mo) 3.5 11 3 3 Stainless and Heat Resisting Alloys Type 302 3 Type 309 Type 316 Type 317 2.5 2.5 2.5 Type 347 Type 403 Type 405 Type 501 2.5 3 3 4.5 HH HK HT 2.5 2 1.7 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993). ©2001 CRC Press LLC Shackelford & Alexander 947 9.1 E&M Page 948 Wednesday, December 31, 1969 17:00 Electrical Properties Table 289. ELECTRICAL RESISTIVITY OF (SHEET 1 OF 7) METALS Class Metal or Alloy Electrical Resistivity (µΩ • cm) Aluminum and Aluminum Alloys Aluminum (99.996%) EC(O, H19) 5052 (O, H38) 5056 (H38) 6101 (T6) 2.65 2.8 4.93 6.4 3.1 Pure copper Electolytic (ETP) Oxygen–free copper (OF) Free–machining copper 0.5% Te Free–machining copper 1.0% Pb 1.67 1.71 1.71 1.82 1.76 Cartridge brass, 70% 6.2 Yellow brass Leaded commercial bronze Phosphor bronze, 1.25% Nickel silver, 55–18 6.4 4.1 3.6 31 Low–silicon bronze(B) Beryllium copper 14.3 5.7 to 7.8 Chromium copper (1% Cr) 88Cu–8Sn–4Zn 87Cu–10Sn–1Pb–2Zn 2.10 15 15 0.04 oxide 1.25 Sn + P 5 Sn+P 1.72 3.6 11 8 Sn+P 15 Zn 20 Zn 13 4.7 5.4 Copper and Copper Alloys: Wrought Copper Wrought Alloys Copper and Copper Alloys: Casting Alloys Electrical Contact Materials: Copper Alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993). ©2001 CRC Press LLC 948 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 949 Wednesday, December 31, 1969 17:00 Electrical Properties Table 289. ELECTRICAL RESISTIVITY OF (SHEET 2 OF 7) Class Electrical Contact Materials: Silver and Silver Alloys Electrical Contact Materials: Platinum and Platinum Alloys METALS Metal or Alloy Electrical Resistivity (µΩ • cm) 35 Zn 2 Be+Ni or Co 6.4 9.6 to 11.5 Fine silver 92.5 Ag–7.5Cu 90Ag–10Cu 72Ag–28Cu 1.59 2 2 2 72Ag–26Cu–2Ni 85Ag–15Cd 97Ag–3Pt 97Ag–3Pd 2.9 4.93 3.5 2.9 90Ag–10Pd 90Ag–10Au 60Ag–40Pd 70Ag–30Pd 5.3 4.2 23 14.3 Platinum 95Pt–5Ir 90Pt–10Ir 85Pt–15Ir 10.6 19 25 28.5 80Pt–20Ir 75Pt–25Ir 70Pt–30Ir 65Pt–35Ir 31 33 35 36 95Pt–5Ru 90Pt–10Ru 89Pt–11Ru 31.5 43 43 86Pt–14Ru 96Pt–4W 46 36 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993). ©2001 CRC Press LLC Shackelford & Alexander 949 9.1 E&M Page 950 Wednesday, December 31, 1969 17:00 Electrical Properties Table 289. ELECTRICAL RESISTIVITY OF (SHEET 3 OF 7) Class Electrical Contact Materials: Palladium and Palladium Alloys Electrical Contact Materials: Gold and Gold Alloys METALS Metal or Alloy Electrical Resistivity (µΩ • cm) Palladium 95.5Pd–4.5Ru 90Pd–10Ru 70Pd–30Ag 10.8 24.2 27 40 60Pd–40Ag 50Pd–50Ag 72Pd–26Ag–2Ni 60Pd–40Cu 43 31.5 43 35 45Pd–30Ag–20Au–5Pt 35Pd–30Ag–14Cu–l0Pt–10Au–1Zn 39 35 Gold 90Au–10Cu 75Au–25Ag 72.5Au–14Cu–8.5Pt–4Ag–1Zn 69Au–25Ag–6Pt 41.7Au–32.5Cu–18.8Ni–7Zn 2.35 10.8 10.8 17 15 39 78.5Ni–20Cr–1.5Si (80–20) 73.5Ni–20Cr–5Al–1.5Si 68Ni–20Cr–8.5Fe–2Si 60Ni–16Cr–22.5Fe–1.5Si 35Ni–20Cr–43.5Fe–1.5Si 108.05 137.97 116.36 112.20 101.4 72Fe–23Cr–5Al 55Fe–37.5Cr–7.5Al 138.8 166.23 Molybdenum Platinum Tantalum Tungsten 5.2 10.64 12.45 5.65 Electrical Heating Alloys: Ni–Cr and Ni–Cr–Fe Alloys Electrical Heating Alloys: Fe–Cr–Al Alloys Pure Metals Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993). ©2001 CRC Press LLC 950 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 951 Wednesday, December 31, 1969 17:00 Electrical Properties Table 289. ELECTRICAL RESISTIVITY OF (SHEET 4 OF 7) METALS Class Metal or Alloy Electrical Resistivity (µΩ • cm) Nonmetallic Heating Element Materials Silicon carbide, SiC 100 to 200 Molybdenum disilicide, MoSi2 Graphite 37.24 910.1 98Cu–2Ni 94Cu–6Ni 89Cu–11Ni 4.99 9.93 14.96 78Cu–22Ni 55Cu–45Ni (constantan) 29.92 49.87 87Cu–13Mn(manganin) 83Cu–13Mn–4Ni(manganin) 85Cu–10Mn–4Ni (shunt manganin) 48.21 48.21 38.23 70Cu–20Ni–10Mn 67Cu–5Ni–27Mn 48.88 99.74 99.8 Ni 71Ni–29Fe 80Ni–20Cr 75Ni–20Cr–3Al+Cu or Fe 7.98 19.95 112.2 132.98 76Ni–17Cr–4Si–3Mn 60Ni–16Cr–24Fe 35Ni–20Cr–45Fe 132.98 112.2 101.4 Instrument and Control Alloys: Fe–Cr–Al alloy 72Fe–23Cr–5Al–0.5Co 135.48 Instrument and Control Alloys: Pure Metals Iron(99.99%) 9.71 Instrument and Control Alloys: Cu–Ni Alloys Instrument and Control Alloys: Cu–Mn–Ni Alloys Instrument and Control Alloys: Ni–base Alloys Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993). ©2001 CRC Press LLC Shackelford & Alexander 951 9.1 E&M Page 952 Wednesday, December 31, 1969 17:00 Electrical Properties Table 289. ELECTRICAL RESISTIVITY OF (SHEET 5 OF 7) METALS Class Metal or Alloy Electrical Resistivity (µΩ • cm) Thermostat Metals 75Fe–22Ni–3Cr 72Mn–18Cu–10Ni 67Ni–30Cu–1.4Fe–1Mn 75Fe–22Ni–3Cr 66.5Fe–22Ni–8.5Cr 78.13 112.2 56.52 15.79 58.18 Carbon Steel (0.65%) Carbon Steel (1% C) Chromium Steel (3.5% Cr) Tungsten Steel (6% W) Cobalt Steel (17% Co) Cobalt Steel (36% Co) 18 20 29 30 28 27 Cunico Cunife Comol 24 18 45 Alnico I Alnico II Alnico III 75 65 60 Alnico IV Alnico V Alnico VI 75 47 50 M–50 M–43 M–36 M–27 18 20 to 28 24 to 33 32 to 47 M–22 M–19 M–17 M–15 41 to 52 41 to 56 45 to 58 45 to 69 Permanent Magnet Materials: Steels Permanent Magnet Materials: Intermediate Alloys Permanent Magnet Materials: Alnico Alloys Magnetically Soft Materials: Electrical Steel Sheet Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993). ©2001 CRC Press LLC 952 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 953 Wednesday, December 31, 1969 17:00 Electrical Properties Table 289. ELECTRICAL RESISTIVITY OF (SHEET 6 OF 7) Class Moderately High–Permeability Materials High–Permeability Materials Relay Steels and Alloys After Annealing Low–Carbon Iron and Steel METALS Metal or Alloy Electrical Resistivity (µΩ • cm) M–14 M–7 M–6 M–5 58 to 69 45 to 52 45 to 52 45 to 52 Thermenol 162 16 Alfenol Sinimax Monimax 153 90 80 Supermalloy 4–79 Moly Pemalloy, Hymu 80 Mumetal 1040 alloy 65 58 60 56 High Permalloy 49, A–L 4750, Armco 48 45 Permalloy 48 45 Supermendur 2V Pamendur 35% Co, 1% Cr Ingot iron 40 40 20 10 0.5% Si Steel 1.75% Si Steel 3.0% Si Steel Grain–oriented 3.0% Si Steel 28 37 47 50 Grain–oriented 50% Ni iron 50% Ni iron 45 50 Low–carbon iron 1010 Steel 10 12 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993). ©2001 CRC Press LLC Shackelford & Alexander 953 9.1 E&M Page 954 Wednesday, December 31, 1969 17:00 Electrical Properties Table 289. ELECTRICAL RESISTIVITY OF (SHEET 7 OF 7) METALS Class Metal or Alloy Electrical Resistivity (µΩ • cm) Silicon Steels 1% Si 2.5% Si 3% Si 3% Si, grain–oriented 4% Si 23 41 48 48 59 Stainless Steels Type 410 Type 416 Type 430 Type 443 Type 446 57 57 60 68 61 Nickel Irons 50% Ni 78% Ni 77% Ni (Cu, Cr) 79% Ni (Mo) 48 16 60 58 Stainless and Heat Resisting Alloys Type 302 Type 309 Type 316 Type 317 72 78 74 74 Type 347 Type 403 Type 405 Type 501 73 57 60 40 HH HK HT 80 90 100 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p157-158, (1993). ©2001 CRC Press LLC 954 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 955 Wednesday, December 31, 1969 17:00 Electrical Properties Table 290. ELECTRICAL RESISTIVITY OF ALLOY CAST IRONS Class Description Electrical Resistivity (mΩ • m) Abrasion–Resistant White Irons Low–C white iron Martensitic nickel–chromium iron 0.53 0.80 Corrosion–Resistant Irons High– Silicon iron 0.50 High–nickel gray iron 1.0a High–nickel ductile iron 1.0a Heat–Resistant Gray Irons Heat–Resistant Ductile Irons a Heat–Resistant Gray Irons Medium–silicon iron High–chromium iron High–nickel iron Nickel–chromium–silicon iron High–aluminum iron Medium–silicon ductile iron High–nickel ductile (20 Ni) High–nickel ductile (23 Ni) 1.4 to 1.7 1.5 to 1.7 2.4 0.58 to 0.87 1.02 1.0a Estimated. Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 955 9.1 E&M Page 956 Wednesday, December 31, 1969 17:00 Electrical Properties Table 291. RESISTIVITY OF (SHEET 1 OF 6) Class Borides Ceramic Chromium Diboride (CrB2) Hafnium Diboride (HfB2) Tantalum Diboride (TaB2) CERAMICS Resistivity (Ω–cm) Temperature Range of Validity 21x106 10–12 x 106 68 x106 room temp. Titanium Diboride (TiB2) (polycrystalline) (85% dense) 26.5–28.4x106 (85% dense) 9.0x106 3.7x106 room temp. room temp. room temp. liquid air temp. (crystal length 5 cm, 39 deg. and 59 deg. orientation with respect to growth axis) 6.6±0.2x106 room temp. (crystal length 1.5 cm, 16.5 deg. and 90 deg. orientation with respect to growth axis) 6.7±0.2x106 room temp. 9.2x106 20 ˚C 1.8x106 liquid air temperature (100% dense, extrapolated values) 8.7–14.1x106 Titanium Diboride (TiB2) (monocrystalline) Zirconium Diboride (ZrB2) Carbides Boron Carbide (B4C) 0.3–0.8 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991). ©2001 CRC Press LLC 956 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 957 Wednesday, December 31, 1969 17:00 Electrical Properties Table 291. RESISTIVITY OF (SHEET 2 OF 6) Class Carbides (Con’t) Ceramic Hafnium Monocarbide (HfC) CERAMICS Resistivity (Ω–cm) Temperature Range of Validity 41x106 4.2K 41x106 80K 160K 240K 300K 45x106 49x106 60x106 Silicon Carbide (SiC) (30 + 0.0628T) x106 300–2000K 102 –1012 20˚C (with 1 wt% Be additive) 3x1013 (with 1 wt% B additive) (with 1 wt% Al additive) (with 1.6 wt% BeO additive) 2x104 0.8 (with 3.2 wt% BeO additive) 4x1013 1x1011 (with 2.0 wt% BN additive) >1013 Tantalum Monocarbide (TaC) (80% dense) 8x106 (80% dense) 10x106 (80% dense) 15x106 (80% dense) 20x106 (80% dense) 25x106 Titanium Monocarbide (TiC) 0.3–0.8 4.2K 80K 160K 240K 300K Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991). ©2001 CRC Press LLC Shackelford & Alexander 957 9.1 E&M Page 958 Wednesday, December 31, 1969 17:00 Electrical Properties Table 291. RESISTIVITY OF (SHEET 3 OF 6) Class Carbides (Con’t) Ceramic Zirconium Monocarbide (ZrC) CERAMICS Resistivity (Ω–cm) Temperature Range of Validity 41x106 4.2K 45x106 137x106 80K 160K 240K 300K 773K 1273K 2x1011–1013 room temp. 1.7x1013 25˚C 480˚C 1000˚C 25˚C 25˚C 25˚C 47x106 53x106 61–64x106 97x106 Nitrides Aluminum Nitride (AlN) Boron Nitride (BN) 2.3x1010 3.1x104 (20% humidity) 1.0x1012 (50% humidity) 7.0x1010 (90% humidity) 5.0x109 Titanium Mononitirde (TiN) 11.07–130x106 340x106 8.13x106 Trisilicon tetranitride (Si3N4) >1013 Zirconium Mononitride (TiN) 11.52–160x106 320x106 3.97x106 room temp. melting temp. liquid air room temp. melting temp. liquid air Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991). ©2001 CRC Press LLC 958 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 959 Wednesday, December 31, 1969 17:00 Electrical Properties Table 291. RESISTIVITY OF (SHEET 4 OF 6) Class Oxides Ceramic Aluminum Oxide (Al2O3) CERAMICS Resistivity (Ω–cm) Temperature Range of Validity >10x1014 25˚C 100˚C 300˚C 500˚C 700˚C 1000˚C 2x1013 1x1013 6.3x1010 5.0x108 2x106 Beryllium Oxide (BeO) >1017 >1015 1–5x1015 1.5–2x1015 4–7x1015 Magnesium Oxide (MgO) 1.3x1015 4x102 27˚C 1000˚C 1727˚C 1018 room temp. 2300 77 9.4 1.6 0.59 0.37 700˚C 1200˚C 1300˚C 1700˚C 2000˚C 2200˚C 0.2–1x108 Silicon Dioxide (SiO2) 25˚C 300˚C 500˚C 700˚C 1000˚C Zirconium Oxide (ZrO2) (stabilized) (stabilized) (stabilized) (stabilized) (stabilized) (stabilized) Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991). ©2001 CRC Press LLC Shackelford & Alexander 959 9.1 E&M Page 960 Wednesday, December 31, 1969 17:00 Electrical Properties Table 291. RESISTIVITY OF (SHEET 5 OF 6) Class Oxides (Con’t) Ceramic CERAMICS Resistivity (Ω–cm) Temperature Range of Validity 1x1014 2.5x1011 3.3x107 7.7x105 8.0x104 1.9x104 25˚C 100˚C 300˚C 500˚C 700˚C 900˚C >1x1014 3.0x1013 2.0x1010 9.0x107 3.0x106 3.5x105 25˚C 100˚C 300˚C 500˚C 700˚C 900˚C 1.0x1014 1.0x1013 3.0x109 4.9x107 4.7x106 7.0x105 25˚C 100˚C 300˚C 500˚C 700˚C 900˚C >1014 25˚C 300˚C 500˚C Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) (ρ=2.3g/cm3) (ρ=2.3g/cm3) (ρ=2.3g/cm3) (ρ=2.3g/cm3) (ρ=2.3g/cm3) (ρ=2.1g/cm3) (ρ=2.1g/cm3) (ρ=2.1g/cm3) (ρ=2.1g/cm3) (ρ=2.1g/cm3) (ρ=2.1g/cm3) (ρ=1.8g/cm3) (ρ=1.8g/cm3) (ρ=1.8g/cm3) (ρ=1.8g/cm3) (ρ=1.8g/cm3) (ρ=1.8g/cm3) Mullite (3Al2O3 2SiO2) 1010 108 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991). ©2001 CRC Press LLC 960 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 961 Wednesday, December 31, 1969 17:00 Electrical Properties Table 291. RESISTIVITY OF (SHEET 6 OF 6) Class Silicides Ceramic Molybdenum Disilicide (MoSi2) CERAMICS Resistivity (Ω–cm) Temperature Range of Validity 21.5x106 22˚C –80˚C 1600˚C 18.9x106 75–80x106 Tungsten Disilicide (WSi2) 33.4–54.9x106 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991). ©2001 CRC Press LLC Shackelford & Alexander 961 9.1 E&M Page 962 Wednesday, December 31, 1969 17:00 Electrical Properties Table 292. VOLUME RESISTIVITY OF (SHEET 1 OF 13) Glass Description SiO2 glass GLASS Resistivity Temperature (˚C) 11.0–13.6 log Ω cm 250˚C 3.16x108 – 6.3x1010 Ω 7Ω cm cm 500˚C 1.0x107 Ω cm 600˚C 6.3x10 6Ω cm cm 1.6x10 8.0x105 Ω cm 700˚C 6Ω 800˚C 4.6x105 Ω cm 1000˚C 3.6x10 5Ω 1100˚C 1.4x105 Ω cm 1300˚C 5Ω 2.0x10 5Ω 1200˚C cm cm 1400˚C 4.6x104 Ω cm 1500˚C 1.0x10 4Ω 7.9x10 4Ω 1500˚C 1.0x10 cm cm 1600˚C (0.5 atm Ar pressure) (0.5 atm Ar pressure) 3.0x103 Ω cm 1800˚C (0.5 atm Ar pressure) 2.5x10 4Ω 1700˚C 3Ω 2000˚C (0.5 atm Ar pressure) cm cm 5.0x10 2 Ω cm 2.0x10 1900˚C 2Ω (5% mol Na2O) 10.45–11.71 log Ω cm 150˚C (5% mol Na2O) 7.63 log Ω cm 250˚C (5% mol Na2O) 7.33–8.25 log Ω cm 300˚C (5% mol Na2O) 6.37 log Ω cm 350˚C (0.5 atm Ar pressure) (0.5 atm Ar pressure) SiO2–Na2O glass 900˚C cm cm 2.9x10 (0.5 atm Ar pressure) 400˚C 1.0x10 2100˚C Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 962 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 963 Wednesday, December 31, 1969 17:00 Electrical Properties Table 292. VOLUME RESISTIVITY OF (SHEET 2 OF 13) GLASS Glass Description Resistivity Temperature (˚C) SiO2–Na2O glass (Con’t) (7.5% mol Na2O) 7.59 log Ω cm 150˚C (7.5% mol Na2O) 5.30 log Ω cm 300˚C (7.8% mol Na2O) 7.8x109 Ω cm 100˚C (10% mol Na2O) 7.35 log Ω cm 150˚C (10% mol Na2O) 6.14 log Ω cm 250˚C (10% mol Na2O) 5.18 log Ω cm 300˚C (10% mol Na2O) 4.96 log Ω cm 350˚C (10% mol Na2O) 1.03 log Ω cm 1500˚C (10% mol Na2O) 0.92 log Ω cm 1600˚C (13% mol Na2O) 6.90–6.96 log Ω cm 150˚C (13% mol Na2O) 4.77–4.79 log Ω cm 300˚C (15% mol Na2O) 5.44 log Ω cm 250˚C (15% mol Na2O) 4.32 log Ω cm 350˚C (15% mol Na2O) 0.61 log Ω cm 1400˚C (15% mol Na2O) 0.56 log Ω cm 1500˚C (15.1% mol Na2O) 1.4x108 Ω cm 100˚C (19.9% mol Na2O) 1.68 log Ω cm 600˚C (19.9% mol Na2O) 1.34 log Ω cm 700˚C (19.9% mol Na2O) 0.96 log Ω cm 800˚C (19.9% mol Na2O) 0.76 log Ω cm 900˚C (19.9% mol Na2O) 0.61 log Ω cm 1000˚C (19.9% mol Na2O) 0.48 log Ω cm 1100˚C (19.9% mol Na2O) 0.38 log Ω cm 1200˚C (19.9% mol Na2O) 0.30 log Ω cm 1300˚C Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 963 9.1 E&M Page 964 Wednesday, December 31, 1969 17:00 Electrical Properties Table 292. VOLUME RESISTIVITY OF (SHEET 3 OF 13) GLASS Glass Description Resistivity Temperature (˚C) SiO2–Na2O glass (Con’t) (20% mol Na2O) 6.45–6.80 log Ω cm 150˚C (20% mol Na2O) 4.85 log Ω cm 250˚C (20% mol Na2O) 4.36–4.64 log Ω cm 300˚C (20% mol Na2O) 3.80 log Ω cm 350˚C (24.8% mol Na2O) 0.52 log Ω cm 900˚C (24.8% mol Na2O) 0.38 log Ω cm 1000˚C (24.8% mol Na2O) 0.26 log Ω cm 1100˚C (24.8% mol Na2O) 0.17 log Ω cm 1200˚C (25% mol Na2O) 6.05 log Ω cm 150˚C (25% mol Na2O) 4.50 log Ω cm 250˚C (25% mol Na2O) 4.03 log Ω cm 300˚C (25% mol Na2O) 3.52 log Ω cm 350˚C (27% mol Na2O) 5.87 log Ω cm 150˚C (27% mol Na2O) 3.94 log Ω cm 300˚C (29.7% mol Na2O) 1.31 log Ω cm 550˚C (29.7% mol Na2O) 1.16 log Ω cm 600˚C (29.7% mol Na2O) 0.78 log Ω cm 700˚C (29.7% mol Na2O) 0.52 log Ω cm 800˚C (29.7% mol Na2O) 0.34 log Ω cm 900˚C (29.7% mol Na2O) 0.20 log Ω cm 1000˚C (29.7% mol Na2O) 0.08 log Ω cm 1100˚C (29.7% mol Na2O) –0.02 log Ω cm 1200˚C (29.7% mol Na2O) –0.10 log Ω cm 1300˚C (29.7% mol Na2O) –0.16 log Ω cm 1400˚C Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 964 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 965 Wednesday, December 31, 1969 17:00 Electrical Properties Table 292. VOLUME RESISTIVITY OF (SHEET 4 OF 13) GLASS Glass Description Resistivity Temperature (˚C) SiO2–Na2O glass (Con’t) (30% mol Na2O) 5.48–5.75 log Ω cm 150˚C (30% mol Na2O) 4.42 log Ω cm 250˚C (30% mol Na2O) 3.64–3.78 log Ω cm 300˚C (30% mol Na2O) 3.46 log Ω cm 350˚C (30.2% mol Na2O) 3.8x106 Ω cm 100˚C (33.3% mol Na2O) 5.06 log Ω cm 150˚C (33.3% mol Na2O) 3.34 log Ω cm 300˚C (34.7% mol Na2O) 0.12 log Ω cm 900˚C (34.7% mol Na2O) 0.00 log Ω cm 1000˚C (34.7% mol Na2O) –0.11 log Ω cm 1100˚C (34.7% mol Na2O) –0.20 log Ω cm 1200˚C (34.7% mol Na2O) –0.27 log Ω cm 1300˚C (34.7% mol Na2O) –0.33 log Ω cm 1400˚C (35% mol Na2O) 3.85 log Ω cm 250˚C (35% mol Na2O) 2.92 log Ω cm 350˚C (36% mol Na2O) 4.89 log Ω cm 150˚C (36% mol Na2O) 3.22 log Ω cm 300˚C (39.5% mol Na2O) 0.91 log Ω cm 550˚C (39.5% mol Na2O) 0.67 log Ω cm 600˚C (39.5% mol Na2O) 0.33 log Ω cm 700˚C (39.5% mol Na2O) 0.13 log Ω cm 800˚C Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 965 9.1 E&M Page 966 Wednesday, December 31, 1969 17:00 Electrical Properties Table 292. VOLUME RESISTIVITY OF (SHEET 5 OF 13) GLASS Glass Description Resistivity Temperature (˚C) SiO2–Na2O glass (Con’t) (39.5% mol Na2O) 0.00 log Ω cm 900˚C (39.5% mol Na2O) –0.13 log Ω cm 1000˚C (39.5% mol Na2O) –0.24 log Ω cm 1100˚C (39.5% mol Na2O) –0.32 log Ω cm 1200˚C (39.5% mol Na2O) –0.39 log Ω cm 1300˚C (39.5% mol Na2O) –0.45 log Ω cm 1400˚C (40% mol Na2O) 4.58 log Ω cm 150˚C (40% mol Na2O) 3.59 log Ω cm 250˚C (40% mol Na2O) 2.97 log Ω cm 300˚C (40% mol Na2O) 2.66 log Ω cm 350˚C (44.2% mol Na2O) 1.4x105 Ω cm 100˚C (44.5% mol Na2O) –0.38 log Ω cm 1100˚C (44.5% mol Na2O) –0.46 log Ω cm 1200˚C (44.5% mol Na2O) –0.52 log Ω cm 1300˚C (45% mol Na2O) 4.33 log Ω cm 150˚C (45% mol Na2O) 3.30 log Ω cm 250˚C (45% mol Na2O) 2.69 log Ω cm 300˚C (45% mol Na2O) 2.35 log Ω cm 350˚C (48% mol Na2O) 4.09 log Ω cm 150˚C (48% mol Na2O) 2.58 log Ω cm 300˚C (49.3% mol Na2O) –0.47 log Ω cm 1100˚C (49.3% mol Na2O) –0.56 log Ω cm 1200˚C (49.3% mol Na2O) –0.61 log Ω cm 1300˚C Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 966 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 967 Wednesday, December 31, 1969 17:00 Electrical Properties Table 292. VOLUME RESISTIVITY OF (SHEET 6 OF 13) GLASS Glass Description Resistivity Temperature (˚C) SiO2–Na2O glass (Con’t) (57.5% mol Na2O) –0.52 log Ω cm 1100˚C (57.5% mol Na2O) –0.61 log Ω cm 1200˚C (57.5% mol Na2O) –0.67 log Ω cm 1300˚C (30% mol PbO) (30% mol PbO) 12.94 log Ω cm 10.44 log Ω cm 200˚C 300˚C (33.8% mol PbO) (33.8% mol PbO) 16.14 log Ω cm 13.68 log Ω cm 66˚C 135˚C (35% mol PbO) (35% mol PbO) 12.10 log Ω cm 9.89 log Ω cm 200˚C 300˚C (38.5% mol PbO) (38.5% mol PbO) (38.5% mol PbO) (38.5% mol PbO) 4.40 log Ω cm 3.20 log Ω cm 2.47 log Ω cm 1.94 log Ω cm 700˚C 800˚C 900˚C 1000˚C (38.5% mol PbO) (38.5% mol PbO) (38.5% mol PbO) 1.56 log Ω cm 1.26 log Ω cm 1.04 log Ω cm 1100˚C 1200˚C 1300˚C (40% mol PbO) (40% mol PbO) (40.2% mol PbO) (40.2% mol PbO) 11.54 log Ω cm 9.48 log Ω cm 14.85 log Ω cm 11.70 log Ω cm 200˚C 300˚C 78˚C 175˚C (44.7% mol PbO) (44.7% mol PbO) (44.7% mol PbO) 2.38 log Ω cm 1.82 log Ω cm 1.40 log Ω cm 800˚C 900˚C 1000˚C (44.7% mol PbO) (44.7% mol PbO) (44.7% mol PbO) 1.15 log Ω cm 0.98 log Ω cm 0.82 log Ω cm 1100˚C 1200˚C 1300˚C SiO2–PbO glass Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 967 9.1 E&M Page 968 Wednesday, December 31, 1969 17:00 Electrical Properties Table 292. VOLUME RESISTIVITY OF (SHEET 7 OF 13) GLASS Glass Description Resistivity Temperature (˚C) SiO2–PbO glass (Con’t) (47.3% mol PbO) 14.48 log Ω cm 79˚C (47.3% mol PbO) 11.74 log Ω cm 149˚C (50% mol PbO) (50% mol PbO) (50.0% mol PbO) (50.0% mol PbO) 10.69 log Ω cm 8.80–9.2 log Ω cm 1.90 log Ω cm 1.36 log Ω cm 200˚C 300˚C 800˚C 900˚C (50.0% mol PbO) (50.0% mol PbO) (50.0% mol PbO) 1.02 log Ω cm 0.80 log Ω cm 0.60 log Ω cm 1000˚C 1100˚C 1200˚C (51.4% mol PbO) (51.4% mol PbO) 14.52 log Ω cm 11.59 log Ω cm 65˚C 139˚C (51.6% mol PbO) (51.6% mol PbO) (51.6% mol PbO) 1.62 log Ω cm 1.20 log Ω cm 0.92 log Ω cm 800˚C 900˚C 1000˚C (51.6% mol PbO) (51.6% mol PbO) 0.70 log Ω cm 0.54 log Ω cm 1100˚C 1200˚C (57.1% mol PbO) (57.1% mol PbO) 13.70 log Ω cm 10.14 log Ω cm 77˚C 172˚C (60% mol PbO) (60% mol PbO) (60% mol PbO) (60% mol PbO) 10.04 log Ω cm 8.11 log Ω cm 1.72 log Ω cm 1.74 log Ω cm 200˚C 300˚C 650˚C 700˚C (60% mol PbO) (60% mol PbO) (60% mol PbO) 1.07 log Ω cm 0.76 log Ω cm 0.40 log Ω cm 800˚C 900˚C 1000˚C Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 968 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 969 Wednesday, December 31, 1969 17:00 Electrical Properties Table 292. VOLUME RESISTIVITY OF (SHEET 8 OF 13) GLASS Glass Description Resistivity Temperature (˚C) SiO2–PbO glass (Con’t) (63.2% mol PbO) 14.29 log Ω cm 57˚C (63.2% mol PbO) 10.34 log Ω cm 159˚C (65% mol PbO) (65% mol PbO) 9.76 log Ω cm 7.81 log Ω cm 200˚C 300˚C (66.7% mol PbO) (66.7% mol PbO) (66.7% mol PbO) (66.7% mol PbO) 1.32 log Ω cm 0.82 log Ω cm 0.50 log Ω cm 0.26 log Ω cm 700˚C 800˚C 900˚C 1000˚C (33.6% mol CaO) (33.6% mol CaO) (33.6% mol CaO) 0.97 log Ω cm 0.93–0.94 log Ω cm 0.79–0.80 log Ω cm 1500˚C 1560˚C 1600˚C (41.3% mol CaO) (41.3% mol CaO) (41.3% mol CaO) 0.82 log Ω cm 0.76 log Ω cm 0.67–0.68 log Ω cm 1519˚C 1550˚C 1600˚C (45.4% mol CaO) (45.4% mol CaO) (45.4% mol CaO) 0.65 log Ω cm 0.58–0.59 log Ω cm 0.52 log Ω cm 1550˚C 1585˚C 1622˚C (50% mol CaO) (50% mol CaO) 12.2 log Ω cm 8.70 log Ω cm 300˚C 400˚C (51.4% mol CaO) (51.4% mol CaO) (51.4% mol CaO) 0.48–0.49 log Ω cm 0.47 log Ω cm 0.38 log Ω cm 1500˚C 1560˚C 1618˚C (55.2% mol CaO) (55.2% mol CaO) (55.2% mol CaO) 0.51–0.53 log Ω cm 0.42–0.43 log Ω cm 0.34 log Ω cm 1499˚C 1550˚C 1600˚C SiO2–CaO glass Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 969 9.1 E&M Page 970 Wednesday, December 31, 1969 17:00 Electrical Properties Table 292. VOLUME RESISTIVITY OF (SHEET 9 OF 13) GLASS Glass Description Resistivity Temperature (˚C) SiO2–B2O3 glass (2.74% wt B2O3) 5.30 log Ω cm 900˚C (2.74% wt B2O3) 4.72 log Ω cm 1100˚C (2.74% wt B2O3) 4.40 log Ω cm 1300˚C (2.74% wt B2O3) 4.02 log Ω cm 1500˚C (2.74% wt B2O3) 3.76 log Ω cm 1700˚C (2.74% wt B2O3) 3.56 log Ω cm 1900˚C (5.48% wt B2O3) 5.64 log Ω cm 900˚C (5.48% wt B2O3) 5.16 log Ω cm 1100˚C (5.48% wt B2O3) 4.56 log Ω cm 1300˚C (5.48% wt B2O3) 4.30 log Ω cm 1500˚C (5.48% wt B2O3) 4.10 log Ω cm 1700˚C (5.48% wt B2O3) 3.94 log Ω cm 1900˚C (10.75% wt B2O3) 5.74 log Ω cm 900˚C (10.75% wt B2O3) 5.08 log Ω cm 1100˚C (10.75% wt B2O3) 4.69 log Ω cm 1300˚C (10.75% wt B2O3) 4.40 log Ω cm 1500˚C (10.75% wt B2O3) 4.16 log Ω cm 1700˚C (10.75% wt B2O3) 3.98 log Ω cm 1900˚C (19.37% wt B2O3) 5.65 log Ω cm 900˚C (19.37% wt B2O3) 4.82 log Ω cm 1100˚C (19.37% wt B2O3) 4.48 log Ω cm 1300˚C (19.37% wt B2O3) 4.22 log Ω cm 1500˚C (19.37% wt B2O3) 4.00 log Ω cm 1700˚C (19.37% wt B2O3) 3.84 log Ω cm 1900˚C Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 970 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 971 Wednesday, December 31, 1969 17:00 Electrical Properties Table 292. VOLUME RESISTIVITY OF (SHEET 10 OF 13) GLASS Glass Description Resistivity Temperature (˚C) SiO2–Al2O3 glass (2.83% wt Al2O3) 5.74 log Ω cm 700˚C (2.83% wt Al2O3) 4.82 log Ω cm 900˚C (2.83% wt Al2O3) 4.29 log Ω cm 1100˚C (2.83% wt Al2O3) 3.94 log Ω cm 1300˚C (2.83% wt Al2O3) 3.67 log Ω cm 1500˚C (2.83% wt Al2O3) 3.46 log Ω cm 1700˚C (2.83% wt Al2O3) 3.28 log Ω cm 1900˚C (5.51% wt Al2O3) 5.34 log Ω cm 700˚C (5.51% wt Al2O3) 4.65 log Ω cm 900˚C (5.51% wt Al2O3) 4.15 log Ω cm 1100˚C (5.51% wt Al2O3) 3.76 log Ω cm 1300˚C (5.51% wt Al2O3) 3.56 log Ω cm 1500˚C (5.51% wt Al2O3) 3.36 log Ω cm 1700˚C (5.51% wt Al2O3) 3.20 log Ω cm 1900˚C (10.86% wt Al2O3) 5.38 log Ω cm 700˚C (10.86% wt Al2O3) 4.54 log Ω cm 900˚C (10.86% wt Al2O3) 4.02 log Ω cm 1100˚C (10.86% wt Al2O3) 3.74 log Ω cm 1300˚C (10.86% wt Al2O3) 3.52 log Ω cm 1500˚C (10.86% wt Al2O3) 3.34 log Ω cm 1700˚C (10.86% wt Al2O3) 3.20 log Ω cm 1900˚C 7.6 log Ω cm 7.3 log Ω cm 6.9 log Ω cm 560˚C 600˚C 640˚C B2O3 glass Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 971 9.1 E&M Page 972 Wednesday, December 31, 1969 17:00 Electrical Properties Table 292. VOLUME RESISTIVITY OF (SHEET 11 OF 13) Glass Resistivity Temperature (˚C) 6.6 log Ω cm 680˚C 6.2 log Ω cm 5.8 log Ω cm 5.5 log Ω cm 730˚C 780˚C 840˚C (3.63% mol Na2O) 2.70 log Ω cm 800˚C (3.63% mol Na2O) 2.30 log Ω cm 900˚C (3.63% mol Na2O) 2.00 log Ω cm 1000˚C (10% mol Na2O) 14.20 log Ω cm 40˚C (10% mol Na2O) 13.21 log Ω cm 60˚C (10% mol Na2O) 12.40 log Ω cm 80˚C (10% mol Na2O) 11.61 log Ω cm 100˚C (12.1% mol Na2O) 2.43 log Ω cm 700˚C (12.1% mol Na2O) 1.89 log Ω cm 800˚C (12.1% mol Na2O) 1.48 log Ω cm 900˚C (16% mol Na2O) 15.89 log Ω cm 40˚C (16% mol Na2O) 15.08 log Ω cm 60˚C (16% mol Na2O) 14.32 log Ω cm 80˚C (16% mol Na2O) 13.58 log Ω cm 100˚C (17.3% mol Na2O) 1.39 log Ω cm 850˚C (17.3% mol Na2O) 1.18 log Ω cm 900˚C (17.3% mol Na2O) 0.89 log Ω cm 1000˚C (20% mol Na2O) 13.86 log Ω cm 40˚C (20% mol Na2O) 12.91 log Ω cm 60˚C (20% mol Na2O) 12.05 log Ω cm 80˚C (20% mol Na2O) 11.28 log Ω cm 100˚C Description B2O3 glass (Con’t) B2O3–Na2O glass GLASS Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 972 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 973 Wednesday, December 31, 1969 17:00 Electrical Properties Table 292. VOLUME RESISTIVITY OF (SHEET 12 OF 13) GLASS Glass Description Resistivity Temperature (˚C) B2O3–Na2O glass (Con’t) (21.9% mol Na2O) 1.29 log Ω cm 800˚C (21.9% mol Na2O) 0.94 log Ω cm 900˚C (21.9% mol Na2O) 0.65 log Ω cm 1000˚C (27.5% mol Na2O) 1.00 log Ω cm 800˚C (27.5% mol Na2O) 0.70 log Ω cm 900˚C (30% mol Na2O) 11.90 log Ω cm 40˚C (30% mol Na2O) 10.14 log Ω cm 60˚C (30% mol Na2O) 9.43 log Ω cm 80˚C (30% mol Na2O) 8.82 log Ω cm 100˚C (32.8% mol Na2O) 1.02 log Ω cm 700˚C (32.8% mol Na2O) 0.60 log Ω cm 800˚C (32.8% mol Na2O) 0.40 log Ω cm 900˚C (40% mol Na2O) 10.48 log Ω cm 40˚C (40% mol Na2O) 9.73 log Ω cm 60˚C (40% mol Na2O) 9.08 log Ω cm 80˚C (40% mol Na2O) 8.46 log Ω cm 100˚C (33.3% mol CaO) (33.3% mol CaO) (33.3% mol CaO) 14.40 log Ω cm 13.92 log Ω cm 13.50 log Ω cm 150˚C 200˚C 250˚C (33.3% mol CaO) (33.3% mol CaO) (33.3% mol CaO) 13.16 log Ω cm 3.10 log Ω cm 2.25 log Ω cm 300˚C 850˚C 950˚C (33.3% mol CaO) (33.3% mol CaO) (33.3% mol CaO) 1.52 log Ω cm 1.10 log Ω cm 0.85 log Ω cm 1050˚C 1150˚C 1250˚C B2O3–CaO glass Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 973 9.1 E&M Page 974 Wednesday, December 31, 1969 17:00 Electrical Properties Table 292. VOLUME RESISTIVITY OF (SHEET 13 OF 13) GLASS Glass Description Resistivity Temperature (˚C) B2O3–CaO glass (Con’t) (40.0% mol CaO) 2.97 log Ω cm 850˚C (40.0% mol CaO) (40.0% mol CaO) 2.06 log Ω cm 1.40 log Ω cm 950˚C 1050˚C (40.0% mol CaO) (40.0% mol CaO) 0.98 log Ω cm 0.75 log Ω cm 1150˚C 1250˚C (55.4% mol CaO) (55.4% mol CaO) (55.4% mol CaO) 6.13 log Ω cm 3.86 log Ω cm 2.46 log Ω cm 750˚C 850˚C 950˚C (55.4% mol CaO) (55.4% mol CaO) 1.70 log Ω cm 1.22 log Ω cm 1050˚C 1150˚C Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 974 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 975 Wednesday, December 31, 1969 17:00 Electrical Properties Table 293. VOLUME RESISTIVITY OF POLYMERS (SHEET 1 OF 8) Polymer ABS Resins; Molded, Extruded Acrylics; Cast, Molded, Extruded Type Volume Resistivity, (ASTM D257) (Ω • cm) Medium impact 2—4 x 1015 High impact 1—4 x 1015 Very high impact 1—4 x 1015 Low temperature impact 1—4 x 1015 Heat resistant 1—5 x 1015 Cast Resin Sheets, Rods: General purpose, type I >1015 General purpose, type II >1015 Moldings: Grades 5, 6, 8 >1014 High impact grade 2.0 x 1016 4 x 1014 Thermoset Carbonate Allyl diglycol carbonate Alkyds; Molded Putty (encapsulating) 1014 Rope (general purpose) 1014 Granular (high speed molding) Glass reinforced (heavy duty parts) Cellulose Acetate; Molded, Extruded 1014 — 1015 1014 ASTM Grade: H6—1 1010—1013 H4—1 1010—1013 H2—1 1010—1013 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 975 9.1 E&M Page 976 Wednesday, December 31, 1969 17:00 Electrical Properties Table 293. VOLUME RESISTIVITY OF POLYMERS (SHEET 2 OF 8) Polymer Cellulose Acetate; Molded, Extruded (Con’t) Cellulose Acetate Butyrate; Molded, Extruded Cellusose Acetate Propionate; Molded, Extruded Chlorinated Polymers Polycarbonates Diallyl Phthalates; Molded Volume Resistivity, (ASTM D257) (Ω • cm) Type MH—1, MH—2 1010—1013 MS—1, MS—2 1010—1013 S2—1 1010—1013 ASTM Grade: H4 1011—1014 MH 1011—1014 S2 1011—1014 ASTM Grade: 1 1011—1014 3 1011—1014 6 1011—1014 1.5 x 1016 Chlorinated polyether Chlorinated polyvinyl chloride 1 x 1015—2 x 1016 Polycarbonate Polycarbonate (40% glass fiber reinforced) 2.1 x 1016 1.4 x 1015 Orlon filled 6 x 104—6 x 106 Dacron filled 102—2.5 x 104 Asbestos filled 102—5 x 103 Glass fiber filled 104—5 x 104 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 976 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 977 Wednesday, December 31, 1969 17:00 Electrical Properties Table 293. VOLUME RESISTIVITY OF POLYMERS (SHEET 3 OF 8) Polymer Fluorocarbons; Molded,Extruded Type Polytetrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) Epoxies; Cast, Molded, Reinforced Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded High strength laminate Epoxies—Molded, Extruded High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Volume Resistivity, (ASTM D257) (Ω • cm) 1018 >1018 1015 >2 x 1018 5 x 1014 6.1 x 1015 9.1 x 105—6.7 x 109 1—5 x 1015 6.6 x 107—109 2.10 x 1014 1.4—5.5 x 1014 >1016 Epoxy novolacs Cast, rigid Melamines; Molded Filler & type Cellulose electrical 1012—1013 Glass fiber 1—7 x 1011 Alpha cellulose and mineral 1012 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 977 9.1 E&M Page 978 Wednesday, December 31, 1969 17:00 Electrical Properties Table 293. VOLUME RESISTIVITY OF POLYMERS (SHEET 4 OF 8) Polymer Nylons; Molded, Extruded Volume Resistivity, (ASTM D257) (Ω • cm) Type Type 6 4.5 x 1013 General purpose Glass fiber (30%) reinforced Cast 2.6 x 1014 Type 8 1.5 x 1011 Type 11 2 x 1013 Type 12 1014 —1015 6/6 Nylon General purpose molding 1014—1015 2.6—5.5 x 1015 Glass fiber reinforced Phenolics; Molded 2.8 x 1014—1.5 x 1015 General purpose extrusion 1015 6/10 Nylon General purpose 1015 Type and filler General: woodflour and flock Shock: paper, flock, or pulp 109—1013 1—50 x 1011 >1010 High shock: chopped fabric or cord 10 — 1011 Very high shock: glass fiber 10 Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric 1010 — 1012 Rubber phenolic—asbestos 108—1011 1011 1011 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 978 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 979 Wednesday, December 31, 1969 17:00 Electrical Properties Table 293. VOLUME RESISTIVITY OF POLYMERS (SHEET 5 OF 8) Polymer Phenolics; Molded (Con’t) Polymides Polyacetals Polyester; Thermoplastic Type ABS—Polycarbonate Alloy 2.2 x 1016 PVC—Acrylic Alloy PVC—acrylic Sheet l—5 x 1013 PVC—acrylic injection molded 5 x l015 Unreinforced 4 x 1015 Glass reinforced 9.2 x 1015 Homopolymer: Standard 1 x 1015 20% glass reinforced 5 x 1014 Copolymer: Standard 1 x 1014 25% glass reinforced 1.2 x 1014 High flow 1.0 x 1014 Injection Moldings: General purpose grade 1—4 x 1016 Glass reinforced grades 3.2—3.3 x 1016 Glass reinforced self extinguishing Polyesters: Thermosets Volume Resistivity, (ASTM D257) (Ω • cm) 3.4 x 1016 General purpose grade 2 x 1015 Asbestos—filled grade 3 x 1014 Cast polyyester Rigid 1013 Flexible 1012 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 979 9.1 E&M Page 980 Wednesday, December 31, 1969 17:00 Electrical Properties Table 293. VOLUME RESISTIVITY OF POLYMERS (SHEET 6 OF 8) Polymer Polyesters: Thermosets (Con’t) Volume Resistivity, (ASTM D257) (Ω • cm) Type Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistant (asbestos) Sheet molding compounds, general purpose Phenylene oxides (Noryl) 6.4 x 1015 —2.2 x 1016 1017 SE—1 1017 Glass fiber reinforced 1017 Standard 5 x 1016 1017 Polyarylsulfone 3.2—7.71 x l016 General purpose >1017 High impact Polyphenylene sulfide 1 x 1012 —1 x 1013 Phenylene Oxides SE—100 Glass fiber reinforced Polypropylene 1 x 1012 —1 x 1013 1017 Asbestos filled 1.5 x 1015 Glass reinforced 1.7 x 1016 Flame retardant 4 x 1016—1017 40% glass reinforced 4.5 x 1014 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 980 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 981 Wednesday, December 31, 1969 17:00 Electrical Properties Table 293. VOLUME RESISTIVITY OF POLYMERS (SHEET 7 OF 8) Polymer Polyethylenes; Molded, Extruded Olefin Copolymers; Molded Type Type I—lower density (0.910—0.925) Melt index 0.3—3.6 1017—1019 Melt index 6—26 1017—1019 Melt index 200 1017—1019 Type II—medium density (0.926—0.940) Melt index 20 >1015 Melt index l.0—1.9 >1015 Type III—higher density (0.941—0.965) Melt index 0.2—0.9 >1015 Melt Melt index 0.l—12.0 >1015 Melt index 1.5—15 >1015 High molecular weight >1015 EEA (ethylene ethyl acrylate) 2.4 x 1015 EVA (ethylene vinyl acetate) 0.15 x 1015 Ionomer Polystyrenes; Molded Volume Resistivity, (ASTM D257) (Ω • cm) 10 x 1015 Polyallomer >1016 Polystyrenes General purpose >1016 Medium impact >1016 High impact >1016 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 981 9.1 E&M Page 982 Wednesday, December 31, 1969 17:00 Electrical Properties Table 293. VOLUME RESISTIVITY OF POLYMERS (SHEET 8 OF 8) Polymer Polystyrenes; Molded (Con’t) Volume Resistivity, (ASTM D257) (Ω • cm) Type Glass fiber -30% reinforced 3.6 x 1016 Styrene acrylonitrile (SAN) >1016 Glass fiber (30%) reinforced SAN Polyvinyl Chloride And Copolymers; Molded, Extruded Nonrigid—general 1—700 x 1012 Nonrigid—electrical 4—300 x 1011 Rigid—normal impact 1014—1016 Vinylidene chloride 1014—1016 Silicones; Molded, Laminated Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate Ureas; Molded 4.4 x 1016 Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) (dry) 9 x 1014 5 x 1014 2—5 x 1014 0.5—5 x 1011 5—8 x 1010 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 982 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 983 Wednesday, December 31, 1969 17:00 Electrical Properties Table 294. CRITICAL TEMPERATURE OF SUPERCONDUCTIVE ELEMENTS (SHEET 1 OF 2) a Element Tc(K) Al Be Cd 1.175 0.026 0.518-0.52 Ga Ga (β) Ga (γ) Ga (δ) 5.90-6.2 7.62 7.85 Hg (α) Hg (β) 4.154 3.949 In Ir 3.405 0.11-0.14 La (α) La (β) Mo Nb 4.88 6.00 0.916 9.25 Os Pa Pb Re 0.655 1.4 7.23 1.697 Ru Sb Sn Ta 2.6-2.7a 3.721 4.47 Tc Th 7.73-7.78 1.39 1.0833 0.493 Metastable. Source: data from Roberts, B. W., Properties of Selected Superconductive Materials - 1974 Supplement, NBS Technical Note 825, National Bureau of Standards, U.S. Government Printing Office, Washington,D.C., 1974, 10. ©2001 CRC Press LLC Shackelford & Alexander 983 9.1 E&M Page 984 Wednesday, December 31, 1969 17:00 Electrical Properties Table 294. CRITICAL TEMPERATURE OF SUPERCONDUCTIVE ELEMENTS (SHEET 2 OF 2) Element Tc(K) Ti Ti 0.39 2.332-2.39 V W Zn Zr Zr (ω) 5.43-5.31 0.0154 0.875 0.53 0.65 a Metastable. Source: data from Roberts, B. W., Properties of Selected Superconductive Materials - 1974 Supplement, NBS Technical Note 825, National Bureau of Standards, U.S. Government Printing Office, Washington,D.C., 1974, 10. ©2001 CRC Press LLC 984 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 985 Wednesday, December 31, 1969 17:00 Electrical Properties Table 295. DISSIPATION FACTOR FOR (SHEET 1 OF 8) POLYMERS Dissipation Factor (ASTM D150) Class ABS Resins; Molded, Extruded Acrylics; Cast, Molded, Extruded 60 Hz 106 Hz Medium impact 0.003—0.006 0.008—0.009 High impact Very high impact Low temperature impact Heat resistant 0.005—0.007 0.005—0.010 0.005—0.01 0.030—0.040 0.007—0.015 0.008—0.016 0.008—0.016 0.005—0.015 Polymer Cast Resin Sheets, Rods: General purpose, type I General purpose, type II Moldings: Grades 5, 6, 8 High impact grade 0.05—0.06 0.05—0.06 0.02—0.03 0.02—0.03 0.04—0.06 0.03—0.04 0.02—0.03 0.01—0.02 Thermoset Carbonate Allyl diglycol carbonate 0.03—0.04 0.1—0.2 Alkyds; Molded Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts) 0.030—0.045 0.019 0.016—0.020 0.023 0.030—0.040 0.017—0.020 0.02—0.03 0.015—0.022 0.01—0.06 0.01—0.06 0.01—0.06 0.01—0.06 0.01—0.06 0.01—0.10 0.01—0.10 0.01—0.10 0.01—0.10 0.01—0.10 Cellulose Acetate; Molded, Extruded ASTM Grade: H4—1 H2—1 MH—1, MH—2 MS—1, MS—2 S2—1 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 985 9.1 E&M Page 986 Wednesday, December 31, 1969 17:00 Electrical Properties Table 295. DISSIPATION FACTOR FOR (SHEET 2 OF 8) POLYMERS Dissipation Factor (ASTM D150) Class Cellulose Acetate Butyrate; Molded, Extruded Polymer Chlorinated Polymers Chlorinated polyether Chlorinated polyvinyl chloride Diallyl Phthalates; Molded 0.01—0.04 0.01—0.04 0.01—0.04 0.02—0.05 0.02—0.05 0.02—0.05 0.01—0.04 0.01—0.04 0.01—0.04 0.02—0.05 0.02—0.05 0.02—0.05 0.011 0.0189— 0.0208 0.011 0.0009 0.01 0.006 0.007 0.023—0.015 (Dry) 0.004—0.016 (Dry) 0.05—0.03 (Dry) 0.004—0.015 (Dry) 0.045—0.040 (Wet) 0.009—0.017 (Wet) 0.154—0.050 (Wet) 0.012—0.020 (Wet) ASTM Grade: 1 3 6 Polycarbonates 106 Hz ASTM Grade: H4 MH S2 Cellulose Acetate Propionate; Molded, Extruded 60 Hz Polycarbonate Polycarbonate (40% glass fiber reinforced) Orlon filled Dacron filled Asbestos filled Glass fiber filled 0.02 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 986 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 987 Wednesday, December 31, 1969 17:00 Electrical Properties Table 295. DISSIPATION FACTOR FOR (SHEET 3 OF 8) POLYMERS Dissipation Factor (ASTM D150) Class Fluorocarbons; Molded,Extruded Epoxies; Cast, Molded, Reinforced Epoxies—Molded, Extruded Polymer 60 Hz 106 Hz Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) 0.02 0.007—0.010 0.0002 0.0002 0.0005–0.0015 0.0005–0.0015 0.0003 0.0003 0.05 0.184 Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded General purpose glass cloth laminate High strength laminate 0.0074 0.0048-0.0380 0.011-0.018 0.032 0.0369-0.0622 0.013—0.020 0.004-0.006 0.024—0.026 — 0.010-0.017 0.0055— 0.0074 0.0071—0.025 — 0.029—0.028 0.001—0.007 — High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate Epoxy novolacs Cast, rigid — 0.0158 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 987 9.1 E&M Page 988 Wednesday, December 31, 1969 17:00 Electrical Properties Table 295. DISSIPATION FACTOR FOR (SHEET 4 OF 8) POLYMERS Dissipation Factor (ASTM D150) Class Melamines; Molded Nylons; Molded, Extruded Polymer Filler & type Unfilled Cellulose electrical Glass fiber Alpha cellulose Mineral 106 Hz 0.048—0.162 0.026—0.192 0.14—0.23 — — 0.031—0.040 0.032—0.12 0.020—0.03 0.028 0.030 0.06—0.014 0.03—0.04 0.022—0.008 0.019—0.015 0.015 0.007—0.010 0.05 0.010—0.015 0.19 0.03 0.08 0.02 Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers Type 8 Type 11 Type 12 6/6 Nylon General purpose molding Glass fiber reinforced 6/10 Nylon General purpose Phenolics; Molded 60 Hz Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber 0.04 (103 Hz) 0.014—0.04 0.009—0.018 0.04 0.017—0.018 0.04 0.05—0.30 0.03—0.07 0.08—0.35 0.03—0.07 0.08—0.45 0.03—0.09 0.02—0.03 0.02 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 988 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 989 Wednesday, December 31, 1969 17:00 Electrical Properties Table 295. DISSIPATION FACTOR FOR (SHEET 5 OF 8) POLYMERS Dissipation Factor (ASTM D150) 60 Hz 106 Hz 0.13—0.16 0.1 0.15—0.60 0.1—0.2 0.5 0.09 0.15 0.13 ABS–Polycarbonate Alloy 0.0026 0.0059 PVC–acrylic sheet PVC–acrylic injection molded 0.076 0.094 0.037 0.031 Polyimides Unreinforced Glass reinforced 0.003 0.0034 0.011 0.0055 Polyacetals Homopolymer: Standard 20% glass reinforced Copolymer: Standard 25% glass reinforced High flow 0.0048 0.0047 0.0048 0.0036 0.001 (100 Hz) 0.003 (100 Hz) 0.001 (100 Hz) 0.006 0.006 0.006 Class Phenolics: Molded PVC–Acrylic Alloy Polyester; Thermoplastic Polymer Arc resistant—mineral Rubber phenolic— woodflour or flock Rubber phenolic— chopped fabric Rubber phenolic— asbestos Injection Moldings: General purpose grade Glass reinforced grades 0.002 (103 Hz) 0.002—0.003 (103 Hz) Glass reinforced self extinguishing General purpose grade 0.002 (103 Hz) Asbestos—filled grade 0.015 (103 Hz) 0.023 (103 Hz) Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 989 9.1 E&M Page 990 Wednesday, December 31, 1969 17:00 Electrical Properties Table 295. DISSIPATION FACTOR FOR (SHEET 6 OF 8) POLYMERS Dissipation Factor (ASTM D150) 60 Hz 106 Hz 0.003—0.04 0.01—0.18 0.006—0.04 0.02—0.06 0.0087—0.04 0.0086—0.022 0.0007 0.0007 0.0009 0.0024 0.0024 0.0015 0.0008 0.0019 0.0034 0.0049 Polyarylsulfone 0.0017—0.003 0.0056—0.012 General purpose 0.0005–0.0007 0.0002–0.0003 0.0002— 0.0003 0.002 0.003 0.0006–0.003 Class Polyesters: Thermosets Polymer Cast polyyester Rigid Flexible Reinforced polyester moldings Sheet molding compounds, general purpose Phenylene Oxides SE—100 SE—1 Glass fiber reinforced Phenylene oxides (Noryl) Standard Glass fiber reinforced Polypropylene High impact Asbestos filled Glass reinforced Flame retardant Polyphenylene sulfide Polyethylenes; Molded, Extruded <0.0016 0.007 0.002 0.0007–0.017 Standard — 40% glass reinforced — Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200 <0.0005 <0.0005 <0.0005 0.0007 0.0014— 0.0041 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 990 CRC Handbook of Materials Science & Engineering 9.1 E&M Page 991 Wednesday, December 31, 1969 17:00 Electrical Properties Table 295. DISSIPATION FACTOR FOR (SHEET 7 OF 8) POLYMERS Dissipation Factor (ASTM D150) Class Polymer Polyethylenes; Molded, Extruded (Con’t) Type II—medium density (0.926—0.940) Olefin Copolymers; Molded Polystyrenes; Molded 60 Hz Melt index 20 Melt index l.0—1.9 <0.0005 <0.0005 Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight <0.0005 <0.0005 <0.0005 <0.0005 EEA (ethylene ethyl acrylate) EVA (ethylene vinyl acetate) Ionomer Polyallomer Polystyrenes General purpose Medium impact High impact Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN 106 Hz 0.001 0.003 0.003 >0.0005 0.0001–0.0003 0.0004–0.002 0.0004–0.002 0.005 0.0001–0.0005 0.0004–0.002 0.0004–0.002 0.002 >0.006 0.007–0.010 0.005 0.009 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 991 9.1 E&M Page 992 Wednesday, December 31, 1969 17:00 Electrical Properties Table 295. DISSIPATION FACTOR FOR (SHEET 8 OF 8) POLYMERS Dissipation Factor (ASTM D150) Class Polyvinyl Chloride and Copolymers; Polymer Ureas; Molded 106 Hz Molded, Extruded Nonrigid—general Nonrigid—electrical Rigid—normal impact Vinylidene chloride Silicones; Molded, Laminated 60 Hz Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) Woodflour filled 0.05—0.15 0.08—0.11 0.020—0.03 0.03—0.15 0.01 0.004 0.002—0.004 0.001—0.004 0.02 0.002 0.035—0.043 0.028—0.032 0.042—0.044 0.027—0.029 0.035—0.040 0.028—0.032 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 992 CRC Handbook of Materials Science & Engineering 9.2 E&M L Page 993 Wednesday, December 31, 1969 17:00 Table 296. DIELECTRIC STRENGTH OF (SHEET 1 OF 12) POLYMERS Class Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) ABS Resins; Molded, Extruded Medium impact High impact Very high impact 385 350—440 300—375 Low temperature impact Heat resistant 300—415 360—400 Cast Resin Sheets, Rods: General purpose, type I General purpose, type II 450—530 450—500 Moldings: Grades 5, 6, 8 High impact grade 400 400—500 Acrylics; Cast, Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 994 Wednesday, December 31, 1969 17:00 Table 296. DIELECTRIC STRENGTH OF (SHEET 2 OF 12) POLYMERS Class Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) Cellulose Acetate; Molded, Extruded ASTM Grade: H6—1 H4—1 H2—1 250—600 250—600 250—600 MH—1, MH—2 MS—1, MS—2 S2—1 250—600 250—600 250—600 ASTM Grade: H4 MH S2 250—400 250—400 250—400 ASTM Grade: 1 3 6 300—450 300—450 300—450 Cellulose Acetate Butyrate; Molded, Extruded Cellusose Acetate Propionate; Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 995 Wednesday, December 31, 1969 17:00 Table 296. DIELECTRIC STRENGTH OF (SHEET 3 OF 12) POLYMERS Class Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) Chlorinated Polymers Chlorinated polyether Chlorinated polyvinyl chloride 400 1,250—1,550 Polycarbonates Polycarbonate Polycarbonate (40% glass fiber reinforced) 400 475 Diallyl Phthalates; Molded Orlon filled 400 (dry) 375 (wet) 376—400 (dry) 360—391 (wet) Dacron filled Asbestos filled Glass fiber filled 350—450 (dry) 300—400 (wet) 350—430 (dry) 300—420 (wet) Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 996 Wednesday, December 31, 1969 17:00 Table 296. DIELECTRIC STRENGTH OF (SHEET 4 OF 12) POLYMERS Class Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) Fluorocarbons; Molded,Extruded Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) 530—600 1000—2000 Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) 300—400 2100 260 High performance resins (cycloaliphatic diepoxides) Molded 280—400 (step) Epoxy novolacs Cast, rigid 444 Filler & type Cellulose electrical Glass fiber Alpha cellulose and mineral 350—400 250 —300 375 Epoxies—Molded, Extruded Melamines; Molded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 997 Wednesday, December 31, 1969 17:00 Table 296. DIELECTRIC STRENGTH OF (SHEET 5 OF 12) POLYMERS Class Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) Nylons; Molded, Extruded Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers 385—400 400—450 380 440 Type 8 Type 11 Type 12 340 425 840 6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled 385 400—480 300—400 General purpose extrusion 6/10 Nylon General purpose 470 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 998 Wednesday, December 31, 1969 17:00 Table 296. DIELECTRIC STRENGTH OF (SHEET 6 OF 12) POLYMERS Class Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) Phenolics; Molded Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber 200—425 250—350 200—350 375—425 Phenolics: Molded Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos 350—425 250—375 250 350 ABS–Polycarbonate Alloy ABS–Polycarbonate Alloy 500 PVC–Acrylic Alloy PVC–Acrylic Alloy PVC–acrylic sheet PVC–acrylic injection molded >429 400 Phenolics: Molded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 999 Wednesday, December 31, 1969 17:00 Table 296. DIELECTRIC STRENGTH OF (SHEET 7 OF 12) POLYMERS Class Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) Polyimides Unreinforced 2nd value Glass reinforced 310 300 Polyacetals Homopolymer: Standard 20% glass reinforced 500 500 Copolymer: Standard 25% glass reinforced High flow 500 580 500 Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing 590 560—750 750 Polyester; Thermoplastic Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1000 Wednesday, December 31, 1969 17:00 Table 296. DIELECTRIC STRENGTH OF (SHEET 8 OF 12) POLYMERS Class Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) Polyester; Thermoplastic (Con’t) General purpose grade Glass reinforced grade Asbestos—filled grade 420—540 — 580 Polyesters: Thermosets Cast polyyester Rigid Flexible 300—400 300—400 Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistant (asbestos) Sheet molding compounds, general purpose 200—400 350 400—440 SE—100 SE—1 Glass fiber reinforced 400 (1/8 in.) 500 (1/8 in.) 1,020 (1/32 in.) Phenylene Oxides Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1001 Wednesday, December 31, 1969 17:00 Table 296. DIELECTRIC STRENGTH OF (SHEET 9 OF 12) POLYMERS Class Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) Phenylene oxides (Noryl) Standard Glass fiber reinforced 425 480 Polyarylsulfone Polyarylsulfone 350—383 Polypropylene General purpose High impact Asbestos filled 650 (125 mil) 450—650 450 Glass reinforced Flame retardant 317—475 485—700 Standard 40% glass reinforced 450—595 490 Polyphenylene sulfide Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1002 Wednesday, December 31, 1969 17:00 Table 296. DIELECTRIC STRENGTH OF (SHEET 10 OF 12) POLYMERS Class Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) Polyethylenes; Molded, Extruded Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200 480 480 480 Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9 480 480 Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight 480 480 480 480 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1003 Wednesday, December 31, 1969 17:00 Table 296. DIELECTRIC STRENGTH OF (SHEET 11 OF 12) POLYMERS Class Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) Olefin Copolymers; Molded EEA (ethylene ethyl acrylate) EVA (ethylene vinyl acetate) Ionomer Polyallomer 550 525 1000 500—650 Polystyrenes; Molded Polystyrenes General purpose Medium impact High impact >500 >425 300—650 Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN 396 400—500 515 Nonrigid—electrical Rigid—normal impact 24—500 725—1,400 Polyvinyl Chloride And Copolymers; Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1004 Wednesday, December 31, 1969 17:00 Table 296. DIELECTRIC STRENGTH OF (SHEET 12 OF 12) POLYMERS Class Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) Silicones; Molded, Laminated Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate 280 (in oil) 380 (in oil) 725 Ureas; Molded Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) Woodflour filled 300—400 340—370 300—400 Ureas; Molded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1005 Wednesday, December 31, 1969 17:00 Table 297. STEP DIELECTRIC STRENGTH OF POLYMERS (SHEET 1 OF 3) Dielectric Strength, Step by Step ASTM D149 (V/mil) Class Polymer (dry) Thermoset Carbonate Thermoset Carbonate Allyl diglycol carbonate 290 Alkyds; Molded Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts) 300—350 290 300—350 300—350 Diallyl Phthalates; Molded Orlon filled Dacron filled Asbestos filled Glass fiber filled 350 350—410 300—400 300—420 (wet) 325 350—361 250—350 275—420 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1006 Wednesday, December 31, 1969 17:00 Table 297. STEP DIELECTRIC STRENGTH OF POLYMERS (SHEET 2 OF 3) Dielectric Strength, Step by Step ASTM D149 (V/mil) Class Polymer (dry) Epoxies; Cast, Molded, Reinforced Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible >400 400—410 Molded General purpose glass cloth laminate High strength laminate 360—400 450—550 650-750 High performance resins (cycloaliphatic diepoxides) Molded 280—400 (wet) Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1007 Wednesday, December 31, 1969 17:00 Table 297. STEP DIELECTRIC STRENGTH OF POLYMERS (SHEET 3 OF 3) Dielectric Strength, Step by Step ASTM D149 (V/mil) Class Polymer (dry) Polyesters: Thermosets Cast polyyester Rigid Flexible 300—400 300—400 Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistsnt (asbestos) Sheet molding compounds, general purpose 200—400 350 400—440 (wet) Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1008 Wednesday, December 31, 1969 17:00 Table 298. DIELECTRIC CONSTANT OF (SHEET 1 OF 14) POLYMERS Dielectric Constant (ASTM D150) Polymer Type 60 Hz 106 Hz ABS Resins; Molded, Extruded Medium impact High impact Very high impact 2.8—3.2 2.8—3.2 2.8—3.5 2.75—3.0 2.7—3.0 2.4—3.0 Low temperature impact Heat resistant 2.5—3.5 2.7—3.5 2.4—3.0 2.8—3.2 Cast Resin Sheets, Rods: General purpose, type I General purpose, type II 3.5—4.5 3.5—4.5 2.7—3.2 2.7—3.2 Moldings: Grades 5, 6, 8 High impact grade 3.5—3.9 3.5—3.9 2.7—2.9 2.5—3.0 Allyl diglycol carbonate 4.4 3.5—3.8 Acrylics; Cast, Molded, Extruded Thermoset Carbonate Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1009 Wednesday, December 31, 1969 17:00 Table 298. DIELECTRIC CONSTANT OF (SHEET 2 OF 14) POLYMERS Dielectric Constant (ASTM D150) Polymer Type 60 Hz 106 Hz Alkyds; Molded Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts) 5.4—5.9 7.4 5.7—6.3 5.2—6.0 4.5—4.7 6.8 4.8—5.1 4.5—5.0 Cellulose Acetate; Molded, Extruded ASTM Grade: H6—1 H4—1 H2—1 3.5—7.5 3.5—7.5 3.5—7.5 3.2—7.0 3.2—7.0 3.2—7.0 MH—1, MH—2 MS—1, MS—2 S2—1 3.5—7.5 3.5—7.5 3.5—7.5 3.2—7.0 3.2—7.0 3.2—7.0 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1010 Wednesday, December 31, 1969 17:00 Table 298. DIELECTRIC CONSTANT OF (SHEET 3 OF 14) POLYMERS Dielectric Constant (ASTM D150) Polymer Type 60 Hz 106 Hz Cellulose Acetate Butyrate; Molded, Extruded ASTM Grade: H4 MH S2 3.5—6.4 3.5—6.4 3.5—64 3.2—6.2 3.2—6.2 3.2—6.2 ASTM Grade: 1 3 6 3.7—4.0 3.7—4.0 3.7—4.0 3.4—3.7 3.4—3.7 3.7—3.4 Chlorinated Polymers Chlorinated polyether Chlorinated polyvinyl chloride 3.1 3.08 2.92 3.2—3.6 Polycarbonates Polycarbonate Polycarbonate (40% glass fiber reinforced) 3.17 3.8 2.96 3.58 Cellusose Acetate Propionate; Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1011 Wednesday, December 31, 1969 17:00 Table 298. DIELECTRIC CONSTANT OF (SHEET 4 OF 14) POLYMERS Dielectric Constant (ASTM D150) Polymer Type 60 Hz 106 Hz Diallyl Phthalates; Molded Orlon filled Dacron filled Asbestos filled Glass fiber filled 3.9(Dry), 3.3(Wet) 3.7–3.8(D), 3.5–3.6(W) 5.2(D), 4.5(W) 4.1–4.5(D), 3.5–4.5(W) 4.1(D), 3.4(W) 3.9(D), 3.7(W) 6.5 (D), 4.8(W) 4.6 (D), 4.4(W) Fluorocarbons; Molded,Extruded Polytrifluoro chloroethylene (PTFCE) 2.6—2.7 Polytetrafluoroethylene (PTFE) (0.01 in thickness) Ceramic reinforced (PTFE) 2.1 2.9—3.6 Fluorinated ethylene propylene(FEP) (0.01 in thickness) 2.1 Polyvinylidene— fluoride (PVDF) (0.125 in thickness) 10 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1012 Wednesday, December 31, 1969 17:00 Table 298. DIELECTRIC CONSTANT OF (SHEET 5 OF 14) POLYMERS Dielectric Constant (ASTM D150) Polymer Type 60 Hz 106 Hz Epoxies; Cast, Molded, Reinforced Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible 4.02 4.43-4.79 3.42 2.78-3.52 Molded General purpose glass cloth laminate High strength laminate 4.4-5.4 5.3-5.4 — 4.1-4.6 4.7-4.8 4.8-5.2 High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate 3.96—4.02 4.7—5.7 — 3.53—3.58 4.3—4.8 5.1 Cast, rigid Glass cloth laminate 3.34—3.39 4.41—4.43 — — Epoxies; Molded, Extruded Epoxy novolacs Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1013 Wednesday, December 31, 1969 17:00 Table 298. DIELECTRIC CONSTANT OF (SHEET 6 OF 14) POLYMERS Dielectric Constant (ASTM D150) Polymer Type 60 Hz 106 Hz Melamines; Molded Filler & type Unfilled Cellulose electrical Glass fiber 7.9—11.0 6.2—7.7 7.0—11.1 6.3—7.3 5.2—6.0 6.0—7.9 Alpha cellulose Alpha cellulose Mineral — — 6.4—8.1 5.6 Nylons; Molded, Extruded Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers 4.0—5.3 4.6—5.6 4 3.2—4.0 3.6—3.8 3.9—5.4 3.3 3.0—3.6 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1014 Wednesday, December 31, 1969 17:00 Table 298. DIELECTRIC CONSTANT OF (SHEET 7 OF 14) POLYMERS Dielectric Constant (ASTM D150) 106 Hz Polymer Type 60 Hz Nylons; Molded, Extruded (Con’t) Type 8 Type 11 9.3 3.3 (10 Type 12 3.6 (103 Hz) — — 6/6 Nylon General purpose molding Glass fiber reinforced 4 40—44 3.6 3.5—4.1 6/10 Nylon General purpose 3.9 3.5 Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber 5.0—9.0 5.6—11.0 6.5—15.0 7.1—7.2 4.0—7.0 4.5—7.0 4.5—7.0 4.6—6.6 Phenolics; Molded 3 Hz) 4 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1015 Wednesday, December 31, 1969 17:00 Table 298. DIELECTRIC CONSTANT OF (SHEET 8 OF 14) POLYMERS Dielectric Constant (ASTM D150) Polymer Type 60 Hz 106 Hz Phenolics: Molded Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos 7.4 9—16 15 15 5 5 5 5 ABS–Polycarbonate Alloy ABS–Polycarbonate Alloy 2.74 2.69 PVC–Acrylic Alloy PVC–Acrylic Alloy PVC–acrylic sheet PVC–acrylic injection molded 3.86 4 3.44 3.4 Unreinforced Glass reinforced 4.12 4.84 3.96 4.74 Polyimides Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1016 Wednesday, December 31, 1969 17:00 Table 298. DIELECTRIC CONSTANT OF (SHEET 9 OF 14) POLYMERS Dielectric Constant (ASTM D150) Polymer Type 60 Hz 106 Hz Polyacetals Homopolymer: Standard 20% glass reinforced 3.7 4 3.7 4.0 Copolymer: Standard 25% glass reinforced High flow 3.7 (100 Hz) 3.9 (100 Hz) 3.7 (100 Hz) 3.7 3.9 3.7 Injection Moldings: General purpose grade 3.1—3.3 — Glass reinforced grades Glass reinforced self extinguishing General purpose grade Asbestos—filled grade 3.7—4.2 3.7—3.8 3.16 3.5—4.2 — — — — Polyester; Thermoplastic Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1017 Wednesday, December 31, 1969 17:00 Table 298. DIELECTRIC CONSTANT OF (SHEET 10 OF 14) POLYMERS Dielectric Constant (ASTM D150) Polymer Type Polyesters: Thermosets Cast polyyester Rigid Flexible Reinforced polyester moldings Sheet molding compounds, general purpose 60 Hz 106 Hz 2.8—4.4 3.18—7.0 2.8—4.4 3.7—6.1 4.62—5.0 4.55—4.75 Phenylene Oxides SE—100 SE—1 Glass fiber reinforced 2.65 2.69 2.93 2.64 2.68 2.92 Phenylene oxides (Noryl) Standard Glass fiber reinforced 3.06—3.15 3.55 3.03—3.10 3.41 Polyarylsulfone Polyarylsulfone 3.51—3.94 3.54—3.7 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1018 Wednesday, December 31, 1969 17:00 Table 298. DIELECTRIC CONSTANT OF (SHEET 11 OF 14) POLYMERS Dielectric Constant (ASTM D150) Polymer Type 60 Hz 106 Hz Polypropylene General purpose High impact 2.20—2.28 2.20—2.28 2.23—2.24 2.23—2.27 Asbestos filled Glass reinforced Flame retardant 2.75 2.3—2.5 2.46—2.79 2.6—3.17 2—2.25 2.45—2.70 Polyphenylene sulfide Standard 40% glass reinforced — — 3.22—3.8 3.88 Polyethylenes; Molded, Extruded Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200 2.3 2.3 2.3 — — — Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1019 Wednesday, December 31, 1969 17:00 Table 298. DIELECTRIC CONSTANT OF (SHEET 12 OF 14) POLYMERS Dielectric Constant (ASTM D150) Polymer Type 60 Hz 106 Hz Polyethylenes; Molded, Extruded (Con’t) Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9 2.3 2.3 — — Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight 2.3 2.3 2.3 2.3 — — — — EEA (ethylene ethyl acrylate) EVA (ethylene vinyl acetate) Ionomer Polyallomer 2.8 3.16 2.4 2.3 Olefin Copolymers; Molded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1020 Wednesday, December 31, 1969 17:00 Table 298. DIELECTRIC CONSTANT OF (SHEET 13 OF 14) POLYMERS Dielectric Constant (ASTM D150) Polymer Type 60 Hz 106 Hz Polystyrenes; Molded Polystyrenes General purpose Medium impact High impact 2.45—2.65 2.45—4.75 2.45—4.75 2.45—2.65 2.4—3.8 2.5—4.0 Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN 3.1 2.6—3.4 3.5 3 2.6—3.02 3.4—3.6 Molded, Extruded Nonrigid—general Nonrigid—electrical Rigid—normal impact Vinylidene chloride 5.5—9.1 6.0—8.0 2.3—3.7 3—5 Polyvinyl Chloride And Copolymers; Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1021 Wednesday, December 31, 1969 17:00 Table 298. DIELECTRIC CONSTANT OF (SHEET 14 OF 14) POLYMERS Dielectric Constant (ASTM D150) Polymer Type 60 Hz 106 Hz Silicones; Molded, Laminated Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate 4.34 4.1—4.5 3.9—4.2 4.28 3.4 —4.3 3.8—397 Ureas; Molded Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) Woodflour filled 7.0—9.5 7.2—7.3 7.0—9.5 6.4—6.9 6.4—6.5 6.4—6.9 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1022 Wednesday, December 31, 1969 17:00 Table 299. DIELECTRIC BREAKDOWN OF POLYMERS Dielectric Breakdown, Short Time (kV) Polymer Type (dry) (wet) Diallyl Phthalates; Molded Orlon filled Dacron filled Asbestos filled Glass fiber filled 65—75 65 55—80 63—70 60—65 60 55 45—65 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.2 E&M L Page 1023 Wednesday, December 31, 1969 17:00 Table 300. DIELECTRIC BREAKDOWN OF POLYMERS Dielectric Breakdown, Step by Step (kV) Polymer Type (dry) (wet) Diallyl Phthalates; Molded Orlon filled Dacron filled Asbestos filled Glass fiber filled 55—60 60 38—70 55—65 46—60 55 39—60 45—65 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.3 E&M Page 1024 Wednesday, December 31, 1969 17:00 Electrical Properties Table 301. TANGENT LOSS IN (SHEET 1 OF 5) Frequency (Hz) Tangent Loss (tan δ) Temperature 100 Hz 100 Hz 100 Hz 100 Hz 0.00002 0.00052 0.080 1.0 25˚C 200˚C 300˚C 400˚C 1 kHz 1 kHz 1 kHz 1 kHz 0.00002 0.00012 0.0072 0.2 25˚C 200˚C 300˚C 400˚C 10 kHz 10 kHz 10 kHz 10 kHz 0.00002 0.00004 0.00072 0.022 25˚C 200˚C 300˚C 400˚C 9.4 GHz 1.5x10-4 9.4 GHz -4 1.8x10 9.4 GHz 2.0x10-4 9.4 GHz 2.9x10-4 20˚C 200˚C 400˚C 600˚C 9.4 GHz 4.8x10-4 9.4 GHz 11x10-4 9.4 GHz 25x10-4 9.4 GHz 46x10-4 800˚C 1000˚C 1200˚C 1400˚C 16% mol Na2O 4.5x108 Hz 0.0058 20oC 19.5% mol Na2O 1kHz 3 kHz 5 kHz 10 kHz 0.144 0.0984 0.0832 0.0656 room temp. room temp. room temp. room temp. Glass Composition SiO2 glass Pure SiO2-Na2O glass GLASS 19.5% mol Na2O 19.5% mol Na2O 19.5% mol Na2O Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1024 CRC Handbook of Materials Science & Engineering 9.3 E&M Page 1025 Wednesday, December 31, 1969 17:00 Electrical Properties Table 301. TANGENT LOSS IN (SHEET 2 OF 5) GLASS Glass Composition Frequency (Hz) Tangent Loss (tan δ) Temperature SiO2-Na2O glass (Con’t) 19.5% mol Na2O 30 kHz 0.0492 room temp. 19.5% mol Na2O 50 kHz 100 kHz 300 kHz 0.0428 0.0364 0.0295 room temp. room temp. room temp. 4.5x108 Hz 4.5x108 Hz 0.0073 0.0081 20oC 20oC 1kHz 3 kHz 5 kHz 10 kHz 0.2207 0.1455 0.1194 0.0916 room temp. room temp. room temp. room temp. 30 kHz 50 kHz 100 kHz 300 kHz 0.0652 0.0563 0.0456 0.0369 room temp. room temp. room temp. room temp. 4.5x108 Hz 1kHz 3 kHz 0.0102 0.4923 0.3027 20oC room temp. room temp. 5 kHz 10 kHz 30 kHz 0.2426 0.1764 0.1172 room temp. room temp. room temp. 50 kHz 100 kHz 300 kHz 0.0972 0.0758 0.0568 room temp. room temp. room temp. 19.5% mol Na2O 19.5% mol Na2O 20% mol Na2O 22.2% mol Na2O 24.4% mol Na2O 24.4% mol Na2O 24.4% mol Na2O 24.4% mol Na2O 24.4% mol Na2O 24.4% mol Na2O 24.4% mol Na2O 24.4% mol Na2O 28.6% mol Na2O 29.4% mol Na2O 29.4% mol Na2O 29.4% mol Na2O 29.4% mol Na2O 29.4% mol Na2O 29.4% mol Na2O 29.4% mol Na2O 29.4% mol Na2O Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1025 9.3 E&M Page 1026 Wednesday, December 31, 1969 17:00 Electrical Properties Table 301. TANGENT LOSS IN (SHEET 3 OF 5) GLASS Glass Composition Frequency (Hz) Tangent Loss (tan δ) Temperature SiO2-Na2O glass (Con’t) 34.3% mol Na2O 1kHz 0.10324 room temp. 34.3% mol Na2O 3 kHz 5 kHz 10 kHz 0.6520 0.5280 0.3752 room temp. room temp. room temp. 34.3% mol Na2O 30 kHz 50 kHz 100 kHz 300 kHz 0.2314 0.1864 0.1388 0.0936 room temp. room temp. room temp. room temp. 36% mol Na2O 4.5x108 Hz 0.0162 20oC 39.3% mol Na2O 10 kHz 30 kHz 50 kHz 0.6338 0.3835 0.3032 room temp. room temp. room temp. 39.3% mol Na2O 100 kHz 300 kHz 0.2144 0.1402 room temp. room temp. 40% mol PbO 32 GHz 0.015 -150oC 40% mol PbO 32 GHz 0.018 -100oC 40% mol PbO 32 GHz 0.020 -50oC 40% mol PbO 32 GHz 0.022 0oC 40% mol PbO 40% mol PbO 40% mol PbO 32 GHz 100 GHz 1000 GHz 0.024 0.005 0.050 50oC room temp. room temp. 46.3% mol B2O3 10 GHz 0.0014 34.3% mol Na2O 34.3% mol Na2O 34.3% mol Na2O 34.3% mol Na2O 34.3% mol Na2O 39.3% mol Na2O 39.3% mol Na2O 39.3% mol Na2O SiO2-PbO glass SiO2-B2O3 glass Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1026 CRC Handbook of Materials Science & Engineering 9.3 E&M Page 1027 Wednesday, December 31, 1969 17:00 Electrical Properties Table 301. TANGENT LOSS IN (SHEET 4 OF 5) Frequency (Hz) Tangent Loss (tan δ) Temperature 0.5% mol Al2O3 50 K 100 K 150 K 0.0025 0.0021 0.0026 50 K 100 K 150 K B2O3 glass 1 MHz 0.0004 100oC 1 MHz 0.0005 200oC 1 MHz 0.0009 300oC 32 kHz 32 kHz 32 kHz 0.00005 0.00011 0.0007 50K 100K 150K 32 kHz 32 kHz 32 kHz 0.0010 0.0008 0.0003 200K 250K 300K 8% mol Na2O 1MHz 0.0025 room temp. 10% mol Na2O 1MHz 1 kHz 1 kHz 1 kHz 1 kHz 0.0022 0.0003 0.0009 0.0038 0.0066 room temp. 1 kHz 1 kHz 1 kHz 1 kHz 0.0005 0.0022 0.0100 0.0170 134.5oC 214oC 277oC 298oC Glass Composition SiO2-Al2O3 glass 0.5% mol Al2O3 0.5% mol Al2O3 B2O3 glass B2O3-Na2O glass GLASS 10% mol Na2O 10% mol Na2O 10% mol Na2O 10% mol Na2O 12.5% mol Na2O 12.5% mol Na2O 12.5% mol Na2O 12.5% mol Na2O 134.5oC 214oC 277oC 298oC Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1027 9.3 E&M Page 1028 Wednesday, December 31, 1969 17:00 Electrical Properties Table 301. TANGENT LOSS IN (SHEET 5 OF 5) GLASS Glass Composition Frequency (Hz) Tangent Loss (tan δ) Temperature B2O3-Na2O glass (Con’t) 15% mol Na2O 1 kHz 0.0015 134.5oC 15% mol Na2O 15% mol Na2O 1 kHz 1 kHz 1 kHz 0.0064 0.0296 0.0477 214oC 277oC 298oC 16% mol Na2O 1MHz 0.0031 room temp. 20% mol Na2O 1 kHz 1 kHz 1 kHz 0.0009 0.0026 0.0149 16oC 90.5oC 157oC 1 kHz 1 kHz 0.0890 0.2480 219oC 274oC 0.0022 0.0063 0.0150 0.1080 16oC room temp. 25% mol Na2O 1 kHz 1MHz 1 kHz 1 kHz 28% mol Na2O 1MHz 0.0081 room temp. 33.3% mol CaO 2 MHz 0.001 25oC 33.3% mol CaO 2 MHz 0.002 100oC 33.3% mol CaO 2 MHz 0.0025 200oC 33.3% mol CaO 2 MHz 0.0035 300oC 33.3% mol CaO 2 MHz 0.0045 400oC 33.3% mol CaO 2 MHz 0.0055 500oC 33.3% mol CaO 2 MHz 0.007 550oC 15% mol Na2O 20% mol Na2O 20% mol Na2O 20% mol Na2O 20% mol Na2O 25% mol Na2O 25% mol Na2O 25% mol Na2O B2O3-CaO glass 90.5oC 157oC Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1028 CRC Handbook of Materials Science & Engineering 9.3 E&M Page 1029 Wednesday, December 31, 1969 17:00 Electrical Properties Table 302. ELECTRICAL PERMITTIVITY OF (SHEET 1 OF 6) Glass Composition SiO2 glass Pure GLASS Frequency (Hz) Electrical Permittivity Temperature (˚C) 100 Hz 100 Hz 100 Hz 100 Hz 4.0 4.0 4.0 5.5 25 200 300 400 1 kHz 1 kHz 1 kHz 1 kHz 4.0 4.0 4.0 4.1 25 200 300 400 10 kHz 10 kHz 10 kHz 10 kHz 4.0 4.0 4.0 4.0 25 200 300 400 9.4 GHz 9.4 GHz 9.4 GHz 9.4 GHz 3.81 3.83 3.84 3.86 20 200 400 600 9.4 GHz 9.4 GHz 9.4 GHz 9.4 GHz 3.88 3.91 3.93 3.96 800 1000 1200 1400 10 GHz 10 GHz 10 GHz 10 GHz 3.82 3.82 3.91 3.98 20 220 888 1170 10 GHz 10 GHz 10 GHz 10 GHz 4.05 4.07 4.09 4.11 1335 1420 1480 1526 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1029 9.3 E&M Page 1030 Wednesday, December 31, 1969 17:00 Electrical Properties Table 302. ELECTRICAL PERMITTIVITY OF (SHEET 2 OF 6) GLASS Frequency (Hz) Electrical Permittivity Temperature (˚C) Pure (Con’t) 10 GHz 10 GHz 10 GHz 10 GHz 10 GHz 4.12 4.15 4.12 4.04 4.05 1584 1602 1647 1764 1764 (16% mol Na2O) 4.5x108 Hz 6.01 20 (19.5% mol Na2O) 1kHz 3 kHz 5 kHz 10 kHz 9.40 8.97 8.56 8.26 room temp. room temp. room temp. room temp. 30 kHz 50 kHz 100 kHz 300 kHz 8.00 7.88 7.74 7.62 room temp. room temp. room temp. room temp. 4.5x108 Hz 4.5x108 Hz 6.48 6.85 20 20 1kHz 3 kHz 5 kHz 10 kHz 11.62 10.61 10.21 9.74 room temp. room temp. room temp. room temp. (24.4% mol Na2O) 30 kHz 50 kHz 100 kHz 300 kHz 9.30 9.14 8.91 8.75 room temp. room temp. room temp. room temp. (28.6% mol Na2O) 4.5x108 Hz 7.62 20 Glass Composition SiO2 glass (Con’t) SiO2–Na2O glass (19.5% mol Na2O) (19.5% mol Na2O) (19.5% mol Na2O) (19.5% mol Na2O) (19.5% mol Na2O) (19.5% mol Na2O) (19.5% mol Na2O) (20% mol Na2O) (22.2% mol Na2O) (24.4% mol Na2O) (24.4% mol Na2O) (24.4% mol Na2O) (24.4% mol Na2O) (24.4% mol Na2O) (24.4% mol Na2O) (24.4% mol Na2O) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1030 CRC Handbook of Materials Science & Engineering 9.3 E&M Page 1031 Wednesday, December 31, 1969 17:00 Electrical Properties Table 302. ELECTRICAL PERMITTIVITY OF (SHEET 3 OF 6) GLASS Glass Composition Frequency (Hz) Electrical Permittivity Temperature (˚C) SiO2–Na2O glass (Con’t) (29.4% mol Na2O) 1kHz 17.52 room temp. (29.4% mol Na2O) 3 kHz 5 kHz 10 kHz 14.23 13.19 12.08 room temp. room temp. room temp. 30 kHz 50 kHz 100 kHz 300 kHz 11.21 10.86 10.47 10.15 room temp. room temp. room temp. room temp. 1kHz 3 kHz 5 kHz 10 kHz 38.61 21.30 18.13 15.22 room temp. room temp. room temp. room temp. (34.3% mol Na2O) 30 kHz 50 kHz 100 kHz 300 kHz 13.28 12.57 11.78 11.14 room temp. room temp. room temp. room temp. (36% mol Na2O) 4.5x108 Hz 9.40 20 (39.3% mol Na2O) 10 kHz 30 kHz 22.08 16.56 room temp. room temp. 50 kHz 100 kHz 300 kHz 15.06 13.55 12.43 room temp. room temp. room temp. (29.4% mol Na2O) (29.4% mol Na2O) (29.4% mol Na2O) (29.4% mol Na2O) (29.4% mol Na2O) (29.4% mol Na2O) (34.3% mol Na2O) (34.3% mol Na2O) (34.3% mol Na2O) (34.3% mol Na2O) (34.3% mol Na2O) (34.3% mol Na2O) (34.3% mol Na2O) (39.3% mol Na2O) (39.3% mol Na2O) (39.3% mol Na2O) (39.3% mol Na2O) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1031 9.3 E&M Page 1032 Wednesday, December 31, 1969 17:00 Electrical Properties Table 302. ELECTRICAL PERMITTIVITY OF (SHEET 4 OF 6) GLASS Glass Composition Frequency (Hz) Electrical Permittivity Temperature (˚C) SiO2–PbO glass (40% mol PbO) (40% mol PbO) 32 GHz 32 GHz 4.25 4.30 –150 –100 (40% mol PbO) (40% mol PbO) (40% mol PbO) 32 GHz 32 GHz 32 GHz 4.40 4.45 5.00 –50 0 50 SiO2–Al2O3 glass (46.3% mol B2O3) 10 GHz 3.55 B2O3 glass Pure 1 kHz 1 kHz 1 kHz 3.17 3.21 3.27 500 550 580 3 kHz 3 kHz 3.15 3.17 500 550 3 kHz 3 kHz 3 kHz 3.18 3.21 3.25 580 620 650 10 kHz 10 kHz 10 kHz 3.13 3.14 3.145 500 550 580 10 kHz 10 kHz 10 kHz 3.15 3.15 3.16 620 650 700 50 kHz 50 kHz 50 kHz 50 kHz 3.10 3.12 3.115 3.05 500 550 580 620 50 kHz 50 kHz 50 kHz 50 kHz 3.10 3.09 3.06 3.04 650 700 750 800 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1032 CRC Handbook of Materials Science & Engineering 9.3 E&M Page 1033 Wednesday, December 31, 1969 17:00 Electrical Properties Table 302. ELECTRICAL PERMITTIVITY OF (SHEET 5 OF 6) Glass Composition B2O3–Na2O glass (4.08% mol Na2O) (7.35% mol Na2O) (14.15% mol Na2O) (17.31% mol Na2O) (24.77% mol Na2O) (31.98% mol Na2O) (10% mol Na2O) (10% mol Na2O) (10% mol Na2O) (10% mol Na2O) (10% mol Na2O) (12.5% mol Na2O) (12.5% mol Na2O) (12.5% mol Na2O) (12.5% mol Na2O) (12.5% mol Na2O) (15% mol Na2O) (15% mol Na2O) (15% mol Na2O) (15% mol Na2O) (15% mol Na2O) (20% mol Na2O) (20% mol Na2O) (20% mol Na2O) GLASS Frequency (Hz) Electrical Permittivity Temperature (˚C) 56.8 MHz 56.8 MHz 56.8 MHz 3.72 4.20 4.94 room temp. room temp. room temp. 56.8 MHz 56.8 MHz 56.8 MHz 5.27 6.24 7.03 room temp. room temp. room temp. 1 kHz 1 kHz 1 kHz 1 kHz 1 kHz 5.00 5.05 5.15 5.45 5.60 73 134.5 214 277 298 1 kHz 1 kHz 1 kHz 5.45 5.60 5.75 73 134.5 214 1 kHz 1 kHz 6.30 6.65 277 298 1 kHz 1 kHz 1 kHz 5.80 6.00 6.50 73 134.5 214 1 kHz 1 kHz 7.80 8.60 277 298 1 kHz 1 kHz 1 kHz 6.15 6.43 7.45 16 90.5 157 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1033 9.3 E&M Page 1034 Wednesday, December 31, 1969 17:00 Electrical Properties Table 302. ELECTRICAL PERMITTIVITY OF (SHEET 6 OF 6) GLASS Glass Composition Frequency (Hz) Electrical Permittivity Temperature (˚C) B2O3–Na2O glass (Con’t) (20% mol Na2O) 1 kHz 11.85 219 (20% mol Na2O) 1 kHz 31.00 274 (25% mol Na2O) 1 kHz 1 kHz 1 kHz 7.50 8.90 17.30 16 90.5 157 (25% mol Na2O) (25% mol Na2O) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1034 CRC Handbook of Materials Science & Engineering 9.4 E&M L Page 1035 Wednesday, December 31, 1969 17:00 Table 303. ARC RESISTANCE OF POLYMERS (SHEET 1 OF 8) Polymer Type Arc Resistance, (ASTM D495) (seconds) Acrylics; Cast, Molded, Extruded Cast Resin Sheets, Rods: General purpose, type I General purpose, type II No track No track Moldings: Grades 5, 6, 8 High impact grade No track No track Thermoset Carbonate Allyl diglycol carbonate 185 Alkyds; Molded Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts) 180 180 180 180 Polycarbonates Polycarbonate Polycarbonate (40% glass fiber reinforced) 120 (tungsten electrode) 120 (tungsten electrode) Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.4 E&M L Page 1036 Wednesday, December 31, 1969 17:00 Table 303. ARC RESISTANCE OF POLYMERS (SHEET 2 OF 8) Polymer Type Arc Resistance, (ASTM D495) (seconds) Diallyl Phthalates; Molded Orlon filled Dacron filled Asbestos filled Glass fiber filled 85—115 105—125 125—140 125—140 Fluorocarbons; Molded,Extruded Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) >360 >200 Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) >165 50—60 Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded General purpose glass cloth laminate 100 75—98 135—190 130—180 Epoxies; Cast, Molded, Reinforced Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.4 E&M L Page 1037 Wednesday, December 31, 1969 17:00 Table 303. ARC RESISTANCE OF POLYMERS (SHEET 3 OF 8) Polymer Type Arc Resistance, (ASTM D495) (seconds) Epoxies—Molded, Extruded High performance resins (cycloaliphatic diepoxides) Molded 180—185 Epoxy novolacs Cast, rigid 120 Melamines; Molded Filler & type Unfilled Cellulose electrical Glass fiber Alpha cellulose and mineral 100—145 70—135 180—186 125 Type 6 Glass fiber (30%) reinforced 92—81 6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion 120 100—148 135 120 Nylons; Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.4 E&M L Page 1038 Wednesday, December 31, 1969 17:00 Table 303. ARC RESISTANCE OF POLYMERS (SHEET 4 OF 8) Polymer Type Arc Resistance, (ASTM D495) (seconds) Nylons; Molded, Extruded (Con’t) 6/10 Nylon General purpose 120 Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber 5—60 5—60 5—60 60 Phenolics: Molded Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos 180 7—20 10—20 5—20 ABS–Polycarbonate Alloy ABS–Polycarbonate Alloy 96 PVC–Acrylic Alloy PVC–acrylic sheet PVC–acrylic injection molded 80 25 Phenolics; Molded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.4 E&M L Page 1039 Wednesday, December 31, 1969 17:00 Table 303. ARC RESISTANCE OF POLYMERS (SHEET 5 OF 8) Polymer Type Arc Resistance, (ASTM D495) (seconds) Polyimides Unreinforced Glass reinforced 152 50—180 Polyacetals Homopolymer: Standard 20% glass reinforced 129 188 Copolymer: Standard 25% glass reinforced High flow 240 136 240 Injection Moldings: General purpose grade Glass reinforced grades 190 130 Glass reinforced self extinguishing General purpose grade Asbestos—filled grade 80 125 108 Polyester; Thermoplastic Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.4 E&M L Page 1040 Wednesday, December 31, 1969 17:00 Table 303. ARC RESISTANCE OF POLYMERS (SHEET 6 OF 8) Polymer Type Arc Resistance, (ASTM D495) (seconds) Polyesters: Thermosets Cast polyyester Rigid Flexible 115—135 125—145 Reinforced polyester moldings High strength (glass fibers) Sheet molding compounds, general purpose 130—170 130—180 Phenylene Oxides SE—100 SE—1 Glass fiber reinforced 75 75 120 Phenylene oxides (Noryl) Standard Glass fiber reinforced 122 114 Polyarylsulfone Polyarylsulfone 67—81 Polypropylene General purpose High impact 125—136 123—140 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.4 E&M L Page 1041 Wednesday, December 31, 1969 17:00 Table 303. ARC RESISTANCE OF POLYMERS (SHEET 7 OF 8) Polymer Type Arc Resistance, (ASTM D495) (seconds) Polypropylene (Con’t) Asbestos filled Glass reinforced Flame retardant 121—125 73—77 15—40 Polyphenylene sulfide 40% glass reinforced 34 Polystyrenes Molded General purpose Medium impact High impact 60—135 20—135 20—100 Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN 28 100—150 65 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 9.4 E&M L Page 1042 Wednesday, December 31, 1969 17:00 Table 303. ARC RESISTANCE OF POLYMERS (SHEET 8 OF 8) Polymer Type Arc Resistance, (ASTM D495) (seconds) Silicones; Molded, Laminated Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate 240 250—310 225—250 Ureas; Molded Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) Woodflour filled 100—135 85—110 80—110 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford, James F. & Alexander, W.“Optical Properties of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001 10.0 Optical Page 1043 Wednesday, December 31, 1969 17:00 CHAPTER 8 List of Tables Optical Properties of Materials Transparency & Transmission Transmission Range of Optical Materials Transparency of Polymers Refractive Index Refractive Index of Polymers Dispersion Dispersion of Optical Materials ©2001 CRC Press LLC 1043 10.1 Optical Page 1044 Wednesday, December 31, 1969 17:00 Optical Properties Table 304. TRANSMISSION OPTICAL MATERIALS RANGE OF (SHEET 1 OF 2) Material & Crystal Structure Transmission Region (µm, at 298 K) Alumina (Sapphire, Single Crystal) Ammonium Dihydrogen Phosphate (ADP, Single Crystal) Arsenic Trisulfade (Glass) 0.15 – 6.5 0.13 – 1.7 0.6 – 13 Barium Fluoride (Single Crystal) Cadmium Sulfide (Bulk and Hexagonal Single Crystal) Cadmium Telluride (Hot Pressed Polycrystalline) Calcium Carbonate (Calcite, Single Crystal) Calcium Fluoride (Single Crystal) Cesium Bromide (Single Crystal) 0.25 – 15 0.5 – 16 0.9 – 16 0.2 – 5.5 0.13 – 12 0.3 – 55 Cesium Iodide (Single Crystal) Cuprous Chloride (Single Crystal) Gallium Arsenide (Intrinsic Single Crystal) 0.25 – 80 0.4 – 19 1.0 – 15 Germanium (Intrinsic Single Crystal) Indium Arsenide (Single Crystal) Lead Sulfide (Single Crystal) 1.8 – 23 3.8 – 7.0 3.0 – 7.0 Lithium Fluoride (Single Crystal) Lithium Niobate (Single Crystal) Magnesium Fluoride (Film) 0.12 – 9.0 0.33 – 5.2 0.2 – 5.0 Magnesium Fluoride (Single Crystal) Magnesium Oxide (Single Crystal) Potassium Bromide (Single Crystal) 0.1 – 9.7 0.25 – 8.5 0.25 – 35 Potassium Iodide (Single Crystal) Selenium (Amorphous) Silica (High Purity Crystalline) 0.25 – 45 1.0 – 20 0.12 – 4.5 Silica (High Purity Fused) Silicon (Single Crystal) Silver Bromide (Single Crystal) 0.12 – 4.5 1.2 – 15 0.45 – 35 External transmittance ≥ 10% with 2.0 mm thickness. Source: Data compiled by J.S. Park. ©2001 CRC Press LLC 1044 CRC Handbook of Materials Science & Engineering 10.1 Optical Page 1045 Wednesday, December 31, 1969 17:00 Optical Properties Table 304. TRANSMISSION OPTICAL MATERIALS RANGE OF (SHEET 2 OF 2) Material & Crystal Structure Transmission Region (µm, at 298 K) Silver Chloride (Single Crystal) Sodium Fluoride (Single Crystal) Strontium Titanate (Single Crystal) 0.4 – 2.8 0.19 – 15 0.39 – 6.8 Tellurium (Polycrystalline Film) Tellurium (Single Crystal) Thallium Bromoiodide (KRS–5, Mixed Crystal) 3.5 – 8.0 3.5 – 8.0 0.6 – 40 Thallium Chloribromide (KRS–6, Mixed Crystal) Titanium Dioxide (Rutile, Single Crystal) Zinc Selenide (Single Crystal, Cubic) 0.21 – 35 0.43 – 6.2 ~0.5 – 22 Zinc Sulfide (Single Crystal, Cubic) ~0.6 – 15.6 External transmittance ≥ 10% with 2.0 mm thickness. Source: Data compiled by J.S. Park. ©2001 CRC Press LLC Shackelford & Alexander 1045 10.2 Optical L Page 1046 Wednesday, December 31, 1969 17:00 Table 305. TRANSPARENCY OF (SHEET 1 OF 7) POLYMERS Polymer Type Transparency (visible light) (ASTM D791) (%) Acrylics; Cast, Molded, Extruded Cast Resin Sheets, Rods: General purpose, type I General purpose, type II (0.125 in.) 91—92 91—92 Moldings: Grades 5, 6, 8 High impact grade >92 90 Thermoset Carbonate Allyl diglycol carbonate 89—92 Alkyds; Molded Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts) Opaque Opaque Opaque Opaque Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1047 Wednesday, December 31, 1969 17:00 Table 305. TRANSPARENCY OF (SHEET 2 OF 7) POLYMERS Polymer Type Transparency (visible light) (ASTM D791) (%) Cellulose Acetate; Molded, Extruded ASTM Grade: H6—1 H4—1 H2—1 75—90 75—90 80—90 MH—1, MH—2 MS—1, MS—2 S2—1 80—90 80—90 80—95 ASTM Grade: H4 MH S2 75—92 80—92 85—95 ASTM Grade: 1 3 6 80—92 80—92 80—92 Cellulose Acetate Butyrate; Molded, Extruded Cellusose Acetate Propionate; Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1048 Wednesday, December 31, 1969 17:00 Table 305. TRANSPARENCY OF (SHEET 3 OF 7) POLYMERS Polymer Type Transparency (visible light) (ASTM D791) (%) Chlorinated Polymers Chlorinated polyether Chlorinated polyvinyl chloride Opaque Opaque Polycarbonates Polycarbonate Polycarbonate (40% glass fiber reinforced) 75—85 Translucent Fluorocarbons; Molded,Extruded Polytrifluoro chloroethylene (PTFCE) 80—92 Epoxies; Cast, Molded, Reinforced Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded 90 85 General purpose glass cloth laminate High strength laminate Filament wound composite Opaque Opaque Opaque Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1049 Wednesday, December 31, 1969 17:00 Table 305. TRANSPARENCY OF (SHEET 4 OF 7) POLYMERS Polymer Type Transparency (visible light) (ASTM D791) (%) Epoxies—Molded, Extruded High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate Opaque Opaque Epoxy novolacs Glass cloth laminate Opaque Melamines; Molded Filler & type Unfilled Cellulose electrical Good Opaque 6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion Translucent Opaque Opaque Opaque Nylons; Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1050 Wednesday, December 31, 1969 17:00 Table 305. TRANSPARENCY OF (SHEET 5 OF 7) POLYMERS Polymer Type Transparency (visible light) (ASTM D791) (%) Nylons; Molded, Extruded (Con’t) 6/10 Nylon General purpose Glass fiber (30%) reinforced Opaque Opaque ABS–Polycarbonate Alloy ABS–Polycarbonate Alloy Opaque PVC–Acrylic Alloy PVC–acrylic sheet PVC–acrylic injection molded Opaque Opaque Poliymides Unreinforced Unreinforced 2nd value Glass reinforced Opaque Opaque Opaque Polyesters: Thermosets Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistsnt (asbestos) Sheet molding compounds, general purpose Opaque Opaque Opaque Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1051 Wednesday, December 31, 1969 17:00 Table 305. TRANSPARENCY OF (SHEET 6 OF 7) POLYMERS Polymer Type Transparency (visible light) (ASTM D791) (%) Phenylene Oxides SE—100 SE—1 Glass fiber reinforced Opaque Opaque Opaque Phenylene oxides (Noryl) Glass fiber reinforced Opaque Polypropylene General purpose High impact Translucent—opaque Translucent—opaque Asbestos filled Glass reinforced Flame retardant Opaque Opaque Opaque Standard 40% glass reinforced Opaque Opaque Polyphenylene sulfide Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1052 Wednesday, December 31, 1969 17:00 Table 305. TRANSPARENCY OF (SHEET 7 OF 7) POLYMERS Polymer Type Transparency (visible light) (ASTM D791) (%) Polystyrenes; Molded General purpose Medium impact High impact Glass fiber -30% reinforced Transparent Opaque Opaque Opaque Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN Transparent Opaque Silicones; Molded, Laminated Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate Opaque Opaque Opaque Ureas; Molded Alpha—cellulose filled (ASTM Type 1) Cellulose filled (ASTM Type 2) Woodflour filled 21.8 Opaque Opaque Styrene acrylonitrile (SAN) Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1053 Wednesday, December 31, 1969 17:00 Table 306. REFRACTIVE INDEX OF (SHEET 1 OF 5) POLYMERS Polymer Type Refractive index, (ASTM D542) (nD) Acrylics; Cast, Molded, Extruded Cast Resin Sheets, Rods: General purpose, type I General purpose, type II 1.485—1.500 1.485—1.495 Moldings: Grades 5, 6, 8 High impact grade 1.489—1.493 1.49 Thermoset Carbonate Allyl diglycol carbonate 1.5 Cellulose Acetate; Molded, Extruded ASTM Grade: H6—1 H4—1 H2—1 1.46—1.50 1.46—1.50 1.46—1.50 MH—1, MH—2 MS—1, MS—2 S2—1 1.46—1.50 1.46—1.50 1.46—1.50 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1054 Wednesday, December 31, 1969 17:00 Table 306. REFRACTIVE INDEX OF (SHEET 2 OF 5) POLYMERS Polymer Type Refractive index, (ASTM D542) (nD) Cellulose Acetate Butyrate; Molded, Extruded ASTM Grade: H4 MH S2 (D543) 1.46—1.49 1.46—1.49 1.46—1.49 Cellusose Acetate Propionate; Molded, Extruded ASTM Grade: 1 3 6 1.46—1.49 1.46—1.49 1.46—1.49 Polycarbonate 1.586 Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) 1.43 1.35 1.34 1.42 Fluorocarbons; Molded,Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1055 Wednesday, December 31, 1969 17:00 Table 306. REFRACTIVE INDEX OF (SHEET 3 OF 5) POLYMERS Polymer Type Refractive index, (ASTM D542) (nD) Epoxies; Cast, Molded, Reinforced Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded 1.61 1.61 Homopolymer: Standard 20% glass reinforced 22% TFE reinforced Opaque Opaque Opaque Copolymer: Standard 25% glass reinforced High flow Opaque Opaque Opaque Cast polyyester Rigid Flexible 1.53—1.58 1.50—1.57 Polyacetals Polyesters: Thermosets Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1056 Wednesday, December 31, 1969 17:00 Table 306. REFRACTIVE INDEX OF (SHEET 4 OF 5) POLYMERS Polymer Type Refractive index, (ASTM D542) (nD) Phenylene oxides (Noryl) Standard 1.63 Polyarylsulfone Polyarylsulfone 1.651 Polyethylenes; Molded, Extruded Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200 1.51 1.51 1.51 Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9 1.51 1.51 Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt index 0.l—12.0 Melt index 1.5—15 1.54 1.54 1.54 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1057 Wednesday, December 31, 1969 17:00 Table 306. REFRACTIVE INDEX OF (SHEET 5 OF 5) POLYMERS Polymer Type Refractive index, (ASTM D542) (nD) Polystyrenes; Molded Polystyrenes General purpose Medium impact High impact 1.6 Opaque Opaque Glass fiber -30% reinforced Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN Opaque 1.565—1.569 Opaque Vinylidene chloride 1.60—1.63 Polyvinyl Chloride And Copolymers; Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1058 Wednesday, December 31, 1969 17:00 Table 307. DISPERSION OF OPTICAL (SHEET 1 OF 13) Material Dispersion Equation at 298 K 3 Alumina (Sapphire, Single Crystal) MATERIALS 2 n -1= Σ i=1 Aiλ 2 λ2 - (λ in µm) λ2 i where i 1 2 3 (λ in mm) λi2 0.00377588 0.0122544 321.3616 Ai 1.023798 1.058264 5.280792 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1059 Wednesday, December 31, 1969 17:00 Table 307. DISPERSION OF OPTICAL (SHEET 2 OF 13) Material Dispersion Equation at 298 K 5 ArsenicTrisulfide (Glass) MATERIALS 2 n -1= Σ i=1 Kiλ 2 λ 2 − λi2 where i 1 2 3 4 5 (λ in µm) (λ in µm) λi2 0.0225 0.0625 0.1225 0.2025 0.705 Ki 1.8983678 1.9222979 0.8765134 0.1188704 0.9569903 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1060 Wednesday, December 31, 1969 17:00 Table 307. DISPERSION OF OPTICAL (SHEET 3 OF 13) Material Dispersion Equation at 298 K 3 Barium Fluoride (Single Crystal) MATERIALS 2 n -1= Σ Aiλ 2 (λ in µm) λ2 - λ2 i i=1 where i 1 2 3 (λ in µm) λi 0.057789 0.10968 46.3864 Ai 0.643356 0.50676 3.8261 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1061 Wednesday, December 31, 1969 17:00 Table 307. DISPERSION OF OPTICAL (SHEET 4 OF 13) Material Cadmium Sulfide (Bulk and Hexagonal Single Crystal) MATERIALS Dispersion Equation at 298 K n 2o=5.235+ 1.891x107 λ 2-1.651x107 for ordinary ray, and 2.076x10 7 2 ne =5.239+ λ 2-1.651x10 7 for extraordinary ray. (λ in µm) Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1062 Wednesday, December 31, 1969 17:00 Table 307. DISPERSION OF OPTICAL (SHEET 5 OF 13) Material Dispersion Equation at 298 K 3 Calcium Fluoride (Single Crystal) MATERIALS 2 n -1= Aiλ 2 Σ i=1 λ2 - (λ in µm) λ2 i Ai 0.5675888 0.4710914 3.8484723 i 1 2 3 Cesium Bromide (Single Crystal) 2 -6 n = 5.640752–3.338x10 λ2 + 0.0018612 λ 2 λι 0.050263605 0.1003909 34.64904 41110.49 0.0290764 + 2 + 2 λ -14390.4 λ -0.024964 (λ in µm) Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1063 Wednesday, December 31, 1969 17:00 Table 307. DISPERSION OF OPTICAL (SHEET 6 OF 13) Material Dispersion Equation at 298 K 5 Cesium Iodide (Single Crystal) MATERIALS 2 n -1= Σ i=1 Kiλ 2 λ 2 − λi2 where i 1 2 3 4 5 (λ in mm) (λ in µm) λi2 0.00052701 0.02149156 0.28551800 0.39743178 3.3605359 Ki 0.3461725 1.0080886 0.02149156 0.044944 25921 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1064 Wednesday, December 31, 1969 17:00 Table 307. DISPERSION OF OPTICAL (SHEET 7 OF 13) MATERIALS Material Dispersion Equation at 298 K Germanium (Intrinsic Single Crystal) n = A + Bλ + Cλ2 + Dλ2 + Eλ4 where A=3.99931 B=0.391707 C=0.163492 D=–0.0000060 E=0.000000053 for 2.0µm ≤ λ ≤ 13.5 µm Lithium Fluoride (Single Crystal) n = A + BL + CL2 + Dλ2 + Eλ4 where A=1.38761 B=0.001796 C=–0.000041 D=–0.0023045 E=–0.00000557 for 0.5µm ≤ λ ≤ 6.0 µm Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1065 Wednesday, December 31, 1969 17:00 Table 307. DISPERSION OF OPTICAL (SHEET 8 OF 13) Material MATERIALS Dispersion Equation at 298 K Magnesium Fluoride (Single Crystal) no =1.36957 + 0.0035821 λ -0.14925 for ordinary wavelengths, and ne =1.38100 + 0.0037415 λ -0.14947 for wavelengths within 0.4µm ≤ λ ≤ 0.7 µm 2 -5 n =2.956362-0.1062387 λ 2 –2.04968 x10 λ4 Magnesium Oxide (Single Crystal) – 0.0219577 λ2 -0.01428322 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1066 Wednesday, December 31, 1969 17:00 Table 307. DISPERSION OF OPTICAL (SHEET 9 OF 13) Material Potassium Bromide (Single Crystal) Potassium Chloride (Single Crystal) MATERIALS Dispersion Equation at 298 K 2 n = 2.3618102–0.00058072 λ 2 + 0.02305269 λ2– 0.02425381 for 0.4µm ≤ λ ≤ 0.7 µm n2= 2.174967+ 0.08344206 λ 2-0.0119082 + 0.00698382 λ2 -0.025555 – 0.000513495 λ2 – 0.06167587 λ 4 for ultraviolet wavelengths n2=3.866619+ 0.08344206 λ 2 – 0.0119082 – 0.00698382 λ 2– 0.025555 – 5569.715 λ 2– 3292.472 for the visible light Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1067 Wednesday, December 31, 1969 17:00 Table 307. DISPERSION OF OPTICAL (SHEET 10 OF 13) Material Silica (High Purity Fused) Silicon (Single Crystal) MATERIALS Dispersion Equation at 298 K n2=2.978645 + 0.008777808 λ 2– 0.010609 + 84.06224 λ 2– 96.0000 n = 3.41696 + 0.138497L + 0.013924L2 – 0.0000209λ2 + 0.000000148λ4 where L = (λ2 – 0.028)–1 Silver Bromide (Single Crystal) n2 – 1 0.10279 λ2 =0.48484+ λ2– 0.0900 n2 + 2 – 0.004796 λ 2 for 0.54µm ≤ λ ≤ 0.65 µm Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1068 Wednesday, December 31, 1969 17:00 Table 307. DISPERSION OF OPTICAL (SHEET 11 OF 13) MATERIALS Material Dispersion Equation at 298 K Silver Chloride (Single Crystal) n = 4.00804 – 0.00085111λ2 – 0.00000019762λ4 + 0.079086/(λ2 – 0.04584) Strontium Titanate (Single Crystal) n = A + BL + CL2 + Dλ2 + Eλ4 where A=2.28355 B=0.035906 C=0.001666 D=–0.0061355 E=–0.00001502 for 1.0 µm ≤ λ ≤ 5.3 µm Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1069 Wednesday, December 31, 1969 17:00 Table 307. DISPERSION OF OPTICAL (SHEET 12 OF 13) Material Dispersion Equation at 298 K 5 Thallium Bromoiodide (KRS-5, Mixed Crystal) MATERIALS 2 n -1= Σ i=1 Kiλ 2 λ 2 − λi2 where i 1 2 3 4 5 (λ in µm) λi2 0.0225 0.0625 0.1225 0.2025 27089.737 Ki 1.8293958 1.6675593 1.1210424 0.4513366 12.380234 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 10.2 Optical L Page 1070 Wednesday, December 31, 1969 17:00 Table 307. DISPERSION OF OPTICAL (SHEET 13 OF 13) Material Titanium Dioxide (Rutile, Single Crystal) MATERIALS Dispersion Equation at 298 K n 2o=5.913+ 2.441x107 λ 2– 0.803x107 for ordinary wavelengths, and 2 n =7.197 e + 3.322x10 7 λ 2– 0.843x107 for extraordinary wavelengths. (λ in Å) Zinc Sulfide (Single Crystal, Cubic) 7 n = 5.164+ 1.208x107 l2 – 0.732 x10 (λ in Å) Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford, James F. & Alexander, W. “Chemical Properties of Materials” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001 11.0 Chemical Page 1071 Wednesday, December 31, 1969 17:00 CHAPTER 9 List of Tables Chemical Properties of Materials Absorption Water Absorption of Polymers EMF Potentials and Galvanic Series Standard Electromotive Force Potentials Galvanic Series of Metals Galvanic Series of Metals in Sea Water Corrosion Corrosion Rate of Metals in Acidic Solutions Corrosion Rate of Metals in Neutral and Alkaline Solutions Corrosion Rate of Metals in Air Corrosion Rates of 1020 Steel at 70˚F Corrosion Rates of Grey Cast Iron at 70˚F Corrosion Rates of Ni–Resist Cast Iron at 70˚F Corrosion Rates of 12% Cr Steel at 70˚ Corrosion Rates of 17% Cr Steel at 70˚F Corrosion Rates of 14% Si Iron at 70˚F Corrosion Rates of Stainless Steel 301 at 70˚F Corrosion Rates of Stainless Steel 316 at 70˚F Corrosion Rates of Aluminum at 70˚F Corrosion Resistance of Wrought Coppers and Copper Alloys Corrosion Rates of 70-30 Brass at 70˚F ©2001 CRC Press LLC 1071 11.0 Chemical Page 1072 Wednesday, December 31, 1969 17:00 Chemical Properties List of Tables (Continued) Corrosion (con’t) Corrosion Rates of Copper, Sn-Braze, Al-Braze at 70˚F Corrosion Rates of Silicon Bronze at 70˚F Corrosion Rates of Hastelloy at 70˚F Corrosion Rates of Inconel at 70˚F Corrosion Rates of Nickel at 70˚F Corrosion Rates of Monel at 70˚F Corrosion Rates of Lead at 70˚F Corrosion Rates of Titanium at 70˚F Corrosion Rates of ACI Heat–Resistant Castings Alloys in Air Corrosion Rates for ACI Heat–Resistant Castings Alloys in Flue Gas Flammability Flammability of Polymers Flammability of Fiberglass Reinforced Plastics ©2001 CRC Press LLC 1072 CRC Handbook of Materials Science & Engineering 11.1 Chemical L Page 1073 Wednesday, December 31, 1969 17:00 Table 308. WATER ABSORPTION OF POLYMERS (SHEET 1 OF 12) Polymer Type Water Absorption in 24 hr, ASTM D570) (%) ABS Resins; Molded, Extruded Medium impact High impact 0.2—0.4 0.2—0.45 Very high impact Low temperature impact Heat resistant 0.2—0.45 0.2—0.45 0.2—0.4 Cast Resin Sheets, Rods: General purpose, type I General purpose, type II 0.3—0.4 0.2—0.4 Moldings: Grades 5, 6, 8 High impact grade 0.3—0.4 0.2—0.4 Allyl diglycol carbonate 0.2 Acrylics; Cast, Molded, Extruded Thermoset Carbonate Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.1 Chemical L Page 1074 Wednesday, December 31, 1969 17:00 Table 308. WATER ABSORPTION OF POLYMERS (SHEET 2 OF 12) Polymer Type Water Absorption in 24 hr, ASTM D570) (%) Alkyds; Molded Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts) 0.10—0.15 0.05—0.08 0.08—0.12 0.007—0.10 Cellulose Acetate; Molded, Extruded ASTM Grade: H4—1 H2—1 1.7—2.7 1.7—2.7 MH—1, MH—2 MS—1, MS—2 S2—1 1.8—4.0 2.1—4.0 2.3—4.0 ASTM Grade: H4 MH S2 2 1.3—1.6 0.9—1.3 Cellulose Acetate Butyrate; Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.1 Chemical L Page 1075 Wednesday, December 31, 1969 17:00 Table 308. WATER ABSORPTION OF POLYMERS (SHEET 3 OF 12) Polymer Type Water Absorption in 24 hr, ASTM D570) (%) Cellusose Acetate Propionate; Molded, Extruded ASTM Grade: 1 3 6 1.6—2.0 1.3—1.8 1.6 Chlorinated Polymers Chlorinated polyether Chlorinated polyvinyl chloride 0.01 0.11 Polycarbonates Polycarbonate Polycarbonate (40% glass fiber reinforced) 0.15 0.08 Orlon filled Dacron filled Asbestos filled Glass fiber filled (122 •F, 48 hr), % 0.2—0.5 0.2—0.5 0.4—0.7 0.2—0.4 Diallyl Phthalates; Molded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.1 Chemical L Page 1076 Wednesday, December 31, 1969 17:00 Table 308. WATER ABSORPTION OF POLYMERS (SHEET 4 OF 12) Polymer Type Water Absorption in 24 hr, ASTM D570) (%) Fluorocarbons; Molded,Extruded Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) 0 0.01 Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) >0.2 <0.01 0.03—0.06 Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded 0.1—0.2 0.4—0.1 0.3—0.8 General purpose glass cloth laminate High strength laminate Filament wound composite 0.05—0.07 0.05 0.05—0.07 Epoxies; Cast, Molded, Reinforced Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.1 Chemical L Page 1077 Wednesday, December 31, 1969 17:00 Table 308. WATER ABSORPTION OF POLYMERS (SHEET 5 OF 12) Polymer Type Water Absorption in 24 hr, ASTM D570) (%) Epoxies—Molded, Extruded High performance resins (cycloaliphatic diepoxides) Molded Glass cloth laminate 0.11—0.2 0.04—0.06 Epoxy novolacs Cast, rigid 0.1—0.7 Melamines; Molded Filler & type Unfilled Cellulose electrical Glass fiber Alpha cellulose and mineral 0.2—0.5 0.27—0.80 0.09—0.60 0.3—0.5 Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers 1.3—1.9 0.9—1.2 0.6 0.8—1.4 Nylons; Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.1 Chemical L Page 1078 Wednesday, December 31, 1969 17:00 Table 308. WATER ABSORPTION OF POLYMERS (SHEET 6 OF 12) Polymer Type Water Absorption in 24 hr, ASTM D570) (%) Nylons; Molded, Extruded (Con’t) Type 8 Type 11 Type 12 9.5 0.4 0.25 6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion 1.5 0.8—0.9 0.5—0.7 1.5 6/10 Nylon General purpose Glass fiber (30%) reinforced 0.4 0.2 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.1 Chemical L Page 1079 Wednesday, December 31, 1969 17:00 Table 308. WATER ABSORPTION OF POLYMERS (SHEET 7 OF 12) Polymer Type Water Absorption in 24 hr, ASTM D570) (%) Phenolics; Molded Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber 0.3—0.8 0.4—1.5 0.4—1.75 0.1—1.0 Phenolics; Molded (Con’t) Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos 0.5—0.7 0.5—2.0 0.5—2.0 0.10—0.50 ABS–Polycarbonate Alloy ABS–Polycarbonate Alloy 0.21 PVC–Acrylic Alloy PVC–acrylic sheet PVC–acrylic injection molded 0.06 0.13 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.1 Chemical L Page 1080 Wednesday, December 31, 1969 17:00 Table 308. WATER ABSORPTION OF POLYMERS (SHEET 8 OF 12) Polymer Type Water Absorption in 24 hr, ASTM D570) (%) Polyimides Unreinforced Unreinforced 2nd value Glass reinforced 0.47 0.24—0.40 0.2 Polyacetals Homopolymer: Standard 20% glass reinforced 22% TFE reinforced 0.25 0.25 0.2 Copolymer: Standard 25% glass reinforced High flow 0.22 0.29 0.22 Injection Moldings: General purpose grade Glass reinforced grades Glass reinforced self extinguishing 0.08 0.06—0.07 0.07 Polyacetals (Con’t) Polyester; Thermoplastic Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.1 Chemical L Page 1081 Wednesday, December 31, 1969 17:00 Table 308. WATER ABSORPTION OF POLYMERS (SHEET 9 OF 12) Polymer Type Water Absorption in 24 hr, ASTM D570) (%) Polyester; Thermoplastic (Con’t) General purpose grade Glass reinforced grade Asbestos—filled grade 0.09 0.07 0.1 Polyesters: Thermosets Cast polyyester Rigid Flexible 0.20—0.60 0.12—2.5 Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistsnt (asbestos) Sheet molding compounds, general purpose 0.5—0.75 0.25—0.50 0.15—0.25 SE—100 SE—1 Glass fiber reinforced 0.07 0.07 0.06 Polyesters: Thermosets (Con’t) Phenylene Oxides Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.1 Chemical L Page 1082 Wednesday, December 31, 1969 17:00 Table 308. WATER ABSORPTION OF POLYMERS (SHEET 10 OF 12) Polymer Type Water Absorption in 24 hr, ASTM D570) (%) Phenylene oxides (Noryl) Standard Glass fiber reinforced 0.22 0.22, 0.18 Polyarylsulfone Polyarylsulfone 0.4 Polypropylene General purpose High impact <0.01—0.03 <0.01—0.02 Polypropylene (Con’t) Asbestos filled Glass reinforced Flame retardant 0.02—0.04 0.02—0.05 0.02—0.03 Polyethylenes; Molded, Extruded Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200 <0.01 <0.01 <0.01 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.1 Chemical L Page 1083 Wednesday, December 31, 1969 17:00 Table 308. WATER ABSORPTION OF POLYMERS (SHEET 11 OF 12) Polymer Type Water Absorption in 24 hr, ASTM D570) (%) Polyethylenes; Molded, Extruded (Con’t) Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9 <0.01 <0.01 Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight <0.01 <0.01 <0.01 <0.01 Polystyrenes; Molded General purpose Medium impact High impact Glass fiber –30% reinforced 0.30—0.2 0.03—0.09 0.05—0.22 0.07 Styrene acrylonitrile (SAN) Styrene acrylonitrile (SAN) Glass fiber (30%) reinforced SAN 0.20—0.35 0.15 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.1 Chemical L Page 1084 Wednesday, December 31, 1969 17:00 Table 308. WATER ABSORPTION OF POLYMERS (SHEET 12 OF 12) Polymer Type Water Absorption in 24 hr, ASTM D570) (%) Polyvinyl Chloride And Copolymers; Molded, Extruded Nonrigid—general Nonrigid—electrical Rigid—normal impact Vinylidene chloride (ASTM D635) 0.2—1.0 0.40—0.75 0.03—0.40 >0.1 Silicones; Molded, Laminated Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate 0.1—0.15 0.08—0.1 0.03—0.05 Ureas; Molded Alpha—cellulose filled (ASTM Type l) 0.4—0.8 Ureas; Molded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.2 Chemical Page 1085 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 1 OF 18) Reaction Reduction Potential E˚, (V) F2 + 2H+ + 2 e– = 2 HF 3.053 F2 + 2 e– = 2F– H2N2O2 + 2H+ + 2 e– = N2 + 2H2O O(g) + 2H+ +2 e– = H O 2.866 FeO42– + 8H+ + 3 e– = Fe3+ + 4H2O 2.20 F2O + 2H+ + 4 e– = H2O + 2F– S2O82– + 2H+ + 2 e– = 2HSO4– O3 + 2H+ + 4 e– = O2 + H2O 2.153 OH + e– = OH– 2.02 2.010 2 S2O82– + 2 e– = 2SO42– Ag2+ + e– = Ag+ 2.65 2.421 2.123 2.076 1.980 Co3+ + e– = Co2+ (2 mol /l H2SO4) 1.83 H2O2 + 2H+ +2 e– = 2 H2O 1.776 N2O + 2H+ + 2 e– = N2 +H2O CeOH3+ + H+ + e– = Ce3+ + H O 1.766 Au+ + e– = Au 1.692 PbO2 + SO42– + 4H+ + 2 e– = PbSO4 + 2H2O 1.6913 MnO4– + 4H+ + 3 e– = MnO2 + 2 H2O NiO + 4H+ + 2 e– = Ni2+ + 2 H O 1.679 2 2 2 – + HClO2 + 2H + 2 e = HClO + H2O 1.715 1.678 1.645 HClO2 + 3H+ + 3 e– = 1/2Cl2 + 2 H2O 1.628 HClO + H+ + e– = 1/2Cl2 + H2O 1.611 Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC Shackelford & Alexander 1085 11.2 Chemical Page 1086 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 2 OF 18) Reduction Potential E˚, (V) Reaction Ce4+ + e– = Ce3+ 1.61 1.601 H5IO6 + H+ + 2 e– = IO3– + 3 H2O HBrO + H+ + e– = 1/2 Br2 (l) + H2O Bi2O4 + 4 H+ + 2 e– = 1.596 1.593 2 BiO+ + 2 H2O 2 NO + 2 H+ + 2 e– = N2O + H2O + 1.591 1.574 – HBrO + H + e = 1/2 Br2 (aq) + H2O HClO2 + 3 H+ + 4 e– = Cl– + H2O Au3+ + 3 e– = Au 1.570 1.5415 1.507 1.498 HO2 + H+ + e– = H2O2 1.495 HClO + H+ + 2 e– = Cl– + H2O BrO3– + 6 H+ + 5 e– = 1/2 Br2 + 3 H2O ClO3– + 6H+ + 5 e– = 1/2 Cl 2+ 3 H2O 1.482 PbO2 + 4 H+ + 2 e– = Pb2+ + 2 H2O 1.455 ClO3– + 6 H+ + 6 e– = Cl– + H2O 1.451 Mn3+ + e– = Mn2+ MnO4– + 8 H+ + 5 e– = Mn2+ + 4 H2O + – + – 1.482 1.47 – 2 HIO + 2 H + 2 e = I2 + 2H2O 1.45 1.439 BrO3– + 6 H+ + 6 e– = Br– + 3 H2O 1.423 2 NH3OH+ + H+ + 2 e– = N2H5+ + 2 H2O Au3+ + 2 e– = Au+ 1.42 1.401 1.39 Au(OH)3 + 3 H + 3 e = Au + 3 H2O ClO4– + 8 H+ + 7 e– = 1/2 Cl2 + 4 H2O Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC 1086 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1087 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 3 OF 18) Reduction Potential E˚, (V) Reaction ClO4– + 8 H+ + 8 e– = Cl– + 4 H2O – – 1.389 Cl2(g) + 2 e = 2Cl 1.35827 HCrO4– + 7 H+ + 3 e– = Cr3+ + 4 H2O 1.350 + – – HBrO + H + 2 e = Br + H2O 1.331 PuO2(OH)2 + H+ + 3 e– = Pu(OH)4 2 HNO2 + 4 H+ + 4 e– = NO2 + 3 H2O 1.325 1.297 [PdCl6]2– + 2 e– = [PdCl4]2– + 2 Cl– 1.288 ClO2 + H+ + e– = HClO2 1.277 N2H5+ + 3 H+ + 2 e– = 2 NH4+ O3 + H2O + 2 e– = O2 + 2 OH– 1.275 1.252 1.24 Cr2O72– + 14 H+ + 3 e– = 2 Cr3+ + 7 H2O 1.232 O2 + 4 H+ + 4 e– = 2 H2O 1.229 1.224 Tl3+ + 2 e–= Tl+ MnO2 + 4 H+ + 2 e– = Mn2+ + 2 H2O ClO3– + 3 H+ + 2 e– = HClO2 + H2O 2 IO3– + 12 H+ + 10 e– = I2 + 6 H2O ClO4– + 2 H+ + 2 e– = ClO3– + H2O 1.214 1.195 ClO3– + 2 H+ + e– = ClO2 + H2O 1.189 1.156 1.152 SeO42– + 4 H+ + 2 e– = H2SeO3 + H2O 1.151 [Fe(pheneathroline)3]3+ + e– = [Fe(phen)3]2+ 1.147 1.120 Ir3+ + 3 e– = Ir RuO2 + 4 H+ + 2 e– = Ru2+ + 2 H2O Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC Shackelford & Alexander 1087 11.2 Chemical Page 1088 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 4 OF 18) Reaction Reduction Potential E˚, (V) Pt2– + 2 e– = Pt Pu5+ + e– = Pu4+ 1.118 1.099 Br2(aq) + 2 e– = 2 Br– 1.0873 IO3– + 6 H+ + 6 e– = I– + 3 H2O 1.085 – – 1.066 1.065 Br2(l) + 2 e = 2 Br + – N2O4 + 2 H + 2 e = 2 HNO2 PuO2(OH)2 + H+ + e– = PuO2OH + H2O [Fe(phen)3]3+ + e– = [Fe(phen)3]2+ (1 mol/l H2SO4) N2O4 + 4 H+ + 4 e– = 2 NO + 2 H2O H6TeO6 + 2 H+ + 2 e– = TeO2 + 4 H2O Pu4+ + e– = Pu3+ AuCl4– + 3 e– = Au + 4 Cl– V(OH)4+ + 2 H+ + e– = VO2+ + 3 H2O – RuO4 + e = RuO4– VO2+ + 2 H+ + e– = VO2+ + H2O HIO + H+ + 2 e– = I– + H2O HNO2 + H+ + e– = NO + H2O AuBr2– + e– = Au + 2 Br– NO3– + 4 H+ + 3 e– = NO + 2 H2O – ClO2(aq) + e 2+ Pd = ClO2– – + 2 e = Pd NO3– + 3 H+ + 2 e– = HNO + H2O 1.062 1.06 1.035 1.02 1.006 1.002 1.00 1.00 0.991 0.987 0.983 0.959 0.957 0.954 0.951 0.934 Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC 1088 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1089 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 5 OF 18) Reduction Potential E˚, (V) Reaction 2 Hg2+ + 2 e– = Hg22+ 0.920 0.878 0.867 HO2– + H2O + 2 e– = 3 OH– N2O4 + 2 e– = 2 NO2– [IrCl6]2– + e– = [IrCl6]3– 0.8665 2 HNO2 + 4 H+ + 4 e– = H2N2O2 + H2O SiO2(quartz) + 4 H+ + 4 e– = Si + 2 H2O AuBr4– + 3 e– = Au + 4 Br– 2+ – Hg + 2 e = Hg OsO4 + 8 H+ + 8 e– = Os + 4 H2O – – – – ClO + H2O + 2 e = Cl + 2 OH 2 NO3– + 4 H+ + 2 e– = N2O4 + 2 H2O Ag+ + e– = Ag Hg22+ + 2 e– = Hg 0.86 0.857 0.854 0.851 0.85 0.841 0.803 0.7996 Fe3+ + e– = Fe2+ 0.7973 0.782 0.779 0.771 [IrCl6]3– + 3e = Ir + 6 Cl– 0.77 (CNS)2 + 2 e = 2 CNS– 0.77 ReO4– + 2 H+ + e– = ReO3 + H2O BrO– + H2O + 2 e– = Br– + 2 OH– 0.768 0.761 2 NO + H2O + 2 e– = N2O + 2 OH– 0.76 0.76 TcO4– + 4 H+ + 3 e– = TcO2 + 2 H2O AgF + e– = Ag + F– – ClO2– + 2 H2O + 4 e– = Cl– + 4 OH– Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC Shackelford & Alexander 1089 11.2 Chemical Page 1090 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 6 OF 18) Reduction Potential E˚, (V) Reaction Rh3+ + 3 e– = Rh 0.758 0.755 [PtCl4]2– + 2 e– = Pt + 4 Cl– Ag2O3 + H2O + 2 e– = 2 AgO + 2 OH– H3IO6 + 2 e– = IO3– + 3 OH– + – p–benzoquinone + 2 H + 2 e = hydroquinone O2 + 2 H+ + 2 e– = H2O2 0.739 0.7 0.6992 0.695 [PtCl6]2– + 2 e– = [PtCl4]2– + 2 Cl– 0.68 Sb2O5(senarmontite) + 4 H+ + 4 e– = Sb2O3 + 2 H2O ClO2– + H2O + 2 e– = ClO– + 2 OH– Ag2SO4 + 2 e– = 2 Ag + SO42– 0.671 Sb2O5(valentinite) + 4 H+ + 4 e– = Sb2O3 + 2 H2O Hg2HPO4 + 2 e– = 2 Hg + HPO42– 0.649 0.643 0.6359 ClO3– + 3 H2O + 6 e– = Cl– + 6 OH– 0.62 Hg2SO4 + 2 e– = 2 Hg + SO42– 0.6125 UO2+ + 4 H+ + e– = U4+ + 2 H2O 0.612 BrO3– + 3 H2O + 6 e– = Br– + 6 OH– 2 AgO + H O + 2 e– = Ag O + 2OH– 0.61 Ag(ac) + e– = Ag + (ac)– 2 0.66 0.654 0.607 2 MnO42– + 2 H2O + 2 e– = MnO2 + 4 OH– Rh+ + e– = Rh Rh2+ + 2 e– = Rh MnO4– + 2 H2O + 3 e– = MnO2 + 4 OH– 0.60 0.600 0.600 0.595 Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC 1090 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1091 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 7 OF 18) Reaction Reduction Potential E˚, (V) TeO2 + 4 H+ + 4 e– = Te + 2 H2O 0.593 [PdCl4]2– + 2 e– = Pd + 4 Cl– 0.591 RuO4– + e– = RuO42– 0.59 Sb2O5 + 6 H+ + 4 e– = 2 SbO+ + 3 H2O 0.581 Te4+ + 4 e– = Te 0.568 AgNO2 + e– = Ag + NO2– S2O62– + 4 H+ + 2 e– = 2 H2SO3 H3AsO4 + 2 H+ + 2 e– = HAsO2 + 2 H2O 0.564 MnO4– + e– = MnO42– 0.558 AgBrO3 + e– = Ag + BrO3– 0.546 I3– + 2 e– = 3 I– 0.536 I2 + 2 e– = 2 I– 0.5355 Cu+ + e– = Cu 0.521 Hg2(ac)2 + 2 e– = 2 Hg + 2 (ac)– ReO4– + 4 H+ + 3 e– = ReO2 + 2 H2O NiO + 2 H O + 2 e– = Ni(OH) + 2 OH– 0.51163 IO– + H2O + 2 e– = I– + 2 OH– 0.485 TeO4– + 8 H+ + 7 e– = Te + 4 H2O Ag CO + 2 e– = 2 Ag + CO 2– 0.472 Ag2WO4 + 2 e– = 2 Ag + WO42– 0.4660 Ag2C2O4 + 2 e– = 2 Ag + C2O42– 0.4647 Ag2MoO4 + 2 e– = 2 Ag + MoO42– 0.4573 2 2 2 2 3 3 0.564 0.560 0.510 0.490 0.47 Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC Shackelford & Alexander 1091 11.2 Chemical Page 1092 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 8 OF 18) Reaction Reduction Potential E˚, (V) Ru2+ + 2 e– = Ru 0.455 H2SO3 + 4 H + 4 e– = S + 3 H2O 0.449 Ag2CrO4 + 2 e– = 2 Ag + CrO42– 0.4470 + 3– + 3 e– = Rh + 6 Cl– AgOCN + e– = Ag + OCN– 0.431 0.41 O2 + H2O + 4 e– = 4 OH– 0.401 Tc2+ + 2 e– = Tc (ferricinium)+ + e– = ferrocene 0.400 0.400 (CN)2 + 2 H+ + 2 e– = 2 HCN 0.373 ReO4– + 8 H+ + 7 e– = Re + 4 H2O 0.368 Ag2SeO3 + 2 e– = 2 Ag + SeO32– 0.3629 ClO4– + H2O + 2 e– = ClO3– + 2OH– [Fe(CN) ]3– + e– = [Fe(CN) ]4– 0.36 0.358 AgIO3 + e– = Ag + IO3– 0.354 Cu2+ + 2 e– = Cu 0.3419 VO2+ + 2 H+ + e– = V3+ + H2O Calomel electrode, 0.1 mol/l KCl 0.337 0.3337 2 HCNO + 2 H+ + 2 e– = (CN)2 + 2 H2O 0.330 ClO3– + H2O + 2 e– = ClO2– + 2 OH– 0.33 UO22+ + 4 H+ + 2 e– = U4+ + 2 H2O BiO+ + 2 H+ + 3 e– = Bi + H2O Re3+ + 3 e– = Re 0.327 [RhCl6] 6 6 0.320 0.300 Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC 1092 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1093 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 9 OF 18) Reaction Reduction Potential E˚, (V) Calomel electrode, 1 mol/l KCl (NCE) Calomel electrode, molal KCl 0.2801 0.2800 Hg2Cl2 + 2 e– = 2 Hg+ + 2 Cl– 0.26808 IO3– + 3 H2O + 6 e– = I– + 6 OH– 0.26 ReO2 + 4 H+ + 4 e– = Re + 2 H2O 0.2513 Ru3+ + e– = Ru2+ 0.2487 HAsO2 + 3 H+ + 3 e– = As + 2 H2O PbO + H O + 2 e– = PbO + 2 OH– 0.248 0.247 Calomel electrode, saturated KCl 0.2412 2 2 Ge2+ + 2 e– = Ge 0.24 Calomel electrode, saturated NaCl (SSCE) 0.2360 As2O3 + 6 H+ + 6 e– = 2 As + 3 H2O 0.234 AgCl + e– = Ag + Cl– 0.22233 0.212 SbO+ + 2 H+ + 3 e– = Sb + H2O SO42– + 4 H+ + 2 e– = H2SO3 + H2O 0.172 Co(OH)3 + e– = Co(OH)2 + OH– 0.17 Bi(Cl)4– + 3 e– = Bi + 4 Cl– 0.16 BiOCl + 2 H + 3 e– = Bi + Cl– + H2O Cu2++ e– = Cu+ 0.1583 + Sb2O3 + 6 H+ + 6 e– = 2 Sb + 3 H2O Sn4+ + 2 e– = Sn2+ 2 NO2– + 3 H2O + 4 e– = N2O + 6 OH– Mn(OH) + e– = Mn(OH) + OH– 3 2 IO3– + 2 H2O + 4 e– = IO– + 4 OH– 0.153 0.152 0.151 0.15 0.15 0.15 Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC Shackelford & Alexander 1093 11.2 Chemical Page 1094 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 10 OF 18) Reduction Potential E˚, (V) Reaction Ag4[Fe(CN)6] + 4 e– = 4 Ag + [Fe(CN)6]4– Np4+ + e– = Np3+ 0.1478 0.147 S + 2 H+ + 2 e– = H2S(aq) 0.142 Pt(OH)2 + 2 e– = Pt + 2 OH– 0.14 Hg2Br2 + 2 e– = 2 Hg + 2 Br– Ge4+ + 4 e– = Ge 0.13923 0.124 Hg2O + H2O + 2 e– = 2 Hg + 2 OH– 0.123 [Co(NH3)6]3+ + e– = [Co(NH3)6]2+ 0.108 2 NO + 2 e– = N2O22– 0.10 Ir2O3 + 3 H2O + 6 e– = 2 Ir + 6 OH– HgO + H O + 2 e– = Hg + 2 OH– 0.098 0.0977 N2 + 2 H2O + 6 H+ + 6 e– = 2 NH4OH 0.092 AgSCN + e– = Ag + SCN– 0.08951 S4O62– + 2 e– = 2 S2O32– 0.08 AgBr + e– = Ag + Br– Pd(OH)2 + 2 e– = Pd + 2 OH– 0.07133 0.07 UO22+ + e– = UO2+ 0.062 SeO42– + H2O + 2 e– = SeO32– + 2 OH– Tl2O3 + 3 H2O + 4 e– = 2 Tl2+ + 6 OH– 0.05 NO3– + H2O + 2 e– = NO2– + 2 OH– 0.01 Ge4+ + 2 e– = Ge2+ 0.00 0.00 2 CuI2– + e– = Cu + 2 I– 0.02 Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC 1094 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1095 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 11 OF 18) Reduction Potential E˚, (V) Reaction 2 H+ + 2 e– = H2 AgCN + e– = Ag + CN– 0.00000 –0.017 2 WO3 + 2 H+ + 2 e– = W2O5 + H2O –0.029 W2O5 + 2 H + 2 e– = 2 WO2 + H2O D+ + e– = 1/2 D –0.031 + –0.034 2 – + Ag2S + 2 H + 2 e = 2 Ag + H2S –0.0366 Fe3+ + 3 e– = Fe –0.037 Hg2I2 + 2 e– = 2 Hg + 2 I– 2 D+ + 2 e– = D –0.0405 Tl(OH)3 + 2 e– = TlOH + 2 OH– –0.05 TiOH3+ + H+ + e– = Ti3+ + H2O –0.055 2 H2SO3 + H+ + 2 e– = HS2O4– + 2 H2O P(white) + 3 H+ + 3 e– = PH3(g) –0.056 O2– + H2O + 2 e– = HO2– + OH– –0.076 2 Cu(OH)2 + 2 e– = Cu2O + 2 OH– + H2O –0.080 WO3 + 6 H+ + 6 e– = W + 3 H2O P(red) + 3 H+ + 3 e– = PH3(g) GeO2 + 2 H+ + 2 e– = GeO + H2O –0.090 WO2 + 4 H+ + 4 e– = W + 2 H2O –0.119 Pb2+ + 2 e– = Pb(Hg) Pb2+ + 2 e– = Pb –0.1205 –0.1262 CrO42– + 4 H2O + 3 e– = Cr(OH)3 + 5 OH– –0.13 2 –0.044 –0.063 –0.111 –0.118 Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC Shackelford & Alexander 1095 11.2 Chemical Page 1096 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 12 OF 18) Reduction Potential E˚, (V) Reaction Sn2+ + 2 e– = Sn –0.1375 –0.14 –0.146 In + e– = In O2 + 2 H2O + 2 e– = H2O2 + 2 OH– AgI + e– = Ag + I– –0.15224 2 NO2– + 2 H2O + 4 e– = N2O22– + 4 OH– –0.18 H2GeO3 + 4 H+ + 4 e– = Ge + 3 H2O CO2 + 2 H+ + 2 e– = HCOOH Mo3+ + 3 e– = Mo –0.182 2 SO22– + 4 H+ + 2 e– = S2O62– + H2O –0.22 Cu(OH)2 + 2 e– = Cu + 2 OH– CdSO + 2 e– = Cd + SO 2– –0.222 V(OH)4+ + 4 H+ + 5 e– = V + 4 H2O –0.254 V3+ + e– = V2+ Ni2+ + 2 e– = Ni –0.255 –0.257 PbCl2 + 2 e– = Pb + 2 Cl– –0.2675 H3PO4 + 2 H + 2 e– = H3PO3 + H2O –0.276 Co2+ + 2 e– = Co –0.28 –0.284 + 4 4 + PbBr2 + 2 e– = Pb + 2 Br– Tl+ + e– = Tl(Hg) Tl+ + e– = Tl In3+ + 3 e– = In TlOH + e– = Tl + OH– –0.199 –0.200 –0.246 –0.3338 –0.336 –0.3382 –0.34 Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC 1096 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1097 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 13 OF 18) Reaction Reduction Potential E˚, (V) PbF2 + 2 e– = Pb + 2 F– –0.3444 PbSO4 + 2 e– = Pb(Hg) + SO42– –0.3505 Cd2+ + 2 e– = Cd(Hg) –0.3521 PbSO4 + 2 e– = Pb + SO42– Cu2O + H2O + 2e– =2 Cu + 2 OH– Eu3+ + e– = Eu2+ –0.3588 PbI2 + 2 e– = Pb + 2 I– –0.365 SeO32– + 3 H2O + 4 e– = Se + 6 OH– – 3+ 2+ –0.366 Ti + e = Ti Se + 2 H+ + 2 e– = H2Se(aq) In2+ + e– = In+ –0.360 –0.36 –0.368 –0.399 2 S + 2 e– = S22– –0.40 –0.4030 –0.407 –0.42836 Tl2SO4 + 2 e– = Tl + SO42– –0.4360 Cd2+ + e– = Cd Cr3+ + e– = Cr2+ 3+ + 2 e– = In+ Fe2+ + 2 e– = Fe –0.443 –0.447 H3PO3 + 3 H+ + 3 e– = P + 3 H2O –0.454 Bi2O3 + 3 H2O + 6 e– = 2 Bi + 6 OH– –0.46 NO2– + H2O + e– = NO + 2 OH– PbHPO + 2 e– = Pb + HPO 2– –0.46 –0.465 S + 2 e– = S2– –0.47627 In 4 4 Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC Shackelford & Alexander 1097 11.2 Chemical Page 1098 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 14 OF 18) Reaction S + H2O + 2 e– = HS– + OH– Reduction Potential E˚, (V) In3+ + e– = In2+ –0.478 –0.49 H3PO3 + 2 H+ + 2 e– = H3PO2 + H2O –0.499 TiO2 + 4 H + 2 e– = Ti2+ + 2 H2O –0.502 H3PO2 + H+ + e– = P + 2 H2O –0.508 Sb + 3 H+ + 3 e– = SbH3 –0.510 HPbO2– + H2O + 2 e– = Pb + 3 OH– TlCl + e– = Tl + Cl– –0.537 –0.5568 Ga3+ + 3 e– = Ga –0.560 –0.56 + Fe(OH)3 + e– = Fe(OH)2 + OH– TeO 2– + 3 H O + 4 e– = Te + 6OH– 3 2 –0.57 2 SO3– + 3 H2O + 4 e– = S2O3– + 6 OH– –0.571 PbO + H2O + 2 e– = Pb + 2 OH– –0.580 ReO2– + 4 H2O + 7 e– = Re + 8 OH– –0.584 SbO3– + H2O + 2 e– = SbO2– + 2 OH– –0.59 U4+ + e– = U3+ –0.607 As + 3 H+ + 3 e– = AsH3 –0.608 Nb2O5 + 10 H + 3 e– = 2 Nb + 5 H2O TlBr + e– = Tl + Br– –0.644 + SbO2– + 2 H2O + 3 e– = Sb + 4 OH– –0.658 –0.66 AsO2– + 2 H2O + 3 e– = As + 4 OH– –0.68 Ag2S + 2 e– = 2 Ag + S2– –0.691 Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC 1098 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1099 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 15 OF 18) Reaction Reduction Potential E˚, (V) AsO43– + 2 H2O + 2 e– = AsO2– + 4 OH– –0.71 Ni(OH)2 + 2 e– = Ni + 2 OH– –0.72 Co(OH)2 + 2 e– = Co + 2 OH– –0.73 H2SeO3 + 4 H+ + 4 e– = Se + 3 H2O Cr3+ + 3 e– = Cr –0.74 –0.744 Ta2O5 + 10 H+ + 4 e– = 2 Ta + 5 H2O –0.75 TlI + e– = Tl + I– Zn2+ + 2 e– = Zn(Hg) –0.752 –0.7618 –0.7628 Te + 2 H+ + 2 e– = H2Te –0.793 ZnSO4 7H2O + 2 e– = Zn(Hg) + SO42– (Sat’d ZnSO4) –0.7993 Cd(OH)2 + 2 e– = Cd(Hg) + 2 OH– 2 H O + 2 e– = H + 2 OH– –0.809 –0.8277 2 NO3– + 2 H2O + 2 e– = N2O4 + 4 OH– –0.85 H3BO3 + 3 H+ + 3 e– = B + 3 H2O –0.8698 P + 3 H2O + 3 e– = PH3(g) + 3 OH– HSnO – + H O + 3 e– = Sn + 3 OH– –0.87 2+ Zn 2 + 2 e– = Zn 2 2 2 2+ –0.909 + 2 e– = Cr –0.913 Se + 2 e– = Se2– –0.924 SO42– + H2O + 2 e– = SO32– + 2 OH– Sn(OH)62– + 2 e– = HSnO2– + 3 OH– + H2O NpO2 + H2O + H+ + e– = Np(OH)3 –0.93 Cr –0.93 –0.962 Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC Shackelford & Alexander 1099 11.2 Chemical Page 1100 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 16 OF 18) Reduction Potential E˚, (V) Reaction PO43– + 2 H2O + 2 e– = HPO32– + 3 OH– Nb3+ + 3 e– = Nb 2 SO32– + 2 H2O + 2 e– = S2O42– + 4 OH– – 2– –1.05 –1.099 –1.12 Te + 2 e = Te –1.143 V2+ + 2 e– = V Mn2+ + 2 e– = Mn –1.175 –1.185 CrO2– + 2 H2O + 3 e– = Cr + 4 OH– –1.2 ZnO2– + 2 H2O + 2 e– = Zn + 4 OH– –1.215 H2GaO3– + H2O + 3 e– = Ga + 4 OH– –1.219 H2BO3– + 5 H2O + 8 e– = BH4– + 8 OH– SiF 2– + 4 e– = Si + 6 F– –1.24 6 Ce3+ + 3 e– = Ce(Hg) –1.24 –1.4373 UO22+ + 4 H+ + 6 e– = U + 2 H2O –1.444 Cr(OH)3 + 3 e– = Cr + 3 OH– HfO + 4 H+ + 4 e– = Hf + 2 H O –1.48 –1.505 2 2 – + ZrO2 + 4 H + 4 e = Zr + 2 H2O –1.553 Mn(OH)2 + 2 e– = Mn + 2 OH– Ba2+ + 2 e– = Ba(Hg) Ti2+ + 2 e– = Ti HPO32– + 2 H2O + 2 e– = H2PO2– + 3 OH– Al3+ + 3 e– = Al SiO3– + H2O + 4 e– = Si + 6 OH– –1.56 –1.570 –1.63 –1.65 –1.662 –1.697 Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC 1100 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1101 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 17 OF 18) Reaction Reduction Potential E˚, (V) HPO32– + 2 H2O + 3 e– = P + 5 OH– –1.71 HfO2+ + 2 H+ + 4 e– = Hf + H2O –1.724 ThO2 + 4 H+ + 4 e– = Th + 2 H2O –1.789 H2BO3– + H2O + 3 e– = B + 4 OH– Sr2+ + 2 e– = Sr(Hg) –1.79 U3+ + 3 e– = U –1.793 –1.798 H2PO2– + e– = P + 2 OH– –1.82 2+ Be + 2 e– = Be Np3+ + 3 e– = Np Th4+ + 4 e– = Th Pu3+ + 3 e– = Pu AlF63– + 3 e– = Al + 6 F– Sc3+ + 3 e– = Sc –1.847 –1.856 –1.899 –2.031 –2.069 –2.077 H2 + 2 e– = 2 H– –2.23 H2AlO3– + H2O + 3 e– = Al + 4 OH– –2.33 ZrO(OH)2 + H2O + 4 e– = Zr + 4 OH– –2.36 Mg2+ + 2 e– = Mg –2.372 –2.372 Y3+ + 3 e– = Y Eu3+ + 3 e– = Eu Nd3+ + 3 e– = Nd Th(OH)4 + 4 e– = Th + 4 OH– Ce3+ + 3 e– = Ce –2.407 –2.431 –2.48 –2.483 Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC Shackelford & Alexander 1101 11.2 Chemical Page 1102 Wednesday, December 31, 1969 17:00 Chemical Properties Table 309. STANDARD ELECTROMOTIVE FORCE POTENTIALS (SHEET 18 OF 18) Reaction HfO(OH)2 + H2O + 4 e– = Hf + 4 OH– Reduction Potential E˚, (V) La3+ + 3 e– = La –2.50 –2.522 Be2O32– + 3 H2O + 4 e– = 2 Be + 6 OH– –2.63 Mg(OH)2 + 2 e– = Mg + 2 OH– –2.690 Mg+ + e– = Mg Na + e– = Na Ca2+ + 2 e– = Ca –2.70 –2.71 –2.868 Sr(OH)2 + 2 e– = Sr + 2 OH– –2.88 Sr2+ + 2 e– = Sr –2.89 La(OH)3 + 3 e– = La + 3 OH– Ba2+ + 2 e– = Ba –2.90 + Cs+ + e– = Cs K+ + e– = K –2.912 –2.92 Rb + e– = Rb Ba(OH) + 2 e– = Ba + 2 OH– –2.931 –2.98 –2.99 Ca(OH)3 + 2 e– = Ca + 2 OH– –3.02 Li+ + e– = Li –3.0401 –3.09 + 3 3 N2 + 2 H+ + 2 e– = 2 NH3 Eu2+ + 2 e– = Eu Ca+ + e– = Ca –3.395 –3.80 Sr+ + e– = Sr –4.10 Source: data compiled by J.S. Park from Petr Vanysek, Handbook of Physics and Chemistry, 69th Edition, CRC Press, Boca Raton, Florida, (1988). ©2001 CRC Press LLC 1102 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1103 Wednesday, December 31, 1969 17:00 Chemical Properties Table 310. GALVANIC Metal SERIES OF METALS Potential, volts (V) Anodic or Corroded End Lithium Rubidium Potassium Barium -3.04 -2.93 -2.92 -2.90 Strontium Calcium Sodium Magnesium -2.89 -2.8 -2.71 -2.37 Beryllium Aluminum Manganese Zinc -1.7 -1.7 -1.04 -0.76 Chromium Cadmium Titanium Cobalt -0.6 -0.4 -0.33 -0.28 Nickel Tin Lead Hydrogen -0.23 -0.14 -0.126 0.00 Copper Silver Mercury Palladium 0.52 0.80 0.85 1.0 Platinum Gold 1.2 1.5 Cathodic or Noble Metal End Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, Eds., CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Ranton, Florida, (1973). ©2001 CRC Press LLC Shackelford & Alexander 1103 11.2 Chemical Page 1104 Wednesday, December 31, 1969 17:00 Chemical Properties Table 311. GALVANIC SERIES OF METALS IN SEA WATER (SHEET 1 OF 2) Metal Active End (-) Magnesium Magnesium Alloys Zinc Galvanized Steel Aluminum 1100 Aluminum 6053 Alcad Cadmium Aluminum 2024 (4.5 Cu, 1.5 Mg, 0.6 Mn) Mild Steel Wrought Iron Cast Iron 13% Chromium Stainless Steel Type 410 (Active) 18-8 Stainless Steel Type 304 (Active) 18-12-3 Stainless Steel Type 316 (Active) Lead-Tin Solders Lead Tin Muntz Metal Manganese Bronze Naval Brass Nickel (Active) 76 Ni-16 Cr-7 Fe alloy (Active) 60 Ni-30 Mo-6 Fe-1 Mn Source: data compiled by J.Park from Standard Guide for Development and Use of a Galvanic Series for Predicting Galvanic Corrosion Performance, G 82, Annual Book of ASTM Standards, American Society for Testing and Materials, (1989). ©2001 CRC Press LLC 1104 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1105 Wednesday, December 31, 1969 17:00 Chemical Properties Table 311. GALVANIC SERIES OF METALS IN SEA WATER (SHEET 2 OF 2) Metal Yellow Brass Admirality Brass Aluminum Brass Red Brass Copper Silicon Bronze 70:30 Cupro Nickel G-Bronze M-Bronze Silver Solder Nickel (Passive) 76 Ni-16 Cr-7 Fe Alloy (Passive) 67 Ni-33 Cu Alloy (Monel) 13% Chromium Stainless Steel Type 410 (Passive) Titanium 18-8 Stainless Steel Type 304 (Passive) 18-12-3 Stainless Steel Type 316 (Passive) Silver Noble or Passive End (+) Graphite Gold Platinum Source: data compiled by J.Park from Standard Guide for Development and Use of a Galvanic Series for Predicting Galvanic Corrosion Performance, G 82, Annual Book of ASTM Standards, American Society for Testing and Materials, (1989). ©2001 CRC Press LLC Shackelford & Alexander 1105 11.2 Chemical Page 1106 Wednesday, December 31, 1969 17:00 Chemical Properties Table 312. CORROSION IN RATE OF METALS ACIDIC SOLUTIONS Corrosive Environment Metal Sulfuric, 5% (Non-oxidizing) Acetic, 5% (Non-oxidizing) Nitric, 5% (Oxidizing) Aluminum Copper alloys Gold 8-100 0.5-5 15-80 2-50* <0.1 2-15* 150-1500 <0.1 <0.1 Iron 10-400 Lead Molybdenum 15-400* 0-2 0-0.2 Nickel alloys Platinum Silicon iron 2-35* <0.1 0-5 Silver Stainless steel Tantalum Tin Titanium Zinc Zirconium * 10-150 <0.1 1000-10000 100-6000 high 2-10* 0.1-1500 <0.1 0-0.2 <0.1 0-20 0-1 <0.1 high 0-100** 0-0.5 0-2 <0.1 <0.1 <0.1 2-500* 10-100 high <0.5 2-500* 100-400 <0.1 600-800 <0.1 0.1-1 high <0.1 * Aeration leads to the higher rates in the range. ** Aeration leads to passivity, scarcity of dissolved air to activity. Corrosion Rate Ranges Expressed in Mils Penetration per Year (1 Mil = 0.001 in) Note: The corrosion-rate ranges for the solutions are based on temperature up to 212 ˚F. Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1973). ©2001 CRC Press LLC 1106 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1107 Wednesday, December 31, 1969 17:00 Chemical Properties Table 313. CORROSION RATE OF METALS IN NEUTRAL AND ALKALINE SOLUTIONS Corrosive Environment Metal Sodium Hydroxide, 5% Fresh Water Sea Water Aluminum Copper alloys Gold 13000 2-5 <0.1 0.1 0-1 <0.1 1-50 Iron 0-0.2 0.1-10* Lead Molybdenum 5-500* <0.1 0.1-2 0.1-10* 0.2-15 <0.1 <0.1 Nickel alloys Platinum Silicon iron 0-0.2 <0.1 0-10 0-0.2 <0.1 0-0.2 0-1 <0.1 0-3 Silver Stainless steel Tantalum <0.1 0-0.2 <1 <0.1 0-0.2 <0.1 0-200** <0.1 Tin Titanium Zinc Zirconium 5-20 <0.2 15-200 <0.1 0-0.5 <0.1 0.5-10 <0.1 0.2-15* <0.1 <0.1 0.1 <0.1 0.5-10* <0.1 * Aeration leads to the higher rates in the range. ** Aeration leads to passivity, scarcity of dissolved air to activity. Corrosion Rate Ranges Expressed in Mils Penetration per Year (1 Mil = 0.001 in) Note: The corrosion-rate ranges for the solutions are based on temperature up to 212 ˚F. Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1973). ©2001 CRC Press LLC Shackelford & Alexander 1107 11.2 Chemical Page 1108 Wednesday, December 31, 1969 17:00 Chemical Properties Table 314. CORROSION RATE OF METALS IN AIR Metal Normal Outdoor Air (Urban Exposure) Aluminum Copper alloys Gold 0-0.5 0-0.2 <0.1 Iron Lead Molybdenum 1-8 0-0.2 <0.1 Nickel alloys Platinum Silicon iron 0-0.2 <0.1 0-0.2 Silver Stainless steel Tantalum <0.1 0-0.2 <0.1 Tin Titanium Zinc Zirconium 0-0.2 <0.1 0-0.5 <0.1 Corrosion Rate Ranges Expressed in Mils Penetration per Year (1 Mil = 0.001 in) Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1973). ©2001 CRC Press LLC 1108 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1109 Wednesday, December 31, 1969 17:00 Chemical Properties Table 315. CORROSION RATES OF 1020 STEEL AT 70˚F * (SHEET 1 OF 8) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride <0.05 >0.05 >0.05 — <0.002 >0.05 >0.05 >0.05 Acetoacetic Acid Acetone Acetylene Acrolein >0.05 <0.05 — <0.02 >0.05 <0.002 <0.002 <0.02 Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) — <0.02 <0.02 — <0.002 <0.002 <0.002 <0.002 Alcohol (Amyl) Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl) — — — — <0.02 <0.002 <0.002 <0.02 Alcohol (Isopropyl) Allylamine Allyl Chloride Allyl Sulfide — <0.02 (30%) — — <0.002 <0.02 <0.002 <0.02 Aluminum Acetate Aluminum Chloride Aluminum Fluoride Aluminum Fluosilicate >0.05 >0.05 <0.02 — — <0.002 — >0.05 Aluminum Formate Aluminum Hydroxide Aluminum Nitrate Aluminum Potassium Sulfate <0.05 <0.02 >0.05 >0.05 >0.05 — — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1109 11.2 Chemical Page 1110 Wednesday, December 31, 1969 17:00 Chemical Properties Table 315. CORROSION RATES OF 1020 STEEL AT 70˚F * (SHEET 2 OF 8) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Aluminum Sulfate Ammonia Ammonium Acetate Ammonium Bicarbonate >0.05 <0.002 — <0.02 — <0.002 <0.002 <0.002 Ammonium Bromide Ammonium Carbonate Ammonium Chloride Ammonium Citrate >0.05 <0.02 <0.05 >0.05 >0.05 <0.002 <0.02 <0.002 Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite Ammonium Thiocyanate <0.002 <0.02 >0.05 <0.02 <0.02 — — — Amyl Acetate Amyl Chloride Aniline Aniline Hydro-chloride <0.002 >0.05 — >0.05 <0.02 <0.02 <0.002 >0.05 Anthracine Antimony Trichloride Barium Carbonate Barium Chloride — >0.05 <0.02 <0.02 <0.02 <0.05 <0.02 <0.002 Barium Hydroxide Barium Nitrate Barium Oxide Barium Peroxide — <0.02 — <0.05 <0.02 <0.02 <0.002 <0.002 Benzaldehyde Benzene Benzoic Acid Boric Acid >0.05 — >0.05 <0.05 <0.002 <0.02 >0.05 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1110 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1111 Wednesday, December 31, 1969 17:00 Chemical Properties Table 315. CORROSION RATES OF 1020 STEEL AT 70˚F * (SHEET 3 OF 8) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Bromic Acid Bromine (Dry) Bromine (Wet) Butyric Acid >0.05 — — <0.05 >0.05 <0.05 >0.05 >0.05 Cadmium Chloride Cadmium Sulfate Calcium Acetate Calcium Bicarbonate >0.05 <0.02 <0.02 <0.02 <0.002 <0.02 <0.05 <0.02 Calcium Bromide Calcium Chlorate Calcium Chloride Calcium Hydroxide — <0.002 <0.002 <0.02 <0.05 <0.02 <0.002 <0.02 Calcium Hypochlorite Carbon Dioxide Carbon Monoxide Carbon Tetrachloride <0.05 — — — <0.02 <0.002 <0.002 <0.002 Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas Chlorine Liquid <0.02 >0.05 >0.05 — <0.02 >0.05 <0.02 <0.02 Chloroform (Dry) Chromic Acid Chromic Hydroxide Chromic Sulfates — >0.05 — >0.05 <0.002 <0.002 <0.02 >0.05 Citric Acid Copper Nitrate Copper Sulfate Diethylene Glycol >0.05 >0.05 >0.05 <0.002 (60%) <0.002 — — <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1111 11.2 Chemical Page 1112 Wednesday, December 31, 1969 17:00 Chemical Properties Table 315. CORROSION RATES OF 1020 STEEL AT 70˚F * (SHEET 4 OF 8) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Ethyl Chloride Ethylene Glycol Ethylene Oxide Fatty Acids >0.05 (90%) <0.02 — — <0.002 <0.002 <0.002 >0.05 Ferric Chloride Ferric Nitrate Ferrous Chloride Ferrous Sulfate >0.05 >0.05 >0.05 >0.05 <0.02 — — — Fluorine Formaldehyde Formic Acid Furfural — <0.05 (40%) >0.05 <0.02 (30%) <0.002 <0.002 >0.05 <0.02 Hydrazine Hydrobromic Acid Hydro-chloric Acid (Areated) Hydro-chloric Acid (Air Free) >0.05 >0.05 >0.05 >0.05 >0.05 <0.02 — — Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Chloride — >0.05 >0.05 >0.05 (90%) <0.002 <0.02 <0.05 <0.002 Hydrogen Fluoride Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide — <0.05 (1%) >0.05 (20%) <0.02 <0.002 <0.02 — <0.02 Lactic Acid Lead Acetate Lead Chromate Lead Nitrate >0.05 >0.05 (20%) — >0.05 >0.05 <0.002 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1112 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1113 Wednesday, December 31, 1969 17:00 Chemical Properties Table 315. CORROSION RATES OF 1020 STEEL AT 70˚F * (SHEET 5 OF 8) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Lead Sulfate Lithium Chloride Lithium Hydroxide Magnesium Chloride — <0.02 (30%) <0.02 <0.02 <0.02 <0.002 <0.002 <0.002 Magnesium Hydroxide Magnesium Sulfate Maleic Acid Malic Acid <0.02 <0.02 >0.05 >0.05 <0.002 <0.02 <0.002 — Maganous Chloride Mercuric Chloride Mercurous Nitrate Methallyl-amine >0.05 (40%) >0.05 — <0.02 — — <0.02 <0.02 Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylamine <0.02 <0.02 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 Methylene Chloride Monochloro-acetic Acid Monorthanol-amine Monoethal-amine — >0.05 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 Monoethyl-amine Monosodium Phosphate Nickel Chloride Nickel Nitrate <0.02 >0.05 >0.05 <0.02 <0.02 — — — Nickel Sulfate Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid >0.05 >0.05 — — — >0.05 <0.05 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1113 11.2 Chemical Page 1114 Wednesday, December 31, 1969 17:00 Chemical Properties Table 315. CORROSION RATES OF 1020 STEEL AT 70˚F * (SHEET 6 OF 8) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene Nitrocelluolose — — — — >0.05 >0.05 <0.002 <0.02 Nitroglycerine Nitrotolune Nitrous Acid Oleic Acid — — — — <0.05 <0.02 >0.05 <0.02 Oxalic Acid Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free) >0.05 — >0.05 >0.05 >0.05 <0.002 >0.05 >0.05 Picric Acid Potassium Bicarbonate Potassium Bromide Potassium Carbonate >0.05 <0.02 <0.05 <0.02 >0.05 <0.002 >0.05 <0.02 Potassium Chlorate Potassium Chromate Potassium Cyanide Potassium Dichromate <0.02 <0.02 <0.02 <0.02 <0.002 — <0.002 — Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite <0.02 >0.05 <0.02 >0.05 <0.02 — <0.002 <0.002 Potassium Iodide Potassium Nitrate Potassium Nitrite Potassium Permanganate <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1114 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1115 Wednesday, December 31, 1969 17:00 Chemical Properties Table 315. CORROSION RATES OF 1020 STEEL AT 70˚F * (SHEET 7 OF 8) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Potassium Silicate Propionic Acid Pyridine Quinine Sulfate <0.02 >0.05 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide — — — >0.05 >0.05 <0.002 >0.05 >0.05 Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate >0.05 >0.05 <0.02 <0.02 >0.05 — <0.002 <0.05 Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride >0.05 <0.02 <0.002 <0.02 <0.002 <0.02 <0.02 <0.002 Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate <0.02 <0.002 >0.05 <0.02 <0.02 <0.02 >0.05 <0.002 Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 Sodium Sulfate Sodium Sulfide Sodium Sulfite Stannic Chloride <0.02 <0.05 <0.02 >0.05 <0.02 <0.02 — <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1115 11.2 Chemical Page 1116 Wednesday, December 31, 1969 17:00 Chemical Properties Table 315. CORROSION RATES OF 1020 STEEL AT 70˚F * (SHEET 8 OF 8) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Stannous Chloride Strontium Nitrate Succinic Acid Sulfur Dioxide >0.05 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 <0.002 Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) — >0.05 >0.05 — <0.02 <0.02 <0.02 <0.02 Sulfurous Acid Tannic Acid Tartaric Acid Tetraphosphoric Acid <0.05 >0.05 >0.05 >0.05 >0.05 <0.002 <0.05 >0.05 Trichloroacetic Acid Trichloroethylene Urea >0.05 — <0.05 >0.05 <0.002 — Zinc Chloride Zinc Sulfate >0.05 >0.05 <0.002 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC 1116 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1117 Wednesday, December 31, 1969 17:00 Chemical Properties Table 316. CORROSION RATES OF GREY CAST IRON AT 70˚F * (SHEET 1 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride <0.05 >0.05 >0.05 — <0.002 >0.05 >0.05 >0.05 Acetoacetic Acid Acetone Acetylene Acrolein >0.05 — — — >0.05 <0.002 <0.002 <0.02 Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) — <0.02 <0.02 — <0.002 <0.02 <0.002 <0.02 Alcohol (Amyl) Alcohol (Butyl) Alcohol (Isopropyl) Allylamine — — — — <0.02 <0.002 <0.02 <0.02 Allyl Chloride Allyl Sulfide Aluminum Acetate Aluminum Chloride — — >0.05 >0.05 <0.02 <0.02 — >0.05 Aluminum Fluoride Aluminum Fluosilicate Aluminum Hydroxide Aluminum Nitrate <0.02 — <0.02 >0.05 — >0.05 — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1117 11.2 Chemical Page 1118 Wednesday, December 31, 1969 17:00 Chemical Properties Table 316. CORROSION RATES OF GREY CAST IRON AT 70˚F * (SHEET 2 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Aluminum Potassium Sulfate Aluminum Sulfate Ammonia Ammonium Acetate >0.05 >0.05 <0.002 — — — <0.002 <0.02 Ammonium Bicarbonate Ammonium Bromide Ammonium Carbonate Ammonium Chloride <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 — Ammonium Citrate Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite >0.05 <0.02 <0.05 >0.05 — <0.05 <0.02 — Ammonium Thiocyanate Amyl Acetate Amyl Chloride Aniline <0.02 — — — — <0.02 <0.02 <0.002 Aniline Hydrochloride Anthracine Antimony Trichloride Barium Carbonate >0.05 — >0.05 <0.02 >0.05 <0.02 — <0.02 Barium Chloride Barium Hydroxide Benzaldehyde Benzene >0.05 — >0.05 — <0.02 <0.02 >0.05 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1118 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1119 Wednesday, December 31, 1969 17:00 Chemical Properties Table 316. CORROSION RATES OF GREY CAST IRON AT 70˚F * (SHEET 3 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Benzoic Acid Boric Acid Bromic Acid Bromine (Dry) >0.05 >0.05 >0.05 — >0.05 — >0.05 >0.05 Bromine (Wet) Butyric Acid Cadmium Chloride Cadmium Sulfate — >0.05 >0.05 <0.02 >0.05 — — <0.02 Calcium Acetate Calcium Bicarbonate Calcium Bromide Calcium Chlorate <0.05 — — <0.02 <0.05 <0.02 <0.05 <0.02 Calcium Chloride Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide <0.02 <0.02 <0.05 — <0.002 <0.02 <0.02 <0.002 Carbon Monoxide Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid — — — >0.05 <0.002 <0.05 <0.05 >0.05 Chlorine Gas Chloroform (Dry) Chromic Acid Citric Acid >0.05 — <0.05 >0.05 <0.02 <0.002 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1119 11.2 Chemical Page 1120 Wednesday, December 31, 1969 17:00 Chemical Properties Table 316. CORROSION RATES OF GREY CAST IRON AT 70˚F * (SHEET 4 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Copper Nitrate Copper Sulfate Ethylene Glycol Ethylene Oxide >0.05 >0.05 — — — — <0.02 <0.02 Fatty Acids Ferric Chloride Ferric Nitrate Ferrous Chloride — >0.05 >0.05 >0.05 >0.05 — — — Ferrous Sulfate Fluorine Formaldehyde Formic Acid >0.05 — <0.05 (40%) >0.05 — >0.05 <0.02 >0.05 Furfural Hydrazine Hydrobromic Acid Hydrochloric Acid (Areated) — >0.05 >0.05 >0.05 <0.02 — <0.02 — Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) >0.05 — >0.05 >0.05 — <0.02 >0.05 >0.05 Hydrogen Chloride Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide >0.05 (90%) >0.05 >0.05 (20%) <0.02 <0.02 <0.02 — <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1120 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1121 Wednesday, December 31, 1969 17:00 Chemical Properties Table 316. CORROSION RATES OF GREY CAST IRON AT 70˚F * (SHEET 5 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Lactic Acid Lead Acetate Lead Chromate Lead Nitrate >0.05 >0.05 — >0.05 >0.05 — <0.02 <0.02 Lead Sulfate Lithium Chloride Lithium Hydroxide Magnesium Chloride — <0.02 (30%) <0.02 <0.02 <0.02 <0.002 — <0.02 Magnesium Hydroxide Magnesium Sulfate Maleic Acid Malic Acid <0.02 >0.05 >0.05 >0.05 — <0.02 — — Maganous Chloride Mercuric Chloride Methallylamine Methanol >0.05 (40%) >0.05 — <0.02 — — <0.02 <0.002 Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylamine Methylene Chloride <0.02 <0.02 <0.02 — <0.002 <0.02 <0.02 <0.02 Monochloroacetic Acid Monorthanolamine Monoethylamine Monosodium Phosphate >0.05 — <0.02 >0.05 >0.05 <0.02 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1121 11.2 Chemical Page 1122 Wednesday, December 31, 1969 17:00 Chemical Properties Table 316. CORROSION RATES OF GREY CAST IRON AT 70˚F * (SHEET 6 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Nickel Chloride Nickel Nitrate Nickel Sulfate Nitric Acid >0.05 <0.02 >0.05 >0.05 — — — >0.05 Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid — — — — >0.05 >0.05 >0.05 >0.05 Nitrobenzene Nitrocelluolose Nitroglycerine Nitrotolune — — — — <0.02 <0.02 <0.05 <0.02 Oleic Acid Oxalic Acid Phenol Phosphoric Acid (Areated) — >0.05 — >0.05 <0.02 >0.05 <0.02 >0.05 Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate Potassium Bromide >0.05 >0.05 <0.02 <0.05 >0.05 >0.05 — >0.05 Potassium Carbonate Potassium Chromate Potassium Cyanide Potassium Dichromate <0.02 <0.02 >0.05 <0.02 <0.02 — <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1122 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1123 Wednesday, December 31, 1969 17:00 Chemical Properties Table 316. CORROSION RATES OF GREY CAST IRON AT 70˚F * (SHEET 7 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite <0.02 >0.05 <0.02 >0.05 <0.02 — <0.02 — Potassium Nitrate Potassium Nitrite Potassium Permanganate Potassium Silicate <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Propionic Acid Pyridine Quinine Sulfate Salicylic Acid >0.05 <0.02 >0.05 — — <0.02 >0.05 >0.05 Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide Silver Chloride — — >0.05 >0.05 <0.002 >0.05 >0.05 >0.05 Silver Nitrate Sodium Acetate Sodium Bicarbonate Sodium Bisulfate >0.05 — <0.02 >0.05 — <0.002 <0.05 — Sodium Bromide Sodium Carbonate Sodium Chloride Sodium Chromate — <0.002 <0.02 <0.02 <0.05 <0.02 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1123 11.2 Chemical Page 1124 Wednesday, December 31, 1969 17:00 Chemical Properties Table 316. CORROSION RATES OF GREY CAST IRON AT 70˚F * (SHEET 8 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate Sodium Nitrate <0.02 >0.05 <0.02 <0.02 — — <0.02 <0.02 Sodium Nitrite Sodium Phosphate Sodium Silicate Sodium Sulfate <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 Sodium Sulfide Sodium Sulfite Stannic Chloride Stannous Chloride <0.05 >0.05 >0.05 >0.05 <0.02 — — <0.02 Strontium Nitrate Succinic Acid Sulfur Dioxide Sulfur Trioxide >0.05 <0.02 — — >0.05 <0.02 <0.02 <0.02 Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) Sulfurous Acid >0.05 >0.05 — — <0.02 <0.02 <0.02 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1124 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1125 Wednesday, December 31, 1969 17:00 Chemical Properties Table 316. CORROSION RATES OF GREY CAST IRON AT 70˚F * (SHEET 9 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Tannic Acid Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid — >0.05 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 Trichloroethylene Zinc Chloride Zinc Sulfate — >0.05 >0.05 <0.02 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC Shackelford & Alexander 1125 11.2 Chemical Page 1126 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF NI–RESIST CAST IRON * AT 70˚F (SHEET 1 OF 8) Table 317. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride — <0.02 <0.02 — <0.002 >0.05 >0.05 <0.02 Acetone Acetylene Acrolein Acrylonitril — — — — <0.002 <0.002 <0.02 <0.002 Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) Alcohol (Amyl) <0.02 <0.02 — — <0.02 <0.002 <0.02 <0.02 Alcohol (Isopropyl) Allylamine Allyl Sulfide Aluminum Acetate — — — — <0.02 <0.02 <0.02 <0.02 Aluminum Chloride Aluminum Hydroxide Aluminum Potassium Sulfate Aluminum Sulfate >0.05 <0.02 >0.05 <0.02 >0.05 — — — Ammonia Ammonium Acetate Ammonium Bicarbonate Ammonium Carbonate <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1126 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1127 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF NI–RESIST CAST IRON * AT 70˚F (SHEET 2 OF 8) Table 317. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Ammonium Chloride Ammonium Citrate Ammonium Nitrate Ammonium Sulfate <0.02 >0.05 <0.02 >0.05 — — — <0.02 Ammonium Sulfite Ammonium Thiocyanate Amyl Acetate Aniline >0.05 <0.02 — <0.02 — — <0.002 <0.02 Aniline Hydrochloride Anthracine Antimony Trichloride Barium Carbonate >0.05 — >0.05 <0.02 >0.05 <0.02 — <0.02 Barium Chloride Benzaldehyde Benzene Benzoic Acid <0.02 <0.02 — — — <0.002 <0.02 <0.02 Boric Acid Bromine (Dry) Bromine (Wet) Butyric Acid <0.002 — — >0.05 <0.02 <0.02 >0.05 >0.05 Cadmium Chloride Calcium Chlorate Calcium Chloride Calcium Hydroxide >0.05 <0.05 <0.02 <0.02 — <0.02 — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1127 11.2 Chemical Page 1128 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF NI–RESIST CAST IRON * AT 70˚F (SHEET 3 OF 8) Table 317. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Calcium Hypochlorite Carbon Dioxide Carbon Monoxide Carbon Tetrachloride <0.02 — — — — <0.002 <0.002 <0.02 Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas Chromic Acid — >0.05 >0.05 <0.05 <0.002 >0.05 <0.02 <0.02 Chromic Hydroxide Citric Acid Copper Nitrate Copper Sulfate — >0.05 >0.05 >0.05 <0.02 >0.05 — — Ethylene Glycol Fatty Acids Ferric Chloride Ferrous Chloride — — >0.05 >0.05 <0.02 <0.02 — — Formaldehyde Formic Acid Furfural Hydrobromic Acid <0.05 (40%) >0.05 <0.02 (30%) — — >0.05 <0.02 >0.05 Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated) >0.05 <0.05 — <0.002 — — <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1128 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1129 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF NI–RESIST CAST IRON * AT 70˚F (SHEET 4 OF 8) Table 317. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride Hydrogen Iodide <0.002 — — — <0.02 <0.002 <0.02 <0.02 Hydrogen Sulfide Lactic Acid Lead Chromate Lead Sulfate <0.02 >0.05 — — <0.02 >0.05 <0.02 <0.02 Lithium Chloride Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide <0.002 (30%) <0.02 <0.02 <0.02 — — <0.02 <0.02 Magnesium Sulfate Maleic Acid Maganous Chloride Mercuric Chloride <0.02 >0.05 <0.05 (40%) >0.05 <0.02 — — — Methallylamine Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.002 <0.02 Methylamine Methylene Chloride Monochloroacetic Acid Monorthanolamine <0.02 — — — <0.02 <0.02 <0.05 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1129 11.2 Chemical Page 1130 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF NI–RESIST CAST IRON * AT 70˚F (SHEET 5 OF 8) Table 317. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Monoethalamine Monoethylamine Monosodium Phosphate Nickel Chloride <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 — — Nickel Nitrate Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid <0.02 >0.05 — — — >0.05 >0.05 >0.05 Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene Nitrocelluolose — — — — >0.05 >0.05 <0.02 <0.02 Nitroglycerine Nitrotolune Oleic Acid Oxalic Acid — — — >0.05 <0.02 <0.02 <0.002 <0.02 Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free) Picric Acid — >0.05 >0.05 — <0.02 >0.05 >0.05 >0.05 Potassium Bicarbonate Potassium Bromide Potassium Carbonate Potassium Chlorate <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1130 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1131 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF NI–RESIST CAST IRON * AT 70˚F (SHEET 6 OF 8) Table 317. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Potassium Chromate Potassium Cyanide Potassium Dichromate Potassium Ferricyanide <0.02 <0.02 <0.02 <0.02 — — <0.02 <0.02 Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite Potassium Iodide <0.02 <0.02 >0.05 <0.02 — — — — Potassium Nitrate Potassium Nitrite Potassium Permanganate Potassium Silicate <0.02 <0.02 <0.02 <0.02 — <0.02 — <0.02 Pyridine Quinine Sulfate Salicylic Acid Silicon Tetrachloride (Dry) <0.02 <0.02 — — <0.02 <0.02 <0.02 <0.002 Silicon Tetrachloride (Wet) Silver Bromide Sodium Acetate Sodium Bicarbonate — >0.05 <0.02 <0.02 >0.05 >0.05 — <0.02 Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride <0.002 <0.02 <0.002 <0.02 <0.002 <0.02 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1131 11.2 Chemical Page 1132 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF NI–RESIST CAST IRON * AT 70˚F (SHEET 7 OF 8) Table 317. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate <0.02 <0.002 >0.05 <0.002 <0.02 <0.02 — <0.02 Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 Sodium Sulfate Sodium Sulfite Stannic Chloride Stannous Chloride <0.02 <0.02 >0.05 >0.05 <0.02 — — <0.02 Strontium Nitrate Succinic Acid Sulfur Dioxide Sulfur Trioxide <0.02 <0.02 — — — <0.02 <0.02 <0.02 Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) Sulfurous Acid <0.02 <0.02 — <0.05 <0.02 <0.02 <0.05 >0.05 Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid <0.02 >0.05 >0.05 — <0.05 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1132 CRC Handbook of Materials Science & Engineering 11.2 Chemical Page 1133 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF NI–RESIST CAST IRON * AT 70˚F (SHEET 8 OF 8) Table 317. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Trichloroethylene Zinc Chloride Zinc Sulfate — <0.02 <0.02 <0.02 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC Shackelford & Alexander 1133 11.3 Chemical Page 1134 Wednesday, December 31, 1969 17:00 Chemical Properties Table 318. CORROSION RATES OF 12% CR STEEL AT 70˚ * (SHEET 1 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride — <0.02 <0.02 — <0.002 >0.05 >0.05 <0.05 Acetone Acetylene Acrolein Acrylonitril <0.02 — <0.02 — <0.002 <0.002 <0.02 <0.002 Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) Alcohol (Amyl) <0.02 <0.02 — — <0.02 <0.02 <0.02 <0.02 Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl) Alcohol (Isopropyl) — — — — <0.02 <0.002 <0.02 <0.02 Allylamine Allyl Chloride Allyl Sulfide Aluminum Acetate — — — <0.02 <0.02 <0.02 <0.02 <0.02 Aluminum Chloride Aluminum Fluoride Aluminum Fluosilicate Aluminum Formate >0.05 >0.05 — <0.02 <0.002 >0.05 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1134 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1135 Wednesday, December 31, 1969 17:00 Chemical Properties Table 318. CORROSION RATES OF 12% CR STEEL AT 70˚ * (SHEET 2 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Aluminum Hydroxide Aluminum Nitrate Aluminum Potassium Sulfate Aluminum Sulfate <0.02 <0.02 >0.05 >0.05 — <0.02 <0.05 >0.05 Ammonia Ammonium Acetate Ammonium Bicarbonate Ammonium Bromide <0.002 <0.002 <0.02 <0.05 <0.002 <0.002 — >0.05 Ammonium Carbonate Ammonium Chloride Ammonium Nitrate Ammonium Sulfate <0.02 <0.05 <0.02 >0.05 <0.02 >0.05 <0.02 — Ammonium Sulfite Amyl Acetate Amyl Chloride Aniline >0.05 — — <0.02 — <0.002 <0.05 <0.02 Aniline Hydrochloride Anthracine Antimony Trichloride Barium Carbonate >0.05 — >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 Barium Chloride Barium Hydroxide Barium Oxide Barium Peroxide <0.05 — — >0.05 — <0.02 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1135 11.3 Chemical Page 1136 Wednesday, December 31, 1969 17:00 Chemical Properties Table 318. CORROSION RATES OF 12% CR STEEL AT 70˚ * (SHEET 3 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Benzaldehyde Benzene Benzoic Acid Boric Acid — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Bromic Acid Bromine (Dry) Bromine (Wet) Butyric Acid >0.05 — — <0.05 >0.05 >0.05 >0.05 — Cadmium Chloride Calcium Acetate Calcium Bicarbonate Calcium Bromide >0.05 <0.02 — <0.02 — <0.02 <0.02 <0.02 Calcium Chlorate Calcium Chloride Calcium Hydroxide Calcium Hypochlorite <0.02 <0.02 <0.02 >0.05 — — <0.02 >0.05 Carbon Dioxide Carbon Monoxide Carbon Tetrachloride Carbon Acid (Air Free) — — >0.05 — <0.002 <0.002 <0.02 <0.002 Chloroacetic Acid Chlorine Gas Chloroform (Dry) Chromic Acid >0.05 >0.05 — >0.05 >0.05 <0.05 <0.002 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1136 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1137 Wednesday, December 31, 1969 17:00 Chemical Properties Table 318. CORROSION RATES OF 12% CR STEEL AT 70˚ * (SHEET 4 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Chromic Hydroxide Chromic Sulfates Citric Acid Copper Nitrate — >0.05 <0.05 <0.02 <0.02 >0.05 — — Copper Sulfate Ethyl Chloride Ethylene Glycol Ethylene Oxide <0.02 >0.05 (90%) — — — <0.002 <0.02 <0.02 Fatty Acids Ferric Chloride Ferric Nitrate Ferrous Chloride — >0.05 <0.02 >0.05 <0.02 — — — Ferrous Sulfate Fluorine Formaldehyde Formic Acid <0.02 — <0.02 <0.05 — >0.05 <0.02 <0.02 Furfural Hydrobromic Acid Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) <0.02 (80%) >0.05 >0.05 >0.05 — — — — Hydrocyanic Acid Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride — >0.05 >0.05 (90%) — >0.05 >0.05 >0.05 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1137 11.3 Chemical Page 1138 Wednesday, December 31, 1969 17:00 Chemical Properties Table 318. CORROSION RATES OF 12% CR STEEL AT 70˚ * (SHEET 5 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide Lactic Acid <0.05 <0.02 (20%) <0.02 >0.05 >0.05 <0.02 <0.02 — Lead Acetate Lead Chromate Lead Nitrate Lead Sulfate <0.02 — <0.02 — <0.02 <0.02 — <0.02 Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide Magnesium Sulfate <0.02 <0.05 <0.02 >0.05 — — <0.02 <0.05 Maleic Acid Malic Acid Mercuric Chloride Mercurous Nitrate — <0.02 >0.05 <0.02 <0.05 — >0.05 <0.02 Methallylamine Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.002 <0.02 Methylamine Methylene Chloride Monochloroacetic Acid Monorthanolamine <0.02 — >0.05 <0.02 <0.02 <0.02 >0.05 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1138 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1139 Wednesday, December 31, 1969 17:00 Chemical Properties Table 318. CORROSION RATES OF 12% CR STEEL AT 70˚ * (SHEET 6 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Monoethalamine Monoethylamine Monosodium Phosphate Nickel Chloride <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 — — Nickel Nitrate Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid <0.02 <0.02 — — — >0.05 <0.002 >0.05 Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene Nitrocelluolose — — — — >0.05 >0.05 <0.02 <0.02 Nitroglycerine Nitrotolune Nitrous Acid Oleic Acid — — <0.05 <0.02 <0.02 <0.02 — <0.02 Oxalic Acid Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free) >0.05 — <0.02 >0.05 >0.05 <0.02 — >0.05 Picric Acid Potassium Bicarbonate Potassium Bromide Potassium Carbonate <0.02 <0.02 <0.02 <0.02 <0.02 — <0.002 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1139 11.3 Chemical Page 1140 Wednesday, December 31, 1969 17:00 Chemical Properties Table 318. CORROSION RATES OF 12% CR STEEL AT 70˚ * (SHEET 7 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Potassium Chlorate Potassium Chromate Potassium Cyanide Potassium Dichromate <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite <0.02 >0.05 <0.02 >0.05 — — <0.002 — Potassium Iodide Potassium Nitrate Potassium Nitrite Potassium Permanganate >0.05 <0.02 <0.02 <0.002 — <0.02 <0.02 <0.02 Potassium Silicate Pyridine Salicylic Acid Silicon Tetrachloride (Dry) <0.02 <0.02 — — <0.02 <0.02 <0.02 <0.002 Silicon Tetrachloride (Wet) Silver Bromide Silver Chloride Silver Nitrate — >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 — Sodium Acetate Sodium Bicarbonate Sodium Bisulfate Sodium Bromide <0.02 <0.02 <0.002 <0.05 <0.02 — >0.05 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1140 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1141 Wednesday, December 31, 1969 17:00 Chemical Properties Table 318. CORROSION RATES OF 12% CR STEEL AT 70˚ * (SHEET 8 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Sodium Carbonate Sodium Chloride Sodium Chromate Sodium Hydroxide <0.02 <0.02 <0.02 <0.002 <0.02 — <0.02 — Sodium Hypochlorite Sodium Metasilicate Sodium Nitrate Sodium Nitrite >0.05 <0.002 <0.02 <0.02 >0.05 <0.002 <0.02 <0.002 Sodium Phosphate Sodium Silicate Sodium Sulfate Sodium Sulfide <0.02 <0.02 <0.05 >0.05 <0.02 <0.02 >0.05 <0.02 Sodium Sulfite Stannic Chloride Stannous Chloride Strontium Nitrate <0.02 >0.05 >0.05 <0.02 — — — — Succinic Acid Sulfur Dioxide Sulfur Trioxide Sulfuric Acid (Areated) <0.02 >0.05 — <0.05 <0.02 <0.02 <0.02 >0.05 Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) Sulfurous Acid Tannic Acid >0.05 — >0.05 <0.02 <0.05 <0.002 >0.05 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1141 11.3 Chemical Page 1142 Wednesday, December 31, 1969 17:00 Chemical Properties Table 318. CORROSION RATES OF 12% CR STEEL AT 70˚ * (SHEET 9 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid Trichloroethylene <0.02 >0.05 >0.05 — — >0.05 >0.05 <0.02 Urea Zinc Chloride Zinc Sulfate <0.02 — <0.05 — >0.05 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC 1142 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1143 Wednesday, December 31, 1969 17:00 Chemical Properties Table 319. CORROSION RATES OF 17% CR STEEL AT 70˚F * (SHEET 1 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride — <0.002 <0.02 — <0.002 <0.002 <0.05 <0.05 Acetoacetic Acid Acetone Acetylene Acrolein <0.02 <0.02 — <0.02 <0.02 <0.002 <0.002 <0.02 Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) — <0.02 <0.02 — <0.002 <0.02 <0.02 <0.02 Alcohol (Amyl) Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl) — — — — <0.02 <0.02 <0.002 <0.02 Alcohol (Isopropyl) Allylamine Allyl Chloride Allyl Sulfide — — — — <0.02 <0.02 <0.02 <0.02 Aluminum Chlorate Aluminum Chloride Aluminum Fluoride Aluminum Fluosilicate <0.002 >0.05 >0.05 — — <0.002 >0.05 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1143 11.3 Chemical Page 1144 Wednesday, December 31, 1969 17:00 Chemical Properties Table 319. CORROSION RATES OF 17% CR STEEL AT 70˚F * (SHEET 2 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Aluminum Formate Aluminum Hydroxide Aluminum Nitrate Aluminum Potassium Sulfate <0.02 <0.02 <0.02 <0.05 <0.02 <0.02 <0.02 >0.05 Aluminum Sulfate Ammonia Ammonium Acetate Ammonium Bicarbonate — <0.002 <0.002 <0.02 >0.05 <0.002 <0.002 — Ammonium Bromide Ammonium Carbonate Ammonium Chloride Ammonium Citrate <0.05 <0.02 <0.05 <0.02 — <0.02 >0.05 — Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite Ammonium Thiocyanate <0.002 <0.05 >0.05 <0.02 <0.02 — — — Amyl Acetate Amyl Chloride Aniline Aniline Hydrochloride — — <0.02 >0.05 <0.02 <0.05 <0.02 >0.05 Anthracine Antimony Trichloride Barium Carbonate Barium Chloride — >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1144 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1145 Wednesday, December 31, 1969 17:00 Chemical Properties Table 319. CORROSION RATES OF 17% CR STEEL AT 70˚F * (SHEET 3 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Barium Hydroxide Barium Nitrate Barium Oxide Benzaldehyde — <0.02 — — <0.02 — <0.02 <0.02 Benzene Benzoic Acid Boric Acid Bromic Acid <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 Bromine (Dry) Bromine (Wet) Butyric Acid Cadmium Chloride — — <0.05 >0.05 >0.05 >0.05 <0.05 — Cadmium Sulfate Calcium Acetate Calcium Bicarbonate Calcium Bromide <0.002 <0.02 — <0.02 — <0.02 <0.02 <0.02 Calcium Chlorate Calcium Chloride Calcium Hydroxide Calcium Hypochlorite <0.02 <0.05 <0.02 >0.05 — <0.02 <0.02 >0.05 Carbon Dioxide Carbon Monoxide Carbon Tetrachloride Carbon Acid (Air Free) — — <0.002 — <0.002 <0.002 <0.002 <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1145 11.3 Chemical Page 1146 Wednesday, December 31, 1969 17:00 Chemical Properties Table 319. CORROSION RATES OF 17% CR STEEL AT 70˚F * (SHEET 4 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Chloroacetic Acid Chlorine Gas Chloroform (Dry) Chromic Acid >0.05 >0.05 — <0.02 >0.05 <0.05 <0.02 — Chromic Hydroxide Chromic Sulfates Citric Acid Copper Nitrate — >0.05 <0.02 <0.02 <0.02 >0.05 — — Copper Sulfate Diethylene Glycol Ethyl Chloride Ethylene Glycol <0.02 — >0.05 (90%) — — <0.002 <0.002 <0.02 Ethylene Oxide Fatty Acids Ferric Chloride Ferric Nitrate — — >0.05 <0.02 <0.02 <0.02 — — Ferrous Chloride Ferrous Sulfate Fluorine Formaldehyde >0.05 <0.02 — <0.002 — — <0.002 <0.002 Formic Acid Furfural Hydrobromic Acid Hydrochloric Acid (Areated) <0.05 <0.002 (30%) >0.05 >0.05 <0.05 — — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1146 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1147 Wednesday, December 31, 1969 17:00 Chemical Properties Table 319. CORROSION RATES OF 17% CR STEEL AT 70˚F * (SHEET 5 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Air Free) Hydrogen Chloride >0.05 — >0.05 >0.05 (90%) — <0.05 >0.05 >0.05 Hydrogen Fluoride Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide — — <0.02 (20%) <0.02 <0.02 >0.05 <0.02 <0.05 Lactic Acid Lead Acetate Lead Chromate Lead Nitrate >0.05 <0.02 — <0.02 — <0.02 <0.02 — Lead Sulfate Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide — <0.02 <0.05 <0.02 <0.02 — — <0.02 Magnesium Sulfate Maleic Acid Malic Acid Mercuric Chloride <0.002 <0.02 <0.02 >0.05 <0.02 <0.02 — >0.05 Mercurous Nitrate Methallylamine Methanol Methyl Ethyl Ketone <0.02 <0.02 <0.02 <0.02 — <0.02 <0.002 <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1147 11.3 Chemical Page 1148 Wednesday, December 31, 1969 17:00 Chemical Properties Table 319. CORROSION RATES OF 17% CR STEEL AT 70˚F * (SHEET 6 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Methyl Isobutyl Ketone Methylamine Methylene Chloride Monochloroacetic Acid <0.02 <0.02 — >0.05 <0.02 <0.02 <0.02 >0.05 Monorthanolamine Monoethalamine Monoethylamine Monosodium Phosphate <0.002 <0.02 <0.02 >0.05 — <0.02 <0.02 — Nickel Chloride Nickel Nitrate Nitric Acid Nitric Acid (Red Fuming) >0.05 <0.02 <0.02 — — — <0.05 <0.002 Nitric + Hydrochloric Acid Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene — — — — >0.05 >0.05 >0.05 <0.02 Nitrocelluolose Nitroglycerine Nitrotolune Nitrous Acid — — — <0.02 <0.02 <0.02 <0.02 — Oleic Acid Oxalic Acid Phenol Phosphoric Acid (Areated) <0.02 >0.05 — <0.02 <0.02 >0.05 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1148 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1149 Wednesday, December 31, 1969 17:00 Chemical Properties Table 319. CORROSION RATES OF 17% CR STEEL AT 70˚F * (SHEET 7 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate Potassium Bromide >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 Potassium Carbonate Potassium Chlorate Potassium Chromate Potassium Cyanide <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Potassium Dichromate Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.002 Potassium Hypochlorite Potassium Iodide Potassium Nitrate Potassium Nitrite >0.05 >0.05 <0.02 <0.02 — — <0.02 <0.02 Potassium Permanganate Potassium Silicate Pyridine Quinine Sulfate <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide — — — >0.05 <0.02 <0.002 >0.05 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1149 11.3 Chemical Page 1150 Wednesday, December 31, 1969 17:00 Chemical Properties Table 319. CORROSION RATES OF 17% CR STEEL AT 70˚F * (SHEET 8 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate >0.05 <0.02 <0.02 <0.02 >0.05 — <0.02 <0.02 Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride <0.002 <0.05 <0.02 <0.02 — — <0.02 — Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate <0.02 <0.002 >0.05 <0.002 <0.02 — >0.05 <0.002 Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate <0.02 <0.02 <0.02 <0.02 <0.002 — <0.02 <0.02 Sodium Sulfate Sodium Sulfide Sodium Sulfite Stannic Chloride <0.05 >0.05 <0.02 >0.05 >0.05 >0.05 — — Stannous Chloride Strontium Nitrate Succinic Acid Sulfur Dioxide >0.05 <0.02 <0.02 >0.05 <0.05 <0.02 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1150 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1151 Wednesday, December 31, 1969 17:00 Chemical Properties Table 319. CORROSION RATES OF 17% CR STEEL AT 70˚F * (SHEET 9 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) — <0.05 >0.05 — <0.02 >0.05 <0.05 <0.002 Sulfurous Acid Tannic Acid Tartaric Acid Tetraphosphoric Acid >0.05 <0.02 <0.02 >0.05 >0.05 <0.02 — >0.05 Trichloroacetic Acid Trichloroethylene Urea >0.05 — <0.02 >0.05 <0.02 — Zinc Chloride Zinc Sulfate — <0.05 >0.05 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC Shackelford & Alexander 1151 11.3 Chemical Page 1152 Wednesday, December 31, 1969 17:00 Chemical Properties Table 320. CORROSION RATES OF 14% SI IRON AT 70˚F * (SHEET 1 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 Acetoacetic Acid Acetone Acetylene Acrolein <0.02 <0.002 — <0.02 <0.02 <0.002 <0.002 <0.02 Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) — <0.002 <0.002 <0.02 <0.002 <0.002 <0.002 <0.02 Alcohol (Amyl) Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl) — — — — <0.02 <0.02 <0.002 <0.02 Alcohol (Isopropyl) Allylamine Allyl Chloride Allyl Sulfide — <0.002 (30%) — — <0.02 <0.02 <0.002 <0.02 Aluminum Acetate Aluminum Chlorate Aluminum Chloride Aluminum Fluoride <0.02 <0.02 <0.002 >0.05 <0.002 <0.002 <0.02 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1152 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1153 Wednesday, December 31, 1969 17:00 Chemical Properties Table 320. CORROSION RATES OF 14% SI IRON AT 70˚F * (SHEET 2 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Aluminum Fluosilicate Aluminum Formate Aluminum Hydroxide Aluminum Potassium Sulfate — <0.02 <0.02 — <0.02 <0.02 — <0.002 Aluminum Sulfate Ammonia Ammonium Acetate Ammonium Bicarbonate <0.002 <0.02 <0.002 <0.002 <0.02 <0.02 <0.02 <0.002 Ammonium Bromide Ammonium Carbonate Ammonium Chloride Ammonium Formate <0.002 <0.002 <0.002 <0.02 — <0.02 <0.02 <0.02 Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite Ammonium Thiocyanate <0.002 <0.002 <0.02 <0.02 — <0.002 — — Amyl Acetate Amyl Chloride Aniline Aniline Hydrochloride <0.002 <0.02 <0.002 <0.02 <0.002 <0.02 <0.002 <0.02 Anthracine Antimony Trichloride Barium Carbonate Barium Chloride — <0.002 <0.02 <0.02 <0.02 — <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1153 11.3 Chemical Page 1154 Wednesday, December 31, 1969 17:00 Chemical Properties Table 320. CORROSION RATES OF 14% SI IRON AT 70˚F * (SHEET 3 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Barium Hydroxide Barium Nitrate Barium Oxide Barium Peroxide — <0.02 — <0.02 <0.02 <0.02 <0.02 — Benzaldehyde Benzene Benzoic Acid Boric Acid <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 Bromine (Dry) Bromine (Wet) Butyric Acid Cadmium Chloride — — <0.002 <0.02 >0.05 >0.05 <0.002 — Cadmium Sulfate Calcium Acetate Calcium Bicarbonate Calcium Bromide <0.002 <0.02 — — — <0.02 <0.02 <0.02 Calcium Chlorate Calcium Chloride Calcium Hydroxide Calcium Hypochlorite <0.02 <0.002 <0.02 <0.02 — <0.02 — <0.05 Carbon Dioxide Carbon Monoxide Carbon Tetrachloride Carbon Acid (Air Free) — — <0.002 <0.02 <0.002 <0.002 <0.002 <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1154 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1155 Wednesday, December 31, 1969 17:00 Chemical Properties Table 320. CORROSION RATES OF 14% SI IRON AT 70˚F * (SHEET 4 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Chloroacetic Acid Chlorine Gas Chromic Acid Chromic Hydroxide >0.05 — <0.002 — >0.05 <0.02 <0.02 <0.02 Chromic Sulfates Citric Acid Copper Nitrate Copper Sulfate <0.002 <0.002 <0.002 <0.002 <0.02 <0.002 — — Diethylene Glycol Ethyl Chloride Ethylene Glycol Ethylene Oxide — — <0.02 — <0.002 <0.002 <0.02 <0.02 Fatty Acids Ferric Chloride Ferric Nitrate Ferrous Chloride — >0.05 <0.02 >0.05 <0.002 — — — Ferrous Sulfate Fluorine Formaldehyde Formic Acid <0.02 — <0.002 <0.002 — >0.05 <0.002 <0.002 Furfural Hydrobromic Acid Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) <0.02 (20%) >0.05 <0.02 <0.02 <0.02 >0.05 — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1155 11.3 Chemical Page 1156 Wednesday, December 31, 1969 17:00 Chemical Properties Table 320. CORROSION RATES OF 14% SI IRON AT 70˚F * (SHEET 5 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Chloride — >0.05 >0.05 <0.02 (90%) <0.02 >0.05 >0.05 <0.02 Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide Lactic Acid >0.05 <0.02 (20%) — <0.002 <0.02 <0.02 <0.02 <0.02 Lead Acetate Lead Chromate Lead Nitrate Lead Sulfate <0.02 — <0.002 — <0.05 <0.02 <0.002 <0.02 Lithium Chloride Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide <0.02 (30%) >0.05 <0.002 <0.02 <0.02 — >0.05 — Magnesium Sulfate Maleic Acid Mercuric Chloride Mercurous Nitrate <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.002 Methallylamine Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone <0.02 <0.002 <0.02 <0.02 <0.002 <0.002 <0.002 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1156 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1157 Wednesday, December 31, 1969 17:00 Chemical Properties Table 320. CORROSION RATES OF 14% SI IRON AT 70˚F * (SHEET 6 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Methylamine Methylene Chloride Monochloroacetic Acid Monoethalamine <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Monoethylamine Monosodium Phosphate Nickel Chloride Nickel Nitrate <0.02 <0.02 <0.02 <0.002 <0.02 — — — Nickel Sulfate Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid <0.002 <0.002 — — — <0.002 <0.002 <0.05 Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene Nitrocelluolose — <0.02 — — >0.05 <0.02 <0.002 <0.02 Nitroglycerine Nitrotolune Nitrous Acid Oleic Acid — — <0.002 <0.002 <0.05 <0.02 <0.002 <0.002 Oxalic Acid Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free) <0.02 — <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1157 11.3 Chemical Page 1158 Wednesday, December 31, 1969 17:00 Chemical Properties Table 320. CORROSION RATES OF 14% SI IRON AT 70˚F * (SHEET 7 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Picric Acid Potassium Bicarbonate Potassium Bromide Potassium Carbonate <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 Potassium Chlorate Potassium Chromate Potassium Cyanide Potassium Dichromate <0.02 <0.02 <0.02 <0.002 <0.02 — <0.02 — Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite <0.02 <0.02 >0.05 <0.002 — — >0.05 <0.002 Potassium Iodide Potassium Nitrate Potassium Nitrite Potassium Permanganate <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 — Potassium Silicate Propionic Acid Pyridine Quinine Sulfate <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide — — — — <0.02 <0.002 <0.002 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1158 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1159 Wednesday, December 31, 1969 17:00 Chemical Properties Table 320. CORROSION RATES OF 14% SI IRON AT 70˚F * (SHEET 8 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate — <0.002 <0.002 <0.002 <0.02 — <0.02 — Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride <0.002 <0.05 <0.02 <0.02 <0.002 — <0.02 — Sodium Chromate Sodium Hydroxide Sodium Metasilicate Sodium Nitrate <0.02 >0.05 <0.02 <0.002 <0.02 — <0.02 <0.002 Sodium Nitrite Sodium Phosphate Sodium Silicate Sodium Sulfate <0.02 <0.02 <0.02 <0.002 — <0.02 <0.02 <0.002 Sodium Sulfide Sodium Sulfite Stannic Chloride Stannous Chloride <0.02 <0.002 >0.05 <0.002 <0.02 — — — Strontium Nitrate Succinic Acid Sulfur Dioxide Sulfur Trioxide <0.02 <0.02 — — <0.02 — >0.05 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1159 11.3 Chemical Page 1160 Wednesday, December 31, 1969 17:00 Chemical Properties Table 320. CORROSION RATES OF 14% SI IRON AT 70˚F * (SHEET 9 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Sulfuric Acid (Areated) Sulfuric Acid (Fuming) Sulfurous Acid Tannic Acid <0.002 — <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid <0.02 — <0.002 <0.02 <0.05 <0.002 Trichloroethylene Urea Zinc Sulfate — <0.02 <0.002 <0.002 — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC 1160 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1161 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 1 OF 9) Table 321. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride — <0.002 <0.02 — <0.002 <0.002 <0.002 <0.02 Acetoacetic Acid Acetone Acetylene Acrolein <0.02 <0.02 — <0.02 <0.02 <0.002 <0.002 <0.002 Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) — <0.02 <0.02 — <0.002 <0.02 <0.02 <0.02 Alcohol (Amyl) Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl) — — — — <0.02 <0.02 <0.002 <0.02 Alcohol (Isopropyl) Allylamine Allyl Chloride Allyl Sulfide — <0.002 (30%) — — <0.02 <0.02 <0.02 <0.02 Aluminum Acetate Aluminum Chlorate Aluminum Chloride Aluminum Fluoride <0.02 <0.002 >0.05 >0.05 <0.02 — <0.002 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1161 11.3 Chemical Page 1162 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 2 OF 9) Table 321. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Aluminum Fluosilicate Aluminum Formate Aluminum Hydroxide Aluminum Nitrate — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Aluminum Potassium Sulfate Aluminum Sulfate Ammonia Ammonium Acetate <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 Ammonium Bicarbonate Ammonium Bromide Ammonium Carbonate Ammonium Chloride <0.02 <0.05 <0.02 <0.02 <0.05 <0.05 <0.02 >0.05 Ammonium Citrate Ammonium Formate Ammonium Nitrate Ammonium Sulfate <0.02 <0.02 <0.002 <0.05 — <0.02 <0.002 — Ammonium Sulfite Ammonium Thiocyanate Amyl Acetate Amyl Chloride <0.05 <0.02 <0.002 >0.05 <0.05 — <0.002 <0.002 Aniline Aniline Hydrochloride Anthracine Antimony Trichloride <0.02 >0.05 — >0.05 <0.02 >0.05 <0.02 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1162 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1163 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 3 OF 9) Table 321. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Barium Carbonate Barium Chloride Barium Hydroxide Barium Nitrate <0.02 <0.02 — <0.02 <0.02 <0.05 <0.02 <0.02 Barium Oxide Barium Peroxide Benzaldehyde Benzene — <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 Benzoic Acid Boric Acid Bromic Acid Bromine (Dry) <0.02 <0.002 >0.05 — <0.02 <0.02 — >0.05 Bromine (Wet) Butyric Acid Cadmium Chloride Cadmium Sulfate — <0.02 <0.02 <0.002 >0.05 <0.02 — — Calcium Acetate Calcium Bicarbonate Calcium Bromide Calcium Chlorate <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 — Calcium Chloride Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide <0.02 <0.02 <0.05 — <0.02 — — <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1163 11.3 Chemical Page 1164 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 4 OF 9) Table 321. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Carbon Monoxide Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid — >0.05 <0.02 >0.05 <0.002 <0.02 <0.02 — Chlorine Gas Chloroform (Dry) Chromic Acid Chromic Hydroxide — — <0.02 — <0.002 <0.002 — <0.02 Chromic Sulfates Citric Acid Copper Nitrate Copper Sulfate <0.02 <0.02 <0.02 <0.02 <0.05 <0.02 — — Diethylene Glycol Ethyl Chloride Ethylene Glycol Ethylene Oxide — >0.05 (90%) — — <0.002 <0.002 <0.02 <0.02 Fatty Acids Ferric Chloride Ferric Nitrate Ferrous Chloride — >0.05 <0.02 >0.05 <0.02 — — — Ferrous Sulfate Fluorine Formaldehyde Formic Acid <0.02 — <0.002 (20%) <0.02 — <0.002 <0.002 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1164 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1165 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 5 OF 9) Table 321. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Furfural Hydrazine Hydrobromic Acid Hydrochloric Acid (Areated) <0.002 (30%) <0.002 >0.05 >0.05 <0.02 — >0.05 — Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) >0.05 — <0.002 >0.05 — <0.02 <0.02 >0.05 Hydrogen Chloride Hydrogen Fluoride Hydrogen Iodide Hydrogen Peroxide >0.05 (90%) — <0.02 (1%) <0.02 (20%) <0.002 <0.002 <0.02 <0.02 Hydrogen Sulfide Lactic Acid Lead Acetate Lead Chromate >0.05 <0.02 <0.02 — <0.05 <0.02 <0.02 <0.02 Lead Nitrate Lead Sulfate Lithium Chloride Lithium Hydroxide <0.02 — <0.002 (30%) <0.02 <0.02 <0.02 <0.002 — Magnesium Chloride Magnesium Hydroxide Magnesium Sulfate Maleic Acid <0.05 <0.02 <0.002 <0.02 — <0.02 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1165 11.3 Chemical Page 1166 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 6 OF 9) Table 321. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Malic Acid Maganous Chloride Mercuric Chloride Mercurous Nitrate <0.002 <0.02 (40%) >0.05 <0.02 <0.002 — >0.05 <0.02 Methallylamine Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.002 <0.02 Methylamine Methylene Chloride Monochloroacetic Acid Monorthanolamine <0.02 <0.02 <0.05 <0.002 <0.02 <0.02 <0.02 <0.02 Monoethalamine Monoethylamine Monosodium Phosphate Nickel Chloride <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 — — Nickel Nitrate Nickel Sulfate Nitric Acid Nitric Acid (Red Fuming) <0.02 <0.002 <0.002 — — — <0.002 <0.002 Nitric + Hydrochloric Acid Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene — — — — >0.05 >0.05 >0.05 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1166 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1167 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 7 OF 9) Table 321. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Nitrocelluolose Nitroglycerine Nitrotolune Nitrous Acid — — — <0.02 <0.02 <0.02 <0.02 <0.02 Oleic Acid Oxalic Acid Phenol Phosphoric Acid (Areated) <0.02 <0.02 — <0.02 <0.02 >0.05 <0.02 >0.05 Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate Potassium Bromide <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.05 Potassium Carbonate Potassium Chlorate Potassium Chromate Potassium Cyanide <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Potassium Dichromate Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide <0.002 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.002 Potassium Hypochlorite Potassium Iodide Potassium Nitrate Potassium Nitrite >0.05 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1167 11.3 Chemical Page 1168 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 8 OF 9) Table 321. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Potassium Permanganate Potassium Silicate Pyridine Quinine Sulfate <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide — — — >0.05 <0.02 <0.002 >0.05 <0.05 Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate >0.05 <0.02 <0.02 <0.02 >0.05 — <0.02 — Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride <0.002 <0.05 <0.02 <0.02 >0.05 — <0.02 — Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate <0.02 <0.002 >0.05 <0.002 <0.02 — >0.05 <0.002 Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate <0.002 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1168 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1169 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 301 * AT 70˚F (SHEET 9 OF 9) Table 321. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Sodium Sulfate Sodium Sulfide Sodium Sulfite Stannic Chloride <0.02 <0.02 <0.002 >0.05 <0.002 >0.05 — — Stannous Chloride Strontium Nitrate Succinic Acid Sulfur Dioxide >0.05 <0.02 <0.02 >0.05 <0.05 <0.02 <0.02 <0.02 Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) — >0.05 >0.05 — <0.02 <0.02 <0.05 <0.02 Sulfurous Acid Tannic Acid Tartaric Acid Tetraphosphoric Acid <0.02 <0.02 <0.002 — >0.05 <0.02 — <0.02 Trichloroacetic Acid Trichloroethylene Urea Zinc Sulfate >0.05 — <0.02 <0.002 >0.05 <0.02 — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC Shackelford & Alexander 1169 11.3 Chemical Page 1170 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 1 OF 9) Table 322. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride — <0.002 <0.002 — <0.002 <0.002 <0.02 <0.02 Acetoacetic Acid Acetone Acetylene Acrolein <0.02 <0.02 — <0.02 <0.02 <0.002 <0.002 <0.02 Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) — <0.002 <0.002 — <0.002 <0.002 <0.002 <0.02 Alcohol (Amyl) Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl) — — — — <0.02 <0.02 <0.002 <0.02 Alcohol (Isopropyl) Allylamine Allyl Chloride Allyl Sulfide — <0.002 (30%) — — <0.02 <0.02 <0.002 <0.02 Aluminum Acetate Aluminum Chloride Aluminum Fluoride Aluminum Fluosilicate <0.02 <0.05 — — <0.02 — <0.05 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1170 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1171 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 2 OF 9) Table 322. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Aluminum Formate Aluminum Hydroxide Aluminum Nitrate Aluminum Potassium Sulfate <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — Aluminum Sulfate Ammonia Ammonium Acetate Ammonium Bicarbonate <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 Ammonium Bromide Ammonium Carbonate Ammonium Chloride Ammonium Citrate <0.02 <0.02 <0.02 <0.02 — <0.02 — — Ammonium Formate Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 — <0.02 Ammonium Thiocyanate Amyl Acetate Amyl Chloride Aniline <0.02 <0.002 — <0.02 — <0.002 <0.002 <0.02 Aniline Hydrochloride Anthracine Antimony Trichloride Barium Carbonate >0.05 — >0.05 <0.02 >0.05 <0.02 — <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1171 11.3 Chemical Page 1172 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 3 OF 9) Table 322. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Barium Chloride Barium Hydroxide Barium Nitrate Barium Oxide <0.02 — <0.02 — <0.02 <0.02 <0.02 <0.02 Barium Peroxide Benzaldehyde Benzene Benzoic Acid <0.02 — <0.02 <0.02 — <0.02 <0.02 <0.02 Boric Acid Bromic Acid Bromine (Dry) Bromine (Wet) <0.002 >0.05 — — <0.02 — >0.05 >0.05 Butyric Acid Cadmium Chloride Cadmium Sulfate Calcium Acetate <0.02 <0.02 <0.002 <0.02 <0.02 — — <0.02 Calcium Bicarbonate Calcium Bromide Calcium Chlorate Calcium Chloride — <0.02 <0.02 <0.02 <0.02 <0.02 — <0.002 Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide Carbon Monoxide <0.02 <0.05 — — — — <0.002 <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1172 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1173 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 4 OF 9) Table 322. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas <0.02 <0.02 >0.05 — <0.02 <0.02 — <0.02 Chloroform (Dry) Chromic Acid Chromic Hydroxide Chromic Sulfates — <0.02 — <0.02 <0.002 — <0.02 — Citric Acid Copper Nitrate Copper Sulfate Diethylene Glycol <0.02 <0.002 <0.02 — <0.02 — — <0.002 Ethyl Chloride Ethylene Glycol Ethylene Oxide Fatty Acids — — — — <0.002 <0.02 <0.02 <0.002 Ferric Chloride Ferric Nitrate Ferrous Chloride Ferrous Sulfate >0.05 <0.02 >0.05 <0.02 — — — — Fluorine Formaldehyde Formic Acid Furfural — <0.02 <0.002 <0.002 <0.002 <0.002 <0.002 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1173 11.3 Chemical Page 1174 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 5 OF 9) Table 322. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Hydrazine Hydrobromic Acid Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) <0.002 >0.05 >0.05 >0.05 — — — — Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Chloride — <0.002 >0.05 — <0.02 <0.02 <0.02 <0.002 Hydrogen Fluoride Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide — — <0.02 (20%) <0.002 <0.002 <0.02 <0.02 <0.02 Lactic Acid Lead Acetate Lead Chromate Lead Nitrate <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 Lead Sulfate Lithium Chloride Lithium Hydroxide Magnesium Chloride — <0.002 (30%) <0.02 <0.02 <0.02 <0.002 — — Magnesium Hydroxide Magnesium Sulfate Maleic Acid Malic Acid <0.02 <0.002 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1174 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1175 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 6 OF 9) Table 322. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Maganous Chloride Mercuric Chloride Mercurous Nitrate Methallylamine <0.02 (40%) >0.05 <0.02 <0.02 — — <0.02 <0.02 Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylamine <0.02 <0.02 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 Methylene Chloride Monochloroacetic Acid Monorthanolamine Monoethalamine <0.02 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Monoethylamine Monosodium Phosphate Nickel Chloride Nickel Nitrate <0.02 <0.02 >0.05 <0.02 <0.02 — — — Nickel Sulfate Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid <0.02 <0.002 — — — <0.002 <0.002 >0.05 Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene Nitrocelluolose — — — — >0.05 >0.05 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1175 11.3 Chemical Page 1176 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 7 OF 9) Table 322. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Nitroglycerine Nitrotolune Nitrous Acid Oleic Acid — — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Oxalic Acid Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free) <0.02 — <0.002 <0.02 >0.05 <0.02 <0.02 — Picric Acid Potassium Bicarbonate Potassium Bromide Potassium Carbonate <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 Potassium Chlorate Potassium Chromate Potassium Cyanide Potassium Dichromate <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.02 Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite <0.02 <0.02 <0.02 <0.05 <0.02 — — <0.02 Potassium Iodide Potassium Nitrate Potassium Nitrite Potassium Permanganate <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1176 CRC Handbook of Materials Science & Engineering 11.3 Chemical Page 1177 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 8 OF 9) Table 322. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Potassium Silicate Propionic Acid Pyridine Quinine Sulfate <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Salicylic Acid Silicon Tetrachloride (Dry) Silver Bromide Silver Chloride — — >0.05 >0.05 <0.02 <0.002 — — Silver Nitrate Sodium Acetate Sodium Bicarbonate Sodium Bisulfate <0.002 <0.02 <0.02 <0.002 <0.02 <0.02 — — Sodium Bromide Sodium Carbonate Sodium Chloride Sodium Chromate <0.05 <0.02 <0.02 <0.02 — <0.02 — <0.02 Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate Sodium Nitrate <0.002 >0.05 <0.002 <0.002 — >0.05 <0.002 <0.02 Sodium Nitrite Sodium Phosphate Sodium Silicate Sodium Sulfate <0.02 <0.02 <0.02 <0.002 — <0.02 <0.02 <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1177 11.3 Chemical Page 1178 Wednesday, December 31, 1969 17:00 Chemical Properties RATES OF STAINLESS STEEL 316 * AT 70˚F (SHEET 9 OF 9) Table 322. CORROSION Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Sodium Sulfide Sodium Sulfite Stannic Chloride Stannous Chloride >0.05 <0.002 >0.05 <0.02 — — — — Strontium Nitrate Succinic Acid Sulfur Dioxide Sulfur Trioxide <0.02 <0.02 <0.002 — <0.02 <0.02 <0.02 <0.02 Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) Sulfurous Acid <0.002 <0.05 — <0.02 <0.02 <0.02 <0.02 <0.002 Tannic Acid Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid <0.02 <0.02 — >0.05 <0.02 — <0.02 >0.05 Trichloroethylene Urea Zinc Sulfate — <0.02 <0.02 <0.02 — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC 1178 CRC Handbook of Materials Science & Engineering 11.4 Chemical Page 1179 Wednesday, December 31, 1969 17:00 Chemical Properties Table 323. CORROSION RATES OF ALUMINUM AT 70˚F * (SHEET 1 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride <0.02 <0.02 <0.002 — <0.002 <0.002 <0.002 <0.002 Acetoacetic Acid Acetone Acetylene Acrolein <0.02 <0.02 — <0.02 <0.02 <0.002 <0.002 <0.02 Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) — <0.02 — — <0.002 <0.02 <0.02 <0.02 Alcohol (Amyl) Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl) — — <0.002 — <0.002 <0.02 <0.002 <0.02 Alcohol (Isopropyl) Allyl Chloride Allyl Sulfide Aluminum Acetate — — — <0.002 <0.02 >0.05 <0.02 <0.002 Aluminum Chloride Aluminum Fluoride Aluminum Formate Aluminum Hydroxide >0.05 <0.002 <0.02 <0.02 <0.02 — <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1179 11.4 Chemical Page 1180 Wednesday, December 31, 1969 17:00 Chemical Properties Table 323. CORROSION RATES OF ALUMINUM AT 70˚F * (SHEET 2 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Aluminum Nitrate Aluminum Potassium Sulfate Aluminum Sulfate Ammonia <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 >0.05 <0.002 Ammonium Acetate Ammonium Bicarbonate Ammonium Bromide Ammonium Carbonate <0.002 <0.02 >0.05 <0.02 <0.002 <0.02 — <0.02 Ammonium Chloride Ammonium Citrate Ammonium Formate Ammonium Nitrate >0.05 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 Ammonium Sulfate Amyl Acetate Amyl Chloride Aniline >0.05 — — — <0.02 <0.002 <0.02 <0.02 Aniline Hydrochloride Anthracine Antimony Trichloride Barium Carbonate >0.05 — >0.05 — >0.05 <0.02 <0.02 >0.05 Barium Chloride Barium Hydroxide Barium Nitrate Barium Peroxide <0.02 >0.05 <0.02 >0.05 >0.05 >0.05 — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1180 CRC Handbook of Materials Science & Engineering 11.4 Chemical Page 1181 Wednesday, December 31, 1969 17:00 Chemical Properties Table 323. CORROSION RATES OF ALUMINUM AT 70˚F * (SHEET 3 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Benzaldehyde Benzene Benzoic Acid Boric Acid <0.02 <0.02 <0.02 <0.05 <0.002 <0.02 <0.02 <0.02 Bromic Acid Bromine (Dry) Bromine (Wet) Butyric Acid >0.05 — — <0.02 — <0.02 >0.05 <0.002 Cadmium Chloride Cadmium Sulfate Calcium Acetate Calcium Bicarbonate >0.05 <0.02 — — — — <0.05 <0.02 Calcium Bromide Calcium Chlorate Calcium Chloride Calcium Hydroxide <0.05 <0.02 <0.002 >0.05 <0.05 — >0.05 >0.05 Calcium Hypochlorite Carbon Dioxide Carbon Monoxide Carbon Tetrachloride >0.05 — — — — <0.002 <0.002 <0.02 Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas Chloroform (Dry) <0.02 >0.05 — — <0.002 >0.05 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1181 11.4 Chemical Page 1182 Wednesday, December 31, 1969 17:00 Chemical Properties Table 323. CORROSION RATES OF ALUMINUM AT 70˚F * (SHEET 4 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Chromic Acid Chromic Hydroxide Chromic Sulfates Citric Acid >0.05 — — <0.02 >0.05 <0.02 <0.05 <0.02 Copper Nitrate Copper Sulfate Diethylene Glycol Ethyl Chloride >0.05 >0.05 — — — >0.05 <0.02 <0.002 Ethylene Glycol Ethylene Oxide Fatty Acids Ferric Chloride <0.002 — — >0.05 <0.002 <0.002 <0.002 >0.05 Ferric Nitrate Ferrous Chloride Ferrous Sulfate Fluorine >0.05 >0.05 <0.002 — — — — >0.05 Formaldehyde Formic Acid Furfural Hydrazine <0.02 <0.02 — — <0.002 <0.02 <0.02 <0.002 Hydrobromic Acid Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) Hydrocyanic Acid >0.05 >0.05 >0.05 <0.02 >0.05 — — <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1182 CRC Handbook of Materials Science & Engineering 11.4 Chemical Page 1183 Wednesday, December 31, 1969 17:00 Chemical Properties Table 323. CORROSION RATES OF ALUMINUM AT 70˚F * (SHEET 5 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride >0.05 >0.05 — — — — >0.05 <0.02 Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide Lactic Acid — <0.002 — <0.02 >0.05 <0.002 <0.002 <0.02 Lead Acetate Lead Chromate Lead Nitrate Lead Sulfate — >0.05 >0.05 >0.05 >0.05 — — — Lithium Chloride Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide <0.05 >0.05 >0.05 >0.05 — >0.05 — >0.05 Magnesium Sulfate Maleic Acid Malic Acid Mercuric Chloride <0.02 <0.02 <0.02 >0.05 <0.02 — <0.002 — Mercurous Nitrate Mercury Methallylamine Methanol >0.05 — — — >0.05 >0.05 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1183 11.4 Chemical Page 1184 Wednesday, December 31, 1969 17:00 Chemical Properties Table 323. CORROSION RATES OF ALUMINUM AT 70˚F * (SHEET 6 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylamine Methylene Chloride <0.02 <0.02 <0.02 >0.05 <0.002 <0.002 <0.02 <0.002 Monochloroacetic Acid Monorthanolamine Monoethalamine Monoethylamine >0.05 — <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 Monosodium Phosphate Nickel Chloride Nickel Nitrate Nickel Sulfate >0.05 >0.05 >0.05 >0.05 — >0.05 — >0.05 Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid Nitric + Sulfuric Acid >0.05 — — >0.05 <0.02 <0.002 >0.05 >0.05 Nitrobenzene Nitrocelluolose Nitroglycerine Nitrotolune — — — — <0.02 <0.002 <0.002 <0.02 Nitrous Acid Oleic Acid Oxalic Acid Phenol <0.05 — <0.02 — — <0.002 <0.02 <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1184 CRC Handbook of Materials Science & Engineering 11.4 Chemical Page 1185 Wednesday, December 31, 1969 17:00 Chemical Properties Table 323. CORROSION RATES OF ALUMINUM AT 70˚F * (SHEET 7 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Phosphoric Acid (Areated) Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate >0.05 >0.05 >0.05 >0.05 <0.02 >0.05 <0.02 <0.02 Potassium Bromide Potassium Carbonate Potassium Chlorate Potassium Chromate <0.02 >0.05 <0.02 <0.02 — >0.05 <0.02 <0.02 Potassium Cyanide Potassium Dichromate Potassium Ferricyanide Potassium Ferrocyanide >0.05 <0.002 <0.02 <0.002 — <0.02 — <0.02 Potassium Hydroxide Potassium Hypochlorite Potassium Iodide Potassium Nitrate >0.05 >0.05 <0.02 <0.002 — — — <0.02 Potassium Nitrite Potassium Permanganate Potassium Silicate Propionic Acid <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 <0.02 <0.02 Pyridine Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) <0.02 >0.05 — — <0.02 <0.02 <0.02 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1185 11.4 Chemical Page 1186 Wednesday, December 31, 1969 17:00 Chemical Properties Table 323. CORROSION RATES OF ALUMINUM AT 70˚F * (SHEET 8 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Silver Bromide Silver Chloride Silver Nitrate Sodium Acetate >0.05 >0.05 >0.05 <0.02 — — — <0.002 Sodium Bicarbonate Sodium Bisulfate Sodium Bromide Sodium Carbonate >0.05 >0.05 <0.05 >0.05 <0.02 — — — Sodium Chloride Sodium Chromate Sodium Hydroxide Sodium Hypochlorite <0.05 <0.02 >0.05 >0.05 — <0.02 — >0.05 Sodium Metasilicate Sodium Nitrate Sodium Nitrite Sodium Phosphate >0.05 <0.002 <0.02 >0.05 <0.02 <0.02 — — Sodium Silicate Sodium Sulfate Sodium Sulfide Sodium Sulfite >0.05 <0.002 >0.05 <0.02 <0.002 — >0.05 — Stannic Chloride Stannous Chloride Strontium Nitrate Succinic Acid >0.05 >0.05 <0.02 <0.02 — — <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1186 CRC Handbook of Materials Science & Engineering 11.4 Chemical Page 1187 Wednesday, December 31, 1969 17:00 Chemical Properties Table 323. CORROSION RATES OF ALUMINUM AT 70˚F * (SHEET 9 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Sulfur Dioxide Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) >0.05 — >0.05 >0.05 <0.02 <0.02 >0.05 >0.05 Sulfuric Acid (Fuming) Sulfurous Acid Tannic Acid Tartaric Acid — <0.02 <0.02 <0.02 <0.02 <0.02 >0.05 — Tetraphosphoric Acid Trichloroacetic Acid Trichloroethylene >0.05 >0.05 — >0.05 >0.05 <0.002 Urea Zinc Chloride Zinc Sulfate <0.02 >0.05 <0.05 <0.02 — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC Shackelford & Alexander 1187 11.5 Chemical L Page 1188 Wednesday, December 31, 1969 17:00 Table 324. CORROSION RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 1 OF 10) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Corrosion Resistance (b) C10100 Oxygen-free electronic C10200 Oxygen-free copper C10300 Oxygen-free extra-low phosporus C10400, C10500, C10700 Oxygen-free, silver-bearing 99.99 Cu 99.95 Cu 99.95 Cu, 0.003 P 99.95 Cu(e) F, R, W, T, P, S F, R, W, T, P, S F, R, T, P, S F, R, W, S G-E G-E G-E G-E C10800 Oxygen-free, low phosporus CS11000 Electrolytic tough pitch copper C11100 Electrolytic tough pitch, anneal resistant C11300, C11400, C11500, C11600 Silver-bearing tough pitch copper 99.95 Cu, 0.009 P 99.90 Cu, 0.04 O 99.90 Cu, 0.04 O, 0.01 Cd 99.90 Cu, 0.04 O, Ag(f) F, R, T, P F, R, W, T, P, S W F, R, W, T, S G-E G-E G-E G-E C12000, C12100 C12200 Phosphorus deoxidized copper, high residual phosphorus C12500, C12700, C12800, C12900, C13000 Fire-refined tough pitch with silver C14200 Phosphorus deoxidized, arsenical 99.9 Cu(g) 99.90 Cu, 0.02 P 99.88 Cu(h) 99.68 Cu, 0.3 As, 0.02 P F, T, P F, R, T, P F, R, W, S F, R, T G-E G-E G-E G-E (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 11.5 Chemical L Page 1189 Wednesday, December 31, 1969 17:00 Table 324. CORROSION RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 2 OF 10) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Corrosion Resistance (b) C19200 C14300 C14310 C14500 Phosphorus deoxidized, tellurium bearing 98.97 Cu, 1.0 Fe, 0.03 P 99.9 Cu, 0.1 Cd 99.8 Cu, 0.2 Cd 99.5 Cu, 0.50 Te, 0.008 P F, T F F F, R, W, T G-E G-E G-E G-E C14700 Sulfur bearing C15000 Zirconium copper C15500 C16200 Cadmium copper 99.6 Cu, 0.40 S 99.8 Cu, 0.15 Zr 99.75 Cu, 0.06 P, 0.11 Mg, Ag(i) 99.0 Cu, 1.0 Cd R, W R, W F F, R, W G-E G-E G-E G-E C16500 C17000 Beryllium copper C17200 Beryllium copper C17300 Beryllium copper 98.6 Cu, 0.8 Cd, 0.6 Sn 99.5 Cu, 1.7 Be, 0.20 Co 99.5 Cu, 1.9 Be , 0.20 Co 99.5 Cu, 1.9 Be, 0.40 Pb F, R, W F, R F, R, W, T, P, S R G-E G-E G-E G-E (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 11.5 Chemical L Page 1190 Wednesday, December 31, 1969 17:00 Table 324. CORROSION RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 3 OF 10) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Corrosion Resistance (b) C17500 Copper-cobalt-beryllium alloy C18200, C18400, C18500 Chromium copper C18700 leaded copper C18900 99.5 Cu, 2.5 Co, 0.6 Be 99.5 Cu(j) 99.0 Cu, 1.0 Pb 98.75 Cu, 0.75 Sn, 0.3 Si, 0.20 Mn F, R F, W, R, S, T R R, W G-E G-E G-E G-E C19000 Copper-nickel-phosphorus alloy C19100 Copper-nickel-phosphorus-tellurium alloy C19400 98.7 Cu, 1.1 Ni, 0.25 P 98.15 Cu, 1.1 Ni, 0.50 Te, 0.25 P 97.5 Cu, 2.4 Fe, 0.13 Zn, 0.03 P F, R, W R, F F G-E G-E G-E C19500 C21000 Gilding, 95% C22000 Commercial bronze, 90% C22600 Jewelry bronze, 87.5% 97.0 Cu, 1.5 Fe, 0.6 Sn, 0.10 P, 0.80 Co 95.0 Cu, 5.0 Zn 90.0 Cu, 10.0 Zn 87.5 Cu, 12.5 Zn F F, W F, R, W, T F, W G-E G-E G-E G-E (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 11.5 Chemical L Page 1191 Wednesday, December 31, 1969 17:00 Table 324. CORROSION RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 4 OF 10) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Corrosion Resistance (b) C23000 Red brass, 85% C24000 Low brass, 80% C26000 Cartridge brass, 70% C26800, C27000 Yellow brass 85.0 Cu, 15.0 Zn 80.0 Cu, 20.0 Zn 70.0 Cu, 30.0 Zn 65.0 Cu, 35.0 Zn F, W, T, P F, W F, R, W, T F, R, W G-E F-E F-E F-E C28000 Muntz metal C31400 Leaded commercial bronze C31600 Leaded commercial bronze, nickel-bearing C33000 Low-leaded brass tube 60.0 Cu, 40.0 Zn 89.0 Cu, 1.75 Pb, 9.25 Zn 89.0 Cu, 1.9 Pb, 1.0 Ni, 8.1 Zn 66.0 Cu, 0.5 Pb, 33.5 Zn F, R, T F, R F, R T F-E G-E G-E F-E C33200 High-leaded brass tube C33500 Low-leaded brass C34000 Medium-leaded brass C34200 High-leaded brass 66.0 Cu, 1.6 Pb, 32.4 Zn 65.0 Cu, 0.5 Pb, 34.5 Zn 65.0 Cu, 1.0 Pb, 34.0 Zn 64.5 Cu, 2.0 Pb, 33.5 Zn T F F, R, W, S F, R F-E F-E F-E F-E (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 11.5 Chemical L Page 1192 Wednesday, December 31, 1969 17:00 Table 324. CORROSION RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 5 OF 10) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Corrosion Resistance (b) C34900 C35000 Medium-leaded brass C35300 High-leaded brass C35600 Extra-high-leaded brass 62.2 Cu, 0.35 Pb, 37.45 Zn 62.5 Cu, 1.1 Pb, 36.4 Zn 62.0 Cu, 1.8 Pb, 36.2 Zn 63.0 Cu, 2.5 Pb, 34.5 Zn R, W F, R F, R F F-E F-E F-E F-E C36000 Free-cutting brass C36500 to C36800 Leaded Muntz metal C37000 Free-cutting Muntz metal C37700 Forging brass 61.5 Cu, 3.0 Pb, 35.5 Zn 60.0 Cu(k), 0.6 Pb, 39.4 Zn 60.0 Cu, 1.0 Pb, 39.0 Zn 59.0 Cu, 2.0 Pb, 39.0 Zn F, R, S F T R, S F-E F-E F-E F-E C38500 Architectural bronze C40500 C40800 C41100 57.0 Cu, 3.0 Pb, 40.0 Zn 95 Cu, 1 Sn, 4 Zn 95 Cu, 2 Sn, 3 Zn 91 Cu, 0.5 Sn, 8.5 Zn R, S F F F, W F-E G-E G-E G-E (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 11.5 Chemical L Page 1193 Wednesday, December 31, 1969 17:00 Table 324. CORROSION RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 6 OF 10) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Corrosion Resistance (b) C41300 C41500 C42200 C42500 90.0 Cu, 1.0 Sn, 9.0 Zn 91 Cu, 1.8 Sn, 7.2 Zn 87.5 Cu, 1.1 Sn, 11.4 Zn 88.5 Cu, 2.0 Sn, 9.5 Zn F, R, W F F F G-E G-E G-E G-E C43000 C43400 C43500 C44300, C44400, C44500 Inhibited admiralty 87.0 Cu, 2.2 Sn, 10.8 Zn 85.0 Cu, 0.7 Sn, 14.3 Zn 81.0 Cu, 0.9 Sn, 18.1 Zn 71.0 Cu, 28.0 Zn, 1.0 Sn F F F, T F, W, T G-E G-E G-E G-E C46400 to C46700 Naval brass C48200 Naval brass, medium-leaded C48500 Leaded naval brass C50500 Phosphor bronze, 1.25% E 60.0 Cu, 39.25 Zn, 0.75 Sn 60.5 Cu, 0.7 Pb, 0.8 Sn, 38.0 Zn 60.0 Cu, 1.75 Pb, 37.5 Zn, 0.75 Sn 98.75 Cu, 1.25 Sn, trace P F, R, T, S F, R, S F, R, S F, W F-E F-E F-E G-E (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 11.5 Chemical L Page 1194 Wednesday, December 31, 1969 17:00 Table 324. CORROSION RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 7 OF 10) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Corrosion Resistance (b) C51000 Phosphor bronze, 5% A C51100 C52100 Phosphor bronze, 8% C C52400 Phosphor bronze, 10% D 95.0 Cu, 5.0 Sn, trace P 95.6 Cu, 4.2 Sn, 0.2 P 92.0 Cu, 8.0 Sn, trace P 90.0 Cu, 10.0 Sn, trace P F, R, W, T F F, R, W F, R, W G-E G-E G-E G-E C54400 Free-cutting phosphor bronze C60800 Aluminum bronze, 5% C61000 C61300 88.0 Cu, 4.0 Pb, 4.0 Zn, 4.0 Sn 95.0 Cu, 5.0 Al 92.0 Cu, 8.0 Al 92.65 Cu, 0.35 Sn, 7.0 Al F, R T R, W F, R, T, P, S G-E G-E G-E G-E C61400 Aluminum bronze, D C61500 C61800 C61900 91.0 Cu, 7.0 Al, 2.0 Fe 90.0 Cu, 8.0 Al, 2.0 Ni 89.0 Cu, 1.0 Fe, 10.0 Al 86.5 Cu, 4.0 Fe, 9.5 Al F, R, W, T, P, S F R F G-E G-E G-E G-E (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 11.5 Chemical L Page 1195 Wednesday, December 31, 1969 17:00 Table 324. CORROSION RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 8 OF 10) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Corrosion Resistance (b) C62300 C62400 C62500 C63000 87.0 Cu, 10.0 Al, 3.0 Fe 86.0 Cu, 3.0 Fe, 11.0 Al 82.7 Cu, 4.3 Fe, 13.0 Al 82.0 Cu, 3.0 Fe, 10.0 Al, 5.0 Ni F, R F, R F, R F, R G-E G-E G-E G-E C63200 C63600 C63800 C64200 82.0 Cu, 4.0 Fe, 9.0 Al, 5.0 Ni 95.5 Cu, 3.5 Al, 1.0 Si 99.5 Cu, 2.8 Al, 1.8 Si, 0.40 Co 91.2 Cu, 7.0 Al F, R R, W F F, R G-E G-E G-E G-E C65100 Low-silicon bronze, B C65500 High-silicon bronze, A C66700 Manganese brass C67400 98.5 Cu, 1.5 Si 97.0 Cu, 3.0 Si 70.0 Cu, 28.8 Zn, 1.2 Mn 58.5 Cu, 36.5 Zn, 1.2 Al, 2.8 Mn, 1.0 Sn R, W, T F, R, W, T F, W F, R G-E G-E G-E F-E (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 11.5 Chemical L Page 1196 Wednesday, December 31, 1969 17:00 Table 324. CORROSION RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 9 OF 10) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Corrosion Resistance (b) C67500 Manganese bronze, A C68700 Aluninum brass, arsenical C68800 C69000 58.5 Cu, 1.4 Fe, 39.0 Zn, 1.0 Sn, 0.1 Mn 77.5 Cu, 20.5 Zn, 2.0 Al, 0.1 As 73.5 Cu, 22.7 Zn, 3.4 Al, 0.40 Co 73.3 Cu, 3.4 Al, 0.6 Ni, 22.7 Zn R, S T F F F-E G-E G-E G-E C69400 Silicon red brass C70400 C70600 Copper nickel, 10% C71000 Copper nickel, 20% 81.5 Cu, 14.5 Zn, 4.0 Si 92.4 Cu, 1.5 Fe, 5.5 Ni, 0.6 Mn 88.7 Cu, 1.3 Fe, 10.0 Ni 79.00 Cu, 21.0 Ni R F, T F, T F, W, T G-E G-E E E C71500 Copper nickel, 30% C71700 C72500 C73500 70.0 Cu, 30.0 Ni 67.8 Cu, 0.7 Fe, 31.0 Ni, 0.5 Be 88.20 Cu, 9.5 Ni, 2.3 Sn 72.0 Cu, 18.0 Ni , 10.0 Zn F, R, T F, R, W F, R, W, T F, R, W, T E G-E E E (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 11.5 Chemical L Page 1197 Wednesday, December 31, 1969 17:00 Table 324. CORROSION RESISTANCE OF WROUGHT COPPERS AND COPPER ALLOYS (SHEET 10 OF 10) UNS Number and Name Nominal Composition (%) Commercial Forms(a) Corrosion Resistance (b) C74500 Nickel silver, 65-10 C75200 Nickel silver, 65-18 C75400 Nickel silver, 65-15 C75700 Nickel silver, 65-12 65.0 Cu, 25.0 Zn, 10.0 Ni 65.0 Cu, 17.0 Zn, 18.0 Ni 65.0 Cu, 20.0 Zn, 15.0 Ni 65.0 Cu, 23.0 Zn, 12.0 Ni F, W F, R, W F F, W E E E E C76200 C77000 Nickel silver, 55-18 C72200 C78200 Leaded nickel silver, 65-8-2 59.0 Cu, 29.0 Zn, 12.0 Ni 55.0 Cu, 27.0 Zn, 18.0 Ni 82.0 Cu, 16.0 Ni, 0.5 Cr, 0.8 Fe, 0.5 Mn 65.0 Cu, 2.0 Pb, 25.0 Zn, 8.0 Ni F, T F, R, W F, T F G-E E G-E E (a) F, flat products; R, rod; W, wire; T, tube; P, pipe; S, shapes. (b) E, excellent; G, good; F, fair. Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p442–454, (1993). ©2001 CRC Press LLC 11.6 Chemical Page 1198 Wednesday, December 31, 1969 17:00 Chemical Properties Table 325. CORROSION RATES OF 70-30 BRASS AT 70˚F * (SHEET 1 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride <0.02 >0.05 >0.05 — <0.002 >0.05 >0.05 >0.05 Acetone Acetylene Acrolein Acrylonitril <0.002 — <0.02 — <0.002 <0.002 <0.02 <0.002 Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) Alcohol (Benzyl) <0.002 <0.02 — — <0.002 <0.02 <0.02 <0.02 Alcohol (Butyl) Alcohol (Isopropyl) Allylamine Allyl Chloride — — — — <0.002 <0.02 >0.05 <0.02 Allyl Sulfide Aluminum Acetate Aluminum Chloride Aluminum Fluoride — — >0.05 >0.05 >0.05 <0.02 >0.05 — Aluminum Fluosilicate Aluminum Hydroxide Aluminum Potassium Sulfate Aluminum Sulfate — <0.02 >0.05 <0.02 <0.02 — >0.05 <0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1198 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1199 Wednesday, December 31, 1969 17:00 Chemical Properties Table 325. CORROSION RATES OF 70-30 BRASS AT 70˚F * (SHEET 2 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Ammonia Ammonium Acetate Ammonium Bicarbonate Ammonium Bromide >0.05 — >0.05 >0.05 <0.002 >0.05 — — Ammonium Carbonate Ammonium Chloride Ammonium Citrate Ammonium Nitrate >0.05 >0.05 >0.05 >0.05 — >0.05 — >0.05 Ammonium Sulfate Ammonium Sulfite Ammonium Thiocyanate Amyl Acetate >0.05 >0.05 >0.05 <0.02 <0.02 >0.05 — <0.02 Amyl Chloride Aniline Aniline Hydrochloride Anthracine — — >0.05 — <0.02 >0.05 — <0.02 Antimony Trichloride Barium Carbonate Barium Chloride Barium Hydroxide >0.05 <0.02 >0.05 >0.05 — <0.02 <0.02 — Barium Nitrate Barium Peroxide Benzaldehyde Benzene >0.05 >0.05 >0.05 <0.02 — — <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1199 11.6 Chemical Page 1200 Wednesday, December 31, 1969 17:00 Chemical Properties Table 325. CORROSION RATES OF 70-30 BRASS AT 70˚F * (SHEET 3 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Benzoic Acid Boric Acid Bromic Acid Bromine (Dry) <0.02 <0.02 >0.05 — <0.02 <0.02 >0.05 <0.02 Bromine (Wet) Butyric Acid Cadmium Chloride Cadmium Sulfate — <0.05 >0.05 <0.02 >0.05 — — — Calcium Acetate Calcium Bicarbonate Calcium Bromide Calcium Chlorate <0.02 — <0.02 >0.05 <0.02 <0.02 <0.02 <0.02 Calcium Chloride Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide <0.02 <0.02 <0.02 — <0.02 — — <0.002 Carbon Monoxide Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid — — — >0.05 <0.002 <0.05 >0.05 >0.05 Chlorine Gas Chloroform (Dry) Chromic Acid Chromic Hydroxide — — >0.05 — >0.05 <0.02 >0.05 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1200 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1201 Wednesday, December 31, 1969 17:00 Chemical Properties Table 325. CORROSION RATES OF 70-30 BRASS AT 70˚F * (SHEET 4 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Chromic Sulfates Citric Acid Copper Nitrate Copper Sulfate <0.02 >0.05 >0.05 >0.05 — <0.02 >0.05 >0.05 Diethylene Glycol Ethyl Chloride Ethylene Glycol Ethylene Oxide — — — — <0.002 <0.002 <0.02 >0.05 Fatty Acids Ferric Chloride Ferric Nitrate Ferrous Chloride — >0.05 >0.05 >0.05 <0.05 <0.02 — — Ferrous Sulfate Fluorine Formaldehyde Formic Acid >0.05 — <0.002 <0.05 <0.05 <0.02 <0.02 <0.02 Furfural Hydrazine Hydrobromic Acid Hydrochloric Acid (Areated) <0.02 >0.05 >0.05 >0.05 <0.02 — >0.05 — Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) >0.05 >0.05 >0.05 >0.05 — <0.02 — <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1201 11.6 Chemical Page 1202 Wednesday, December 31, 1969 17:00 Chemical Properties Table 325. CORROSION RATES OF 70-30 BRASS AT 70˚F * (SHEET 5 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Hydrogen Chloride Hydrogen Fluoride Hydrogen Iodide Hydrogen Peroxide — — — >0.05 <0.02 <0.02 >0.05 >0.05 Hydrogen Sulfide Lactic Acid Lead Acetate Lead Chromate <0.02 <0.05 — <0.02 <0.05 <0.05 <0.02 Lead Sulfate Lithium Chloride Lithium Hydroxide Magnesium Chloride — <0.02 (30%) >0.05 <0.02 <0.02 — — — Magnesium Hydroxide Magnesium Sulfate Maleic Acid Mercuric Chloride <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 — >0.05 Mercurous Nitrate Mercury Methallylamine Methanol >0.05 — — <0.02 >0.05 >0.05 >0.05 <0.02 Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylamine Methylene Chloride <0.02 <0.02 — — <0.002 <0.02 >0.05 <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1202 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1203 Wednesday, December 31, 1969 17:00 Chemical Properties Table 325. CORROSION RATES OF 70-30 BRASS AT 70˚F * (SHEET 6 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Monochloroacetic Acid Monorthanolamine Monoethalamine Monoethylamine >0.05 — — — >0.05 >0.05 >0.05 >0.05 Monosodium Phosphate Nickel Chloride Nickel Nitrate Nickel Sulfate <0.02 >0.05 <0.05 <0.05 — — — <0.02 Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid Nitric + Sulfuric Acid >0.05 — — >0.05 >0.05 >0.05 >0.05 >0.05 Nitrobenzene Nitrocelluolose Nitroglycerine Nitrotolune — — — — <0.02 <0.02 <0.02 <0.02 Nitrous Acid Oleic Acid Oxalic Acid Phenol — >0.05 <0.02 — >0.05 <0.02 <0.05 <0.002 Phosphoric Acid (Areated) Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate >0.05 <0.02 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1203 11.6 Chemical Page 1204 Wednesday, December 31, 1969 17:00 Chemical Properties Table 325. CORROSION RATES OF 70-30 BRASS AT 70˚F * (SHEET 7 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Potassium Bromide Potassium Carbonate Potassium Chlorate Potassium Chromate <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.05 <0.02 Potassium Cyanide Potassium Dichromate Potassium Ferricyanide Potassium Ferrocyanide >0.05 <0.02 <0.02 <0.02 >0.05 — — — Potassium Hydroxide Potassium Hypochlorite Potassium Nitrate Potassium Nitrite <0.02 >0.05 <0.02 <0.02 — — <0.02 <0.02 Potassium Permanganate Potassium Silicate Propionic Acid Pyridine <0.02 <0.02 <0.02 <0.02 — <0.02 — <0.02 Quinine Sulfate Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide <0.02 — — >0.05 <0.02 <0.002 >0.05 — Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate >0.05 >0.05 <0.02 <0.02 — — — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1204 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1205 Wednesday, December 31, 1969 17:00 Chemical Properties Table 325. CORROSION RATES OF 70-30 BRASS AT 70˚F * (SHEET 8 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride >0.05 <0.05 >0.05 <0.05 <0.05 — — — Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate <0.02 >0.05 >0.05 <0.02 <0.02 — >0.05 <0.02 Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate <0.05 <0.02 <0.02 <0.02 <0.05 — <0.02 <0.02 Sodium Sulfate Sodium Sulfide Sodium Sulfite Stannic Chloride <0.02 <0.05 >0.05 >0.05 >0.05 >0.05 >0.05 — Stannous Chloride Strontium Nitrate Succinic Acid Sulfur Dioxide >0.05 <0.02 <0.02 >0.05 — <0.02 <0.02 <0.05 Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) — >0.05 <0.05 — <0.02 >0.05 — >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1205 11.6 Chemical Page 1206 Wednesday, December 31, 1969 17:00 Chemical Properties Table 325. CORROSION RATES OF 70-30 BRASS AT 70˚F * (SHEET 9 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Sulfurous Acid Tannic Acid Tartaric Acid Tetraphosphoric Acid <0.02 — <0.05 >0.05 >0.05 <0.05 — <0.05 Trichloroacetic Acid Trichloroethylene Urea >0.05 — <0.02 >0.05 <0.02 — Zinc Chloride Zinc Sulfate >0.05 <0.05 — <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC 1206 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1207 Wednesday, December 31, 1969 17:00 Chemical Properties Table 326. CORROSION RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 1 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride <0.002 >0.05 <0.002 — <0.002 <0.02 <0.002 <0.02 Acetone Acetylene Acrolein Acrylonitril <0.002 — <0.02 — <0.002 <0.002 <0.02 <0.002 Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) Alcohol (Amyl) <0.002 <0.02 — — <0.002 <0.02 <0.02 <0.002 Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl) Alcohol (Isopropyl) — — — — <0.02 <0.002 <0.02 <0.02 Allylamine Allyl Chloride Allyl Sulfide Aluminum Acetate — — — <0.02 >0.05 <0.02 >0.05 <0.02 Aluminum Chloride Aluminum Fluoride Aluminum Fluosilicate Aluminum Formate <0.02 <0.02 — — <0.02 — <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1207 11.6 Chemical Page 1208 Wednesday, December 31, 1969 17:00 Chemical Properties Table 326. CORROSION RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 2 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Aluminum Hydroxide Aluminum Potassium Sulfate Aluminum Sulfate Ammonia <0.02 <0.02 <0.02 >0.05 — <0.02 <0.002 <0.002 Ammonium Acetate Ammonium Bicarbonate Ammonium Bromide Ammonium Carbonate — >0.05 >0.05 >0.05 >0.05 — — — Ammonium Chloride Ammonium Citrate Ammonium Nitrate Ammonium Sulfate >0.05 >0.05 >0.05 <0.05 >0.05 — >0.05 <0.02 Ammonium Sulfite Ammonium Thiocyanate Amyl Acetate Amyl Chloride >0.05 >0.05 <0.02 <0.02 >0.05 — <0.02 <0.002 Aniline Aniline Hydrochloride Anthracine Antimony Trichloride — >0.05 — >0.05 >0.05 — <0.02 <0.05 Barium Carbonate Barium Chloride Barium Hydroxide Barium Nitrate <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1208 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1209 Wednesday, December 31, 1969 17:00 Chemical Properties Table 326. CORROSION RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 3 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Barium Peroxide Benzaldehyde Benzene Benzoic Acid >0.05 >0.05 <0.002 <0.02 — <0.02 <0.02 <0.02 Boric Acid Bromic Acid Bromine (Dry) Bromine (Wet) <0.02 >0.05 — — <0.02 >0.05 <0.02 >0.05 Butyric Acid Cadmium Chloride Cadmium Sulfate Calcium Acetate <0.05 <0.02 <0.02 <0.02 <0.02 — — <0.02 Calcium Bicarbonate Calcium Bromide Calcium Chlorate Calcium Chloride — <0.02 <0.02 <0.002 <0.02 <0.02 — <0.02 Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide Carbon Monoxide <0.02 <0.02 — — — — <0.002 <0.002 Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas — <0.02 >0.05 — <0.002 <0.02 >0.05 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1209 11.6 Chemical Page 1210 Wednesday, December 31, 1969 17:00 Chemical Properties Table 326. CORROSION RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 4 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Chloroform (Dry) Chromic Acid Chromic Hydroxide Chromic Sulfates — >0.05 — <0.02 <0.002 — <0.02 <0.05 Citric Acid Copper Nitrate Copper Sulfate Diethylene Glycol <0.05 >0.05 >0.05 — <0.02 >0.05 >0.05 <0.002 Ethyl Chloride Ethylene Glycol Ethylene Oxide Fatty Acids <0.02 <0.02 — — <0.002 <0.02 >0.05 <0.05 Ferric Chloride Ferric Nitrate Ferrous Chloride Ferrous Sulfate >0.05 >0.05 <0.02 <0.02 <0.02 — <0.02 <0.02 Fluorine Formaldehyde Formic Acid Furfural — <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 Hydrazine Hydrobromic Acid Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) >0.05 >0.05 >0.05 >0.05 — <0.02 — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1210 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1211 Wednesday, December 31, 1969 17:00 Chemical Properties Table 326. CORROSION RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 5 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Chloride >0.05 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 Hydrogen Fluoride Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide — — >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 Lactic Acid Lead Acetate Lead Chromate Lead Sulfate <0.002 <0.05 — — <0.02 — <0.02 <0.02 Lithium Chloride Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide <0.02 (30%) >0.05 <0.02 <0.02 — — <0.02 <0.02 Magnesium Sulfate Maleic Acid Mercuric Chloride Mercurous Nitrate <0.002 <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 >0.05 Mercury Methallylamine Methanol Methyl Ethyl Ketone — — <0.02 <0.02 >0.05 >0.05 <0.02 <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1211 11.6 Chemical Page 1212 Wednesday, December 31, 1969 17:00 Chemical Properties Table 326. CORROSION RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 6 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Methyl Isobutyl Ketone Methylamine Methylene Chloride Monochloroacetic Acid <0.02 — <0.02 >0.05 <0.02 >0.05 <0.002 >0.05 Monorthanolamine Monoethalamine Monoethylamine Monosodium Phosphate — — — <0.02 >0.05 >0.05 >0.05 — Nickel Chloride Nickel Nitrate Nickel Sulfate Nitric Acid >0.05 <0.05 <0.02 >0.05 — — <0.02 >0.05 Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid — — — >0.05 >0.05 >0.05 >0.05 >0.05 Nitrobenzene Nitroglycerine Nitrotolune Nitrous Acid — — — — <0.02 <0.02 <0.02 >0.05 Oleic Acid Oxalic Acid Phenol Phosphoric Acid (Areated) — <0.02 — >0.05 <0.002 <0.05 <0.002 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1212 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1213 Wednesday, December 31, 1969 17:00 Chemical Properties Table 326. CORROSION RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 7 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate Potassium Bromide <0.02 >0.05 <0.02 <0.02 — >0.05 <0.02 <0.02 Potassium Carbonate Potassium Chlorate Potassium Chromate Potassium Cyanide <0.02 <0.02 <0.02 >0.05 <0.02 <0.05 — >0.05 Potassium Dichromate Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide <0.02 <0.02 <0.02 <0.02 — <0.02 — — Potassium Hypochlorite Potassium Iodide Potassium Nitrate Potassium Nitrite <0.02 <0.02 <0.02 <0.02 — <0.02 <0.002 <0.02 Potassium Permanganate Potassium Silicate Propionic Acid Pyridine <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Quinine Sulfate Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) <0.02 — — — <0.02 <0.02 <0.002 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1213 11.6 Chemical Page 1214 Wednesday, December 31, 1969 17:00 Chemical Properties Table 326. CORROSION RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 8 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Silver Bromide Silver Chloride Silver Nitrate Sodium Acetate >0.05 >0.05 >0.05 <0.02 — <0.02 — <0.02 Sodium Bicarbonate Sodium Bisulfate Sodium Bromide Sodium Carbonate <0.02 — <0.02 <0.02 <0.02 <0.02 <0.05 — Sodium Chloride Sodium Chromate Sodium Hydroxide Sodium Hypochlorite <0.02 <0.02 <0.002 >0.05 — <0.02 — — Sodium Metasilicate Sodium Nitrate Sodium Nitrite Sodium Phosphate <0.02 <0.02 <0.02 <0.02 <0.02 <0.05 — <0.02 Sodium Silicate Sodium Sulfate Sodium Sulfide Sodium Sulfite <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.05 Stannic Chloride Stannous Chloride Strontium Nitrate Succinic Acid >0.05 >0.05 <0.02 <0.02 — — <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1214 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1215 Wednesday, December 31, 1969 17:00 Chemical Properties Table 326. CORROSION RATES OF COPPER , SN-BRAZE, AL-BRAZE AT 70˚F * (SHEET 9 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Sulfur Dioxide Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) <0.02 — >0.05 <0.02 <0.02 <0.02 >0.05 — Sulfuric Acid (Fuming) Sulfurous Acid Tannic Acid Tartaric Acid — <0.02 <0.02 <0.02 >0.05 <0.05 <0.02 <0.02 Tetraphosphoric Acid Trichloroacetic Acid Trichloroethylene — >0.05 — <0.05 >0.05 <0.002 Urea Zinc Chloride Zinc Sulfate <0.02 <0.02 <0.02 — — <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC Shackelford & Alexander 1215 11.6 Chemical Page 1216 Wednesday, December 31, 1969 17:00 Chemical Properties Table 327. CORROSION RATES OF SILICON BRONZE AT 70˚F * (SHEET 1 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride <0.02 >0.05 >0.05 — <0.002 >0.05 <0.02 <0.02 Acetone Acetylene Acrolein Acrylonitril <0.002 — <0.02 — <0.002 <0.002 <0.02 <0.002 Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) Alcohol (Amyl) <0.002 <0.02 — — <0.002 <0.02 <0.02 <0.02 Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Isopropyl) Allylamine — — — — <0.02 <0.002 <0.02 >0.05 Allyl Chloride Allyl Sulfide Aluminum Acetate Aluminum Chloride — — <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 Aluminum Fluoride Aluminum Fluosilicate Aluminum Formate Aluminum Hydroxide <0.02 — <0.02 <0.02 — <0.02 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1216 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1217 Wednesday, December 31, 1969 17:00 Chemical Properties Table 327. CORROSION RATES OF SILICON BRONZE AT 70˚F * (SHEET 2 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Aluminum Potassium Sulfate Aluminum Sulfate Ammonia Ammonium Acetate <0.02 <0.02 >0.05 — <0.02 <0.02 <0.002 >0.05 Ammonium Bicarbonate Ammonium Bromide Ammonium Carbonate Ammonium Chloride >0.05 >0.05 >0.05 >0.05 — — <0.02 >0.05 Ammonium Citrate Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite >0.05 >0.05 <0.02 >0.05 — >0.05 <0.02 >0.05 Ammonium Thiocyanate Amyl Acetate Amyl Chloride Aniline Hydrochloride >0.05 <0.02 — >0.05 — <0.02 <0.002 — Anthracine Antimony Trichloride Barium Carbonate Barium Chloride — >0.05 <0.02 <0.02 <0.02 — <0.02 <0.02 Barium Hydroxide Barium Nitrate Barium Peroxide Benzaldehyde >0.05 >0.05 >0.05 >0.05 — — — <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1217 11.6 Chemical Page 1218 Wednesday, December 31, 1969 17:00 Chemical Properties Table 327. CORROSION RATES OF SILICON BRONZE AT 70˚F * (SHEET 3 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Benzene Benzoic Acid Boric Acid Bromic Acid <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 Bromine (Dry) Bromine (Wet) Butyric Acid Cadmium Chloride — — <0.02 <0.02 <0.02 >0.05 <0.02 — Cadmium Sulfate Calcium Acetate Calcium Bicarbonate Calcium Bromide <0.02 <0.02 — <0.02 — <0.02 <0.02 <0.02 Calcium Chlorate Calcium Chloride Calcium Hydroxide Calcium Hypochlorite <0.02 <0.02 <0.02 <0.02 — <0.02 — — Carbon Dioxide Carbon Monoxide Carbon Tetrachloride Carbon Acid (Air Free) — — — <0.02 <0.002 <0.002 <0.002 <0.02 Chloroacetic Acid Chlorine Gas Chloroform (Dry) Chromic Acid — — — >0.05 <0.05 <0.02 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1218 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1219 Wednesday, December 31, 1969 17:00 Chemical Properties Table 327. CORROSION RATES OF SILICON BRONZE AT 70˚F * (SHEET 4 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Chromic Hydroxide Chromic Sulfates Citric Acid Copper Nitrate — <0.02 <0.05 >0.05 <0.02 — <0.02 <0.05 Copper Sulfate Diethylene Glycol Ethyl Chloride Ethylene Glycol <0.02 — — — >0.05 <0.002 <0.002 <0.02 Ethylene Oxide Fatty Acids Ferric Chloride Ferric Nitrate — — >0.05 >0.05 >0.05 <0.05 <0.02 — Ferrous Chloride Ferrous Sulfate Fluorine Formaldehyde <0.05 <0.02 — <0.002 <0.02 <0.02 >0.05 <0.02 Formic Acid Furfural Hydrazine Hydrobromic Acid <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 — <0.02 Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated) >0.05 <0.02 >0.05 >0.05 — — <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1219 11.6 Chemical Page 1220 Wednesday, December 31, 1969 17:00 Chemical Properties Table 327. CORROSION RATES OF SILICON BRONZE AT 70˚F * (SHEET 5 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride Hydrogen Iodide <0.02 — — — <0.02 <0.02 <0.02 <0.02 Hydrogen Peroxide Hydrogen Sulfide Lactic Acid Lead Acetate >0.05 <0.02 <0.05 — >0.05 <0.02 <0.02 <0.02 Lead Chromate Lead Sulfate Lithium Chloride Lithium Hydroxide — — <0.02 (30%) >0.05 <0.02 <0.02 — — Magnesium Chloride Magnesium Hydroxide Magnesium Sulfate Maleic Acid <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.02 — Mercuric Chloride Mercurous Nitrate Mercury Methallylamine >0.05 >0.05 — — >0.05 — >0.05 >0.05 Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylamine <0.02 <0.02 <0.02 — <0.02 <0.002 <0.02 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1220 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1221 Wednesday, December 31, 1969 17:00 Chemical Properties Table 327. CORROSION RATES OF SILICON BRONZE AT 70˚F * (SHEET 6 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Methylene Chloride Monochloroacetic Acid Monorthanolamine Monoethalamine <0.02 >0.05 — — <0.02 >0.05 >0.05 >0.05 Monoethylamine Monosodium Phosphate Nickel Chloride Nickel Nitrate — <0.02 >0.05 <0.05 >0.05 — <0.02 — Nickel Sulfate Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid <0.02 >0.05 — — <0.02 >0.05 >0.05 >0.05 Nitric + Sulfuric Acid Nitrobenzene Nitrocelluolose Nitroglycerine >0.05 — — — >0.05 <0.02 <0.02 <0.02 Nitrotolune Nitrous Acid Oleic Acid Oxalic Acid — — — <0.02 <0.02 >0.05 <0.02 <0.02 Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free) Picric Acid — >0.05 <0.02 >0.05 <0.002 >0.05 — >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1221 11.6 Chemical Page 1222 Wednesday, December 31, 1969 17:00 Chemical Properties Table 327. CORROSION RATES OF SILICON BRONZE AT 70˚F * (SHEET 7 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Potassium Bicarbonate Potassium Bromide Potassium Carbonate Potassium Chlorate <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.05 Potassium Chromate Potassium Cyanide Potassium Dichromate Potassium Ferricyanide <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 — — Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite Potassium Iodide <0.02 <0.02 >0.05 <0.02 — >0.05 — <0.02 Potassium Nitrate Potassium Nitrite Potassium Permanganate Potassium Silicate <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Propionic Acid Pyridine Quinine Sulfate Salicylic Acid <0.02 <0.02 <0.02 — — <0.02 <0.02 <0.02 Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide Silver Chloride — — >0.05 >0.05 <0.002 >0.05 — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1222 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1223 Wednesday, December 31, 1969 17:00 Chemical Properties Table 327. CORROSION RATES OF SILICON BRONZE AT 70˚F * (SHEET 8 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Silver Nitrate Sodium Acetate Sodium Bicarbonate Sodium Bisulfate >0.05 <0.02 <0.02 <0.02 — — — <0.02 Sodium Bromide Sodium Carbonate Sodium Chloride Sodium Chromate <0.02 <0.02 <0.02 <0.02 — <0.02 — <0.02 Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate Sodium Nitrate <0.02 <0.02 <0.02 <0.02 — >0.05 <0.02 <0.02 Sodium Nitrite Sodium Phosphate Sodium Silicate Sodium Sulfate <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 Sodium Sulfide Sodium Sulfite Stannic Chloride Stannous Chloride >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 Strontium Nitrate Succinic Acid Sulfur Dioxide Sulfur Trioxide <0.02 <0.02 — — <0.02 <0.02 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1223 11.6 Chemical Page 1224 Wednesday, December 31, 1969 17:00 Chemical Properties Table 327. CORROSION RATES OF SILICON BRONZE AT 70˚F * (SHEET 9 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) Sulfurous Acid >0.05 <0.02 — <0.02 >0.05 — >0.05 <0.02 Tannic Acid Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid <0.02 <0.05 >0.05 — <0.02 <0.02 <0.05 <0.05 Trichloroethylene Urea Zinc Chloride Zinc Sulfate — <0.02 <0.02 <0.02 <0.02 — >0.05 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC 1224 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1225 Wednesday, December 31, 1969 17:00 Chemical Properties Table 328. CORROSION RATES OF HASTELLOY AT 70˚F * (SHEET 1 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride — <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 Acetoacetic Acid Acetone Acetylene Acrolein <0.02 <0.002 — — <0.02 <0.002 <0.002 <0.02 Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) — <0.002 <0.002 — <0.002 <0.002 <0.002 <0.02 Alcohol (Benzyl) Alcohol (Isopropyl) Allyl Chloride Aluminum Acetate <0.02 — — <0.02 <0.02 <0.02 <0.02 <0.02 Aluminum Chlorate Aluminum Chloride Aluminum Fluoride Aluminum Fluosilicate <0.02 <0.002 <0.02 — <0.02 <0.002 — <0.02 Aluminum Formate Aluminum Hydroxide Aluminum Nitrate Aluminum Potassium Sulfate <0.02 <0.02 <0.02 <0.02 <0.02 — — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1225 11.6 Chemical Page 1226 Wednesday, December 31, 1969 17:00 Chemical Properties Table 328. CORROSION RATES OF HASTELLOY AT 70˚F * (SHEET 2 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Aluminum Sulfate Ammonia Ammonium Acetate Ammonium Bromide <0.002 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 — Ammonium Carbonate Ammonium Chloride Ammonium Citrate Ammonium Formate >0.05 <0.002 <0.02 <0.002 — <0.02 — — Ammonium Nitrate Ammonium Sulfate Amyl Acetate Amyl Chloride <0.02 <0.02 <0.002 — — <0.02 <0.002 <0.02 Aniline Aniline Hydrochloride Anthracine Antimony Trichloride — <0.02 — >0.05 <0.02 <0.05 <0.02 <0.002 Barium Carbonate Barium Chloride Barium Hydroxide Barium Nitrate — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Barium Oxide Benzaldehyde Benzene Benzoic Acid — — <0.02 <0.002 <0.02 <0.02 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1226 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1227 Wednesday, December 31, 1969 17:00 Chemical Properties Table 328. CORROSION RATES OF HASTELLOY AT 70˚F * (SHEET 3 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Boric Acid Bromine (Dry) Bromine (Wet) Butyric Acid <0.002 — — <0.002 <0.002 <0.002 <0.002 <0.002 Cadmium Chloride Cadmium Sulfate Calcium Acetate Calcium Bicarbonate <0.02 <0.002 <0.02 — — — <0.02 <0.02 Calcium Bromide Calcium Chlorate Calcium Chloride Calcium Hydroxide <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 — Calcium Hypochlorite Carbon Dioxide Carbon Monoxide Carbon Tetrachloride <0.02 — — <0.002 <0.02 <0.002 <0.002 <0.002 Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas Chloroform (Dry) <0.002 <0.02 — — <0.002 <0.002 <0.02 <0.02 Chromic Acid Chromic Hydroxide Chromic Sulfates Citric Acid <0.02 — <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1227 11.6 Chemical Page 1228 Wednesday, December 31, 1969 17:00 Chemical Properties Table 328. CORROSION RATES OF HASTELLOY AT 70˚F * (SHEET 4 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Copper Nitrate Copper Sulfate Diethylene Glycol Ethyl Chloride <0.02 <0.002 — — <0.02 <0.002 <0.02 <0.02 Ethylene Oxide Fatty Acids Ferric Chloride Ferric Nitrate — — <0.002 <0.002 <0.002 <0.002 <0.02 — Ferrous Chloride Ferrous Sulfate Fluorine Formaldehyde <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 Formic Acid Furfural Hydrazine Hydrobromic Acid <0.002 <0.02 — <0.02 <0.002 <0.02 <0.002 — Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated) <0.02 <0.02 — <0.02 — — <0.02 <0.02 Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride Hydrogen Iodide <0.02 — — — <0.05 <0.002 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1228 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1229 Wednesday, December 31, 1969 17:00 Chemical Properties Table 328. CORROSION RATES OF HASTELLOY AT 70˚F * (SHEET 5 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Hydrogen Peroxide Hydrogen Sulfide Lactic Acid Lead Acetate <0.002 — <0.02 <0.02 <0.002 <0.002 <0.02 >0.05 Lead Chromate Lead Nitrate Lead Sulfate Lithium Chloride — — — <0.002 (30%) <0.02 <0.02 <0.02 — Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide Magnesium Sulfate <0.02 <0.002 <0.02 <0.002 <0.02 <0.002 — <0.002 Maleic Acid Maganous Chloride Mercuric Chloride Mercurous Nitrate <0.002 <0.02 <0.02 <0.02 <0.02 — — <0.02 Mercury Methallylamine Methanol Methyl Ethyl Ketone — — <0.002 <0.02 <0.02 <0.02 <0.02 <0.002 Methyl Isobutyl Ketone Methylene Chloride Monochloroacetic Acid Monosodium Phosphate <0.02 <0.02 — <0.02 <0.002 — <0.002 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1229 11.6 Chemical Page 1230 Wednesday, December 31, 1969 17:00 Chemical Properties Table 328. CORROSION RATES OF HASTELLOY AT 70˚F * (SHEET 6 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Nickel Chloride Nickel Nitrate Nickel Sulfate Nitric Acid <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 — Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid Nitric + Hydrofluoric Acid Nitrobenzene — — — — <0.02 >0.05 <0.05 <0.02 Oleic Acid Oxalic Acid Phenol Phosphoric Acid (Areated) — <0.02 — <0.002 <0.02 <0.02 <0.002 <0.002 Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate Potassium Bromide <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 — <0.02 Potassium Carbonate Potassium Chlorate Potassium Chromate Potassium Cyanide <0.02 <0.02 <0.002 <0.02 <0.02 — — — Potassium Dichromate Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide <0.02 <0.02 <0.02 <0.02 — — — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1230 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1231 Wednesday, December 31, 1969 17:00 Chemical Properties Table 328. CORROSION RATES OF HASTELLOY AT 70˚F * (SHEET 7 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Potassium Hypochlorite Potassium Iodide Potassium Nitrate Potassium Nitrite <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 Potassium Permanganate Potassium Silicate Pyridine Quinine Sulfate <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide — — — <0.002 <0.02 <0.02 <0.02 — Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate <0.02 <0.002 <0.02 <0.02 — — — — Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 — Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate <0.02 <0.002 <0.002 <0.002 <0.02 <0.002 <0.05 <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1231 11.6 Chemical Page 1232 Wednesday, December 31, 1969 17:00 Chemical Properties Table 328. CORROSION RATES OF HASTELLOY AT 70˚F * (SHEET 8 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate <0.02 <0.02 <0.02 <0.02 — — <0.02 <0.02 Sodium Sulfate Sodium Sulfide Sodium Sulfite Stannic Chloride <0.02 <0.02 <0.02 <0.02 <0.002 — — <0.02 Stannous Chloride Strontium Nitrate Succinic Acid Sulfur Dioxide <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 — <0.02 Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) — <0.002 <0.002 — <0.02 <0.02 <0.02 <0.002 Sulfurous Acid Tannic Acid Tartaric Acid Tetraphosphoric Acid <0.02 <0.02 <0.02 — <0.02 — <0.02 <0.02 Trichloroacetic Acid Trichloroethylene Urea <0.02 — <0.02 <0.02 <0.002 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1232 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1233 Wednesday, December 31, 1969 17:00 Chemical Properties Table 328. CORROSION RATES OF HASTELLOY AT 70˚F * (SHEET 9 OF 9) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Zinc Chloride Zinc Sulfate <0.02 <0.02 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC Shackelford & Alexander 1233 11.6 Chemical Page 1234 Wednesday, December 31, 1969 17:00 Chemical Properties Table 329. CORROSION RATES OF INCONEL AT (SHEET 1 OF 8) 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride — <0.02 <0.02 — <0.002 <0.02 <0.02 <0.02 Acetone Acetylene Acrolein Acrylonitril <0.002 — — — <0.002 <0.002 <0.02 <0.002 Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) Alcohol (Benzyl) <0.002 <0.002 — — <0.002 <0.002 <0.02 <0.02 Alcohol (Butyl) Alcohol (Cetyl) Alcohol (Isopropyl) Allyl Chloride — — — — <0.002 <0.02 <0.02 <0.02 Aluminum Acetate Aluminum Chlorate Aluminum Chloride Aluminum Fluosilicate <0.02 <0.02 >0.05 — — <0.02 — <0.02 Aluminum Formate Aluminum Nitrate Aluminum Sulfate Ammonia <0.02 <0.02 <0.02 <0.002 <0.02 — — <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1234 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1235 Wednesday, December 31, 1969 17:00 Chemical Properties Table 329. CORROSION RATES OF INCONEL AT (SHEET 2 OF 8) 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Ammonium Acetate Ammonium Carbonate Ammonium Chloride Ammonium Citrate <0.002 >0.05 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 Ammonium Formate Ammonium Sulfate Ammonium Sulfite Amyl Acetate <0.02 <0.02 >0.05 — <0.02 — — <0.02 Aniline Hydrochloride Anthracine Barium Chloride Barium Hydroxide >0.05 — <0.02 <0.02 — <0.02 <0.02 <0.02 Barium Nitrate Barium Oxide Benzaldehyde Benzene <0.02 — — <0.002 <0.02 <0.02 <0.02 <0.02 Benzoic Acid Boric Acid Bromic Acid Bromine (Dry) <0.02 <0.02 >0.05 — — <0.02 >0.05 <0.002 Bromine (Wet) Butyric Acid Cadmium Sulfate Calcium Acetate — <0.05 <0.002 <0.02 >0.05 <0.05 — <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1235 11.6 Chemical Page 1236 Wednesday, December 31, 1969 17:00 Chemical Properties Table 329. CORROSION RATES OF INCONEL AT (SHEET 3 OF 8) 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Calcium Bicarbonate Calcium Bromide Calcium Chlorate Calcium Chloride — <0.02 <0.02 <0.002 <0.02 <0.02 — <0.02 Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide Carbon Monoxide <0.02 >0.05 — — <0.02 — <0.002 <0.002 Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas <0.002 <0.02 — — <0.002 <0.002 <0.05 <0.02 Chloroform (Dry) Chromic Acid Chromic Hydroxide Citric Acid — <0.02 — <0.02 <0.002 — <0.02 <0.02 Copper Nitrate Copper Sulfate Diethylene Glycol Ethyl Chloride >0.05 <0.02 — — — — <0.02 <0.002 Ethylene Glycol Ethylene Oxide Fatty Acids Ferric Chloride — — — <0.05 <0.02 <0.02 <0.02 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1236 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1237 Wednesday, December 31, 1969 17:00 Chemical Properties Table 329. CORROSION RATES OF INCONEL AT (SHEET 4 OF 8) 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Ferric Nitrate Ferrous Chloride Ferrous Sulfate Fluorine >0.05 >0.05 <0.02 — — — — <0.002 Formaldehyde Formic Acid Furfural Hydrazine <0.002 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.002 Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated) >0.05 >0.05 — <0.02 — — <0.02 <0.02 Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride Hydrogen Peroxide <0.02 — — <0.02 <0.02 <0.002 <0.02 <0.02 Hydrogen Sulfide Lactic Acid Lead Acetate Lead Chromate <0.02 <0.02 <0.02 — <0.02 — — <0.02 Lead Nitrate Lead Sulfate Lithium Chloride Lithium Hydroxide — — <0.002 (30%) <0.02 <0.02 <0.02 — <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1237 11.6 Chemical Page 1238 Wednesday, December 31, 1969 17:00 Chemical Properties Table 329. CORROSION RATES OF INCONEL AT (SHEET 5 OF 8) 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Magnesium Chloride Magnesium Sulfate Maleic Acid Malic Acid <0.002 <0.02 <0.02 <0.002 <0.02 <0.02 — <0.02 Mercuric Chloride Mercury Methallylamine Methanol >0.05 — — <0.002 — <0.02 <0.02 <0.002 Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylene Chloride Monochloroacetic Acid <0.02 <0.02 — <0.02 <0.002 <0.02 <0.02 <0.02 Monorthanolamine Monosodium Phosphate Nickel Chloride Nickel Nitrate — <0.02 — >0.05 <0.02 — <0.02 <0.02 Nickel Sulfate Nitric Acid Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid <0.02 <0.02 — — <0.02 — <0.02 >0.05 Nitric + Sulfuric Acid Nitrobenzene Nitrocelluolose Nitroglycerine >0.05 — — — >0.05 <0.02 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1238 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1239 Wednesday, December 31, 1969 17:00 Chemical Properties Table 329. CORROSION RATES OF INCONEL AT (SHEET 6 OF 8) 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Nitrotolune Oleic Acid Oxalic Acid Phenol — — <0.02 — <0.02 <0.002 <0.02 <0.002 Phosphoric Acid (Areated) Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate <0.02 <0.02 — <0.02 >0.05 — <0.02 — Potassium Bromide Potassium Carbonate Potassium Chlorate Potassium Chromate <0.02 <0.02 <0.05 <0.002 <0.02 <0.02 — — Potassium Cyanide Potassium Dichromate Potassium Ferrocyanide Potassium Hydroxide <0.02 <0.02 <0.02 <0.02 <0.02 — — — Potassium Hypochlorite Potassium Iodide Potassium Nitrate Potassium Nitrite <0.05 <0.02 <0.02 <0.02 — <0.02 — <0.02 Potassium Permanganate Potassium Silicate Pyridine Quinine Sulfate <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1239 11.6 Chemical Page 1240 Wednesday, December 31, 1969 17:00 Chemical Properties Table 329. CORROSION RATES OF INCONEL AT (SHEET 7 OF 8) 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Salicylic Acid Silicon Tetrachloride (Dry) Silver Nitrate Sodium Acetate — — <0.02 <0.02 <0.02 <0.002 — <0.02 Sodium Bicarbonate Sodium Bisulfate Sodium Bromide Sodium Carbonate <0.02 <0.02 <0.02 <0.02 — <0.02 — <0.02 Sodium Chloride Sodium Chromate Sodium Hydroxide Sodium Hypochlorite <0.002 <0.02 <0.002 >0.05 — <0.02 <0.002 — Sodium Metasilicate Sodium Nitrate Sodium Nitrite Sodium Phosphate <0.002 <0.002 <0.02 <0.02 <0.002 — <0.02 <0.02 Sodium Silicate Sodium Sulfate Sodium Sulfide Sodium Sulfite <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 Stannic Chloride Stannous Chloride Strontium Nitrate Succinic Acid >0.05 >0.05 <0.02 <0.02 — <0.02 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1240 CRC Handbook of Materials Science & Engineering 11.6 Chemical Page 1241 Wednesday, December 31, 1969 17:00 Chemical Properties Table 329. CORROSION RATES OF INCONEL AT (SHEET 8 OF 8) 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Sulfur Dioxide Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) <0.02 — >0.05 <0.05 <0.02 <0.02 >0.05 — Sulfuric Acid (Fuming) Sulfurous Acid Tannic Acid Tartaric Acid — <0.05 — <0.02 <0.02 <0.02 <0.02 — Tetraphosphoric Acid Trichloroethylene Urea — — <0.02 <0.02 <0.02 — Zinc Chloride Zinc Sulfate — <0.002 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC Shackelford & Alexander 1241 11.7 Chemical Page 1242 Wednesday, December 31, 1969 17:00 Chemical Properties Table 330. CORROSION RATES OF (SHEET 1 OF 9) NICKEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride <0.002 <0.05 <0.02 — <0.002 >0.05 <0.02 <0.02 Acetoacetic Acid Acetone Acetylene Acrolein <0.02 <0.002 — — <0.02 <0.002 <0.002 <0.02 Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) — <0.002 <0.002 — <0.002 <0.002 <0.002 <0.02 Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl) Alcohol (Isopropyl) — — — — <0.02 <0.002 <0.02 <0.02 Allyl Chloride Aluminum Acetate Aluminum Chlorate Aluminum Chloride — <0.02 <0.02 <0.05 <0.02 — <0.02 <0.02 Aluminum Fluoride Aluminum Fluosilicate Aluminum Formate Aluminum Hydroxide <0.02 — <0.02 <0.02 — <0.02 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1242 CRC Handbook of Materials Science & Engineering 11.7 Chemical Page 1243 Wednesday, December 31, 1969 17:00 Chemical Properties Table 330. CORROSION RATES OF (SHEET 2 OF 9) NICKEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Aluminum Nitrate Aluminum Potassium Sulfate Aluminum Sulfate Ammonia <0.02 <0.02 <0.02 >0.05 — — <0.02 <0.002 Ammonium Acetate Ammonium Bromide Ammonium Carbonate Ammonium Chloride <0.002 <0.02 >0.05 <0.02 <0.002 — <0.02 <0.02 Ammonium Citrate Ammonium Formate Ammonium Nitrate Ammonium Sulfate <0.02 <0.02 <0.02 <0.02 — — <0.02 <0.02 Ammonium Sulfite Ammonium Thiocyanate Amyl Acetate Amyl Chloride >0.05 <0.02 — <0.02 — <0.02 <0.02 <0.02 Aniline Aniline Hydrochloride Anthracine Antimony Trichloride <0.02 <0.05 — >0.05 <0.02 — <0.02 <0.02 Barium Carbonate Barium Chloride Barium Hydroxide Barium Nitrate <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1243 11.7 Chemical Page 1244 Wednesday, December 31, 1969 17:00 Chemical Properties Table 330. CORROSION RATES OF (SHEET 3 OF 9) NICKEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Barium Peroxide Benzaldehyde Benzene Benzoic Acid <0.02 — <0.002 <0.02 — <0.02 <0.02 <0.02 Boric Acid Bromic Acid Bromine (Dry) Bromine (Wet) <0.02 >0.05 — — <0.02 >0.05 <0.002 >0.05 Butyric Acid Cadmium Chloride Cadmium Sulfate Calcium Acetate <0.05 <0.02 <0.002 <0.02 <0.05 — — <0.02 Calcium Bicarbonate Calcium Bromide Calcium Chlorate Calcium Chloride — <0.02 <0.02 <0.002 <0.02 <0.02 — <0.02 Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide Carbon Monoxide <0.02 >0.05 — — <0.02 — <0.002 <0.002 Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas <0.02 <0.02 — — <0.002 <0.02 <0.02 <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1244 CRC Handbook of Materials Science & Engineering 11.7 Chemical Page 1245 Wednesday, December 31, 1969 17:00 Chemical Properties Table 330. CORROSION RATES OF (SHEET 4 OF 9) NICKEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Chloroform (Dry) Chromic Acid Chromic Hydroxide Citric Acid — >0.05 — <0.02 <0.002 — <0.02 <0.02 Copper Nitrate Copper Sulfate Diethylene Glycol Ethyl Chloride >0.05 <0.02 — — — — <0.02 <0.002 Ethylene Glycol Ethylene Oxide Fatty Acids Ferric Chloride — — — >0.05 <0.02 <0.02 <0.02 — Ferric Nitrate Ferrous Chloride Ferrous Sulfate Fluorine >0.05 <0.05 >0.05 — — — <0.02 <0.002 Formaldehyde Formic Acid Furfural Hydrazine <0.002 <0.02 <0.02 — <0.002 <0.02 <0.02 <0.002 Hydrobromic Acid Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) Hydrocyanic Acid >0.05 >0.05 >0.05 — <0.02 — — <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1245 11.7 Chemical Page 1246 Wednesday, December 31, 1969 17:00 Chemical Properties Table 330. CORROSION RATES OF (SHEET 5 OF 9) NICKEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride <0.02 <0.02 — — <0.02 <0.02 <0.002 <0.002 Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide Lactic Acid — <0.02 — <0.02 <0.02 <0.02 <0.02 — Lead Acetate Lead Chromate Lead Nitrate Lead Sulfate <0.02 — <0.02 <0.02 — <0.02 <0.02 <0.02 Lithium Chloride Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide <0.002 (30%) <0.02 <0.002 — — <0.02 <0.02 <0.02 Magnesium Sulfate Maleic Acid Malic Acid Mercuric Chloride <0.02 <0.02 <0.02 <0.05 <0.02 — <0.02 — Mercury Methallylamine Methanol Methyl Ethyl Ketone — — <0.002 <0.02 <0.02 <0.02 <0.002 <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1246 CRC Handbook of Materials Science & Engineering 11.7 Chemical Page 1247 Wednesday, December 31, 1969 17:00 Chemical Properties Table 330. CORROSION RATES OF (SHEET 6 OF 9) NICKEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Methyl Isobutyl Ketone Methylene Chloride Monochloroacetic Acid Monorthanolamine <0.02 — <0.02 — <0.02 <0.02 <0.02 <0.02 Monosodium Phosphate Nickel Nitrate Nickel Sulfate Nitric Acid <0.02 >0.05 <0.02 >0.05 — <0.02 — >0.05 Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid Nitric + Sulfuric Acid Nitrobenzene — — >0.05 — >0.05 >0.05 >0.05 <0.02 Nitrocelluolose Nitrotolune Nitrous Acid Oleic Acid — — >0.05 — <0.02 <0.02 >0.05 <0.002 Oxalic Acid Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free) <0.02 — <0.05 <0.02 <0.05 <0.002 >0.05 — Picric Acid Potassium Bicarbonate Potassium Bromide Potassium Carbonate >0.05 <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1247 11.7 Chemical Page 1248 Wednesday, December 31, 1969 17:00 Chemical Properties Table 330. CORROSION RATES OF (SHEET 7 OF 9) NICKEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Potassium Chlorate Potassium Chromate Potassium Cyanide Potassium Dichromate <0.02 <0.002 <0.02 <0.02 — — <0.02 — Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite <0.02 <0.02 <0.002 <0.05 — — — — Potassium Iodide Potassium Nitrate Potassium Nitrite Potassium Permanganate <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — Potassium Silicate Propionic Acid Pyridine Quinine Sulfate <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide <0.02 — — — <0.02 <0.002 >0.05 <0.02 Silver Nitrate Sodium Acetate Sodium Bicarbonate Sodium Bisulfate >0.05 <0.02 <0.02 <0.02 — <0.02 — <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1248 CRC Handbook of Materials Science & Engineering 11.7 Chemical Page 1249 Wednesday, December 31, 1969 17:00 Chemical Properties Table 330. CORROSION RATES OF (SHEET 8 OF 9) NICKEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Sodium Bromide Sodium Carbonate Sodium Chloride Sodium Chromate <0.02 <0.02 <0.002 <0.02 — <0.02 — <0.02 Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate Sodium Nitrate <0.002 >0.05 <0.002 <0.02 <0.002 — <0.002 <0.02 Sodium Nitrite Sodium Phosphate Sodium Silicate Sodium Sulfate <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Sodium Sulfide Sodium Sulfite Stannic Chloride Stannous Chloride <0.02 <0.02 >0.05 <0.05 — — — <0.02 Strontium Nitrate Succinic Acid Sulfur Dioxide Sulfur Trioxide <0.02 <0.02 >0.05 — <0.02 <0.02 <0.02 <0.02 Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) Sulfurous Acid <0.05 <0.02 — <0.05 >0.05 >0.05 >0.05 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1249 11.7 Chemical Page 1250 Wednesday, December 31, 1969 17:00 Chemical Properties Table 330. CORROSION RATES OF (SHEET 9 OF 9) NICKEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Tannic Acid Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid — <0.02 — — <0.02 — >0.05 <0.02 Trichloroethylene Urea Zinc Chloride Zinc Sulfate — <0.02 <0.02 <0.02 <0.002 — <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC 1250 CRC Handbook of Materials Science & Engineering 11.7 Chemical Page 1251 Wednesday, December 31, 1969 17:00 Chemical Properties s Table 331. CORROSION RATES OF (SHEET 1 OF 9) MONEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride <0.002 <0.02 <0.02 — <0.002 <0.02 <0.02 <0.02 Acetoacetic Acid Acetone Acetylene Acrolein <0.02 <0.002 — — <0.02 <0.002 <0.002 <0.02 Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) — <0.002 <0.002 — <0.002 <0.002 <0.002 <0.02 Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl) Alcohol (Isopropyl) — — — — <0.02 <0.002 <0.02 <0.02 Allyl Chloride Aluminum Acetate Aluminum Chlorate Aluminum Chloride — <0.02 <0.02 <0.02 <0.02 — <0.02 — Aluminum Fluoride Aluminum Fluosilicate Aluminum Formate Aluminum Hydroxide <0.002 — <0.02 <0.02 — <0.02 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1251 11.7 Chemical Page 1252 Wednesday, December 31, 1969 17:00 Chemical Properties Table 331. CORROSION RATES OF (SHEET 2 OF 9) MONEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Aluminum Nitrate Aluminum Potassium Sulfate Aluminum Sulfate Ammonia <0.02 <0.02 <0.02 >0.05 — — <0.02 <0.002 Ammonium Acetate Ammonium Bromide Ammonium Carbonate Ammonium Chloride <0.002 <0.02 <0.02 <0.02 <0.002 — <0.02 <0.02 Ammonium Citrate Ammonium Formate Ammonium Nitrate Ammonium Sulfate <0.02 <0.02 >0.05 <0.02 — — <0.02 <0.02 Ammonium Sulfite Ammonium Thiocyanate Amyl Acetate Amyl Chloride >0.05 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 Aniline Aniline Hydrochloride Anthracine Antimony Trichloride <0.02 >0.05 — >0.05 <0.02 — <0.02 — Barium Carbonate Barium Chloride Barium Hydroxide Barium Oxide <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1252 CRC Handbook of Materials Science & Engineering 11.7 Chemical Page 1253 Wednesday, December 31, 1969 17:00 Chemical Properties Table 331. CORROSION RATES OF (SHEET 3 OF 9) MONEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Barium Peroxide Benzaldehyde Benzene Benzoic Acid <0.02 — <0.002 <0.02 — <0.02 <0.02 <0.02 Boric Acid Bromic Acid Bromine (Dry) Bromine (Wet) <0.02 >0.05 — — <0.02 >0.05 <0.002 >0.05 Butyric Acid Cadmium Chloride Cadmium Sulfate Calcium Acetate <0.05 <0.02 <0.002 <0.02 <0.02 — — <0.02 Calcium Bicarbonate Calcium Bromide Calcium Chlorate Calcium Chloride — <0.02 <0.02 <0.002 <0.02 <0.02 — <0.02 Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide Carbon Monoxide <0.02 >0.05 — — <0.02 — <0.002 <0.002 Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas <0.02 <0.02 <0.02 — <0.002 <0.05 <0.05 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1253 11.7 Chemical Page 1254 Wednesday, December 31, 1969 17:00 Chemical Properties Table 331. CORROSION RATES OF (SHEET 4 OF 9) MONEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Chlorine Liquid Chloroform (Dry) Chromic Acid Chromic Hydroxide — — >0.05 — <0.02 <0.002 — <0.02 Chromic Sulfates Citric Acid Copper Nitrate Copper Sulfate — <0.02 >0.05 <0.02 <0.05 <0.02 — — Diethylene Glycol Ethyl Chloride Ethylene Glycol Ethylene Oxide — <0.02 — — <0.02 <0.02 <0.02 <0.02 Fatty Acids Ferric Chloride Ferric Nitrate Ferrous Chloride — >0.05 >0.05 >0.05 <0.02 >0.05 — — Ferrous Sulfate Fluorine Formaldehyde Formic Acid — — <0.002 <0.02 <0.02 <0.002 <0.002 — Furfural Hydrazine Hydrobromic Acid Hydrochloric Acid (Areated) <0.02 — >0.05 >0.05 <0.02 >0.05 — — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1254 CRC Handbook of Materials Science & Engineering 11.7 Chemical Page 1255 Wednesday, December 31, 1969 17:00 Chemical Properties Table 331. CORROSION RATES OF (SHEET 5 OF 9) MONEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) >0.05 >0.05 <0.02 <0.02 — <0.02 <0.02 <0.02 Hydrogen Chloride Hydrogen Fluoride Hydrogen Iodide Hydrogen Peroxide — — <0.02 <0.02 <0.002 <0.02 — <0.002 Hydrogen Sulfide Lactic Acid Lead Acetate Lead Chromate — >0.05 <0.02 — <0.02 — <0.02 <0.02 Lead Nitrate Lead Sulfate Lithium Chloride Lithium Hydroxide — — <0.002 (30%) <0.02 <0.02 <0.02 <0.002 <0.02 Magnesium Chloride Magnesium Hydroxide Magnesium Sulfate Maleic Acid <0.002 <0.02 <0.02 <0.05 <0.02 <0.02 <0.02 — Malic Acid Mercuric Chloride Mercurous Nitrate Mercury <0.02 >0.05 <0.02 — — — — <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1255 11.7 Chemical Page 1256 Wednesday, December 31, 1969 17:00 Chemical Properties Table 331. CORROSION RATES OF (SHEET 6 OF 9) MONEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Methallylamine Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone — <0.002 <0.02 <0.02 <0.05 <0.002 <0.002 <0.02 Methylene Chloride Monochloroacetic Acid Monorthanolamine Monosodium Phosphate — — — <0.02 <0.002 <0.05 <0.02 — Nickel Chloride Nickel Nitrate Nickel Sulfate Nitric Acid <0.02 >0.05 — >0.05 <0.02 <0.02 <0.02 >0.05 Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid Nitric + Sulfuric Acid Nitrobenzene — — >0.05 — >0.05 >0.05 >0.05 <0.02 Nitrocelluolose Nitroglycerine Nitrotolune Nitrous Acid — — — — <0.002 <0.02 <0.02 >0.05 Oleic Acid Oxalic Acid Phenol Phosphoric Acid (Areated) — <0.02 <0.002 <0.05 <0.002 <0.02 <0.002 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1256 CRC Handbook of Materials Science & Engineering 11.7 Chemical Page 1257 Wednesday, December 31, 1969 17:00 Chemical Properties Table 331. CORROSION RATES OF (SHEET 7 OF 9) MONEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate Potassium Bromide <0.02 <0.05 <0.02 <0.02 — >0.05 — <0.02 Potassium Carbonate Potassium Chlorate Potassium Chromate Potassium Cyanide <0.02 <0.05 <0.02 <0.02 <0.02 — — <0.02 Potassium Dichromate Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide <0.02 <0.02 <0.02 <0.002 — — — — Potassium Hypochlorite Potassium Iodide Potassium Nitrate Potassium Nitrite <0.05 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 Potassium Permanganate Potassium Silicate Propionic Acid Pyridine <0.05 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 Quinine Sulfate Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) <0.02 <0.02 — — <0.02 <0.02 <0.002 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1257 11.7 Chemical Page 1258 Wednesday, December 31, 1969 17:00 Chemical Properties Table 331. CORROSION RATES OF (SHEET 8 OF 9) MONEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Silver Bromide Silver Nitrate Sodium Acetate Sodium Bicarbonate — >0.05 <0.05 <0.02 <0.02 — <0.02 — Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride <0.02 <0.02 <0.02 <0.002 <0.02 — <0.02 — Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate <0.02 <0.002 >0.05 <0.002 <0.02 <0.002 <0.02 <0.002 Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 Sodium Sulfate Sodium Sulfide Sodium Sulfite Stannic Chloride <0.02 <0.02 <0.02 >0.05 <0.02 — <0.02 — Stannous Chloride Strontium Nitrate Succinic Acid Sulfur Dioxide >0.05 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1258 CRC Handbook of Materials Science & Engineering 11.7 Chemical Page 1259 Wednesday, December 31, 1969 17:00 Chemical Properties Table 331. CORROSION RATES OF (SHEET 9 OF 9) MONEL AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) — <0.05 <0.002 — <0.02 >0.05 >0.05 >0.05 Sulfurous Acid Tannic Acid Tartaric Acid Tetraphosphoric Acid >0.05 <0.02 <0.02 — >0.05 <0.02 — <0.05 Trichloroacetic Acid Trichloroethylene Urea — — <0.02 >0.05 <0.002 — Zinc Chloride Zinc Sulfate <0.02 <0.02 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC Shackelford & Alexander 1259 11.7 Chemical Page 1260 Wednesday, December 31, 1969 17:00 Chemical Properties Table 332. CORROSION RATES OF (SHEET 1 OF 8) LEAD AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride <0.02 >0.05 >0.05 — <0.002 <0.05 <0.02 <0.002 Acetoacetic Acid Acetone Acetylene Acrolein — <0.002 — <0.02 <0.02 <0.02 <0.002 — Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) — <0.002 <0.02 — <0.002 <0.002 <0.02 <0.02 Alcohol (Benzyl) Alcohol (Cetyl) Alcohol (Isopropyl) Allyl Chloride — — — _ <0.02 <0.02 <0.002 <0.05 Allyl Sulfide Aluminum Acetate Aluminum Chlorate Aluminum Chloride — <0.002 <0.02 >0.05 >0.05 <0.002 <0.02 — Aluminum Fluoride Aluminum Fluosilicate Aluminum Formate Aluminum Hydroxide <0.02 — — <0.02 — <0.02 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1260 CRC Handbook of Materials Science & Engineering 11.7 Chemical Page 1261 Wednesday, December 31, 1969 17:00 Chemical Properties Table 332. CORROSION RATES OF (SHEET 2 OF 8) LEAD AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Aluminum Nitrate Aluminum Potassium Sulfate Aluminum Sulfate Ammonia <0.02 <0.002 <0.02 <0.02 — <0.02 — <0.02 Ammonium Bicarbonate Ammonium Bromide Ammonium Carbonate Ammonium Chloride <0.02 >0.05 <0.02 >0.05 — — — <0.02 Ammonium Nitrate Ammonium Sulfate Amyl Acetate Amyl Chloride >0.05 <0.02 — — — <0.02 <0.02 >0.05 Aniline Aniline Hydrochloride Anthracine Antimony Trichloride — >0.05 — <0.02 >0.05 — <0.02 <0.002 Barium Carbonate Barium Chloride Barium Hydroxide Barium Nitrate — <0.02 >0.05 <0.02 >0.05 — >0.05 — Barium Peroxide Benzaldehyde Benzene Benzoic Acid >0.05 >0.05 <0.02 >0.05 — >0.05 <0.02 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1261 11.7 Chemical Page 1262 Wednesday, December 31, 1969 17:00 Chemical Properties Table 332. CORROSION RATES OF (SHEET 3 OF 8) LEAD AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Boric Acid Bromic Acid Bromine (Dry) Bromine (Wet) <0.02 <0.02 — — <0.02 <0.02 <0.002 >0.05 Butyric Acid Cadmium Sulfate Calcium Acetate Calcium Bicarbonate >0.05 <0.002 <0.02 — >0.05 — <0.02 <0.05 Calcium Bromide Calcium Chlorate Calcium Chloride Calcium Hydroxide <0.02 <0.02 >0.05 >0.05 <0.02 — — — Calcium Hypochlorite Carbon Dioxide Carbon Monoxide Carbon Tetrachloride <0.05 — — — <0.002 <0.002 <0.002 <0.002 Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas Chlorine Liquid — >0.05 — — >0.05 >0.05 <0.02 <0.02 Chloroform (Dry) Chromic Acid Chromic Hydroxide Chromic Sulfates — <0.02 — <0.02 <0.02 — <0.02 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1262 CRC Handbook of Materials Science & Engineering 11.7 Chemical Page 1263 Wednesday, December 31, 1969 17:00 Chemical Properties Table 332. CORROSION RATES OF (SHEET 4 OF 8) LEAD AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Citric Acid Copper Sulfate Diethylene Glycol Ethyl Chloride <0.02 <0.02 — — >0.05 <0.02 <0.02 <0.02 Ethylene Glycol Ethylene Oxide Fatty Acids Ferric Chloride — — — >0.05 <0.05 <0.02 >0.05 — Ferric Nitrate Ferrous Chloride Ferrous Sulfate Fluorine <0.002 >0.05 <0.02 — <0.002 — — <0.02 Formaldehyde Formic Acid Furfural Hydrazine <0.02 >0.05 — >0.05 <0.02 >0.05 <0.02 >0.05 Hydrobromic Acid Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) Hydrocyanic Acid >0.05 <0.02 <0.02 >0.05 — — — <0.02 Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride >0.05 <0.002 — — — >0.05 <0.02 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1263 11.7 Chemical Page 1264 Wednesday, December 31, 1969 17:00 Chemical Properties Table 332. CORROSION RATES OF (SHEET 5 OF 8) LEAD AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Hydrogen Peroxide Hydrogen Sulfide Lactic Acid Lead Chromate >0.05 — >0.05 — <0.002 <0.02 >0.05 <0.02 Lead Nitrate Lead Sulfate Lithium Chloride Lithium Hydroxide — — <0.02 >0.05 <0.02 <0.02 <0.02 — Magnesium Chloride Magnesium Hydroxide Magnesium Sulfate Mercuric Chloride >0.05 >0.05 <0.02 <0.05 >0.05 — — — Mercurous Nitrate Mercury Methanol Methyl Ethyl Ketone — — <0.02 <0.02 >0.05 >0.05 <0.02 <0.002 Methyl Isobutyl Ketone Methylene Chloride Monochloroacetic Acid Monosodium Phosphate <0.02 — >0.05 <0.02 <0.002 <0.02 >0.05 — Nickel Chloride Nickel Nitrate Nickel Sulfate Nitric Acid — — <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1264 CRC Handbook of Materials Science & Engineering 11.7 Chemical Page 1265 Wednesday, December 31, 1969 17:00 Chemical Properties Table 332. CORROSION RATES OF (SHEET 6 OF 8) LEAD AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Nitric + Hydrochloric Acid Nitric + Sulfuric Acid Nitrobenzene Nitrocelluolose — >0.05 — — >0.05 >0.05 <0.02 <0.002 Nitroglycerine Nitrotolune Nitrous Acid Oleic Acid — — — — <0.05 <0.02 >0.05 >0.05 Oxalic Acid Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free) >0.05 — <0.02 <0.002 >0.05 <0.02 <0.02 <0.02 Picric Acid Potassium Bicarbonate Potassium Bromide Potassium Carbonate >0.05 >0.05 <0.02 >0.05 <0.02 — <0.02 >0.05 Potassium Chlorate Potassium Chromate Potassium Cyanide Potassium Dichromate <0.02 <0.02 >0.05 <0.02 — — — — Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite <0.02 <0.02 >0.05 <0.02 — — >0.05 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1265 11.7 Chemical Page 1266 Wednesday, December 31, 1969 17:00 Chemical Properties Table 332. CORROSION RATES OF (SHEET 7 OF 8) LEAD AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Potassium Iodide Potassium Nitrate Potassium Nitrite Potassium Permanganate >0.05 <0.02 <0.02 <0.05 — — <0.02 >0.05 Propionic Acid Pyridine Salicylic Acid Silicon Tetrachloride (Dry) >0.05 <0.02 — — — <0.02 <0.02 <0.02 Silver Nitrate Sodium Acetate Sodium Bicarbonate Sodium Bisulfate >0.05 — <0.02 <0.02 — <0.02 — — Sodium Carbonate Sodium Chloride Sodium Chromate Sodium Hydroxide <0.02 <0.02 <0.02 <0.02 — — <0.02 — Sodium Hypochlorite Sodium Nitrate Sodium Nitrite Sodium Phosphate >0.05 >0.05 <0.02 <0.02 >0.05 — — <0.02 Sodium Silicate Sodium Sulfate Sodium Sulfide Sodium Sulfite >0.05 <0.02 <0.002 <0.02 — <0.02 <0.002 <0.02 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1266 CRC Handbook of Materials Science & Engineering 11.7 Chemical Page 1267 Wednesday, December 31, 1969 17:00 Chemical Properties Table 332. CORROSION RATES OF (SHEET 8 OF 8) LEAD AT 70˚F * Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Stannic Chloride Stannous Chloride Succinic Acid Sulfur Dioxide >0.05 >0.05 <0.02 — — — <0.02 <0.02 Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) — <0.002 <0.002 — <0.02 >0.05 >0.05 >0.05 Sulfurous Acid Tannic Acid Tartaric Acid Tetraphosphoric Acid <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 >0.05 >0.05 Trichloroacetic Acid Trichloroethylene Zinc Chloride Zinc Sulfate >0.05 — <0.02 <0.02 >0.05 >0.05 <0.02 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC Shackelford & Alexander 1267 11.7 Chemical Page 1268 Wednesday, December 31, 1969 17:00 Chemical Properties Table 333. CORROSION RATES OF TITANIUM AT 70˚F * (SHEET 1 OF 5) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride — <0.002 <0.002 — <0.002 <0.002 <0.002 <0.002 Acetone Acetylene Acrolein Acrylonitril <0.002 — — — <0.002 <0.002 <0.02 <0.002 Alcohol (Ethyl) Alcohol (Allyl) Alcohol (Amyl) Alcohol (Benzyl) <0.002 — — — <0.002 <0.002 <0.002 <0.002 Alcohol (Butyl) Alcohol (Cetyl) Aluminum Acetate Aluminum Chlorate — — — <0.002 <0.002 <0.002 <0.002 — Aluminum Chloride Aluminum Formate Aluminum Hydroxide Aluminum Nitrate >0.05 — <0.002 <0.002 — <0.002 <0.002 <0.002 Aluminum Potassium Sulfate Aluminum Sulfate Ammonia Ammonium Chloride — <0.002 <0.002 <0.002 <0.002 — <0.002 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1268 CRC Handbook of Materials Science & Engineering 11.7 Chemical Page 1269 Wednesday, December 31, 1969 17:00 Chemical Properties Table 333. CORROSION RATES OF TITANIUM AT 70˚F * (SHEET 2 OF 5) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Ammonium Citrate Ammonium Formate Ammonium Nitrate Ammonium Sulfate <0.002 <0.002 <0.05 <0.002 <0.002 <0.002 — — Amyl Acetate Aniline Hydrochloride Anthracine Barium Chloride — <0.002 — <0.002 <0.002 — <0.002 — Benzene Benzoic Acid Boric Acid Bromine (Dry) <0.002 <0.002 <0.002 — <0.002 <0.002 — >0.05 Bromine (Wet) Butyric Acid Calcium Acetate Calcium Bicarbonate — <0.002 <0.002 — >0.05 <0.002 <0.002 <0.002 Calcium Bromide Calcium Chlorate Calcium Chloride Calcium Hypochlorite — — <0.002 <0.002 <0.05 <0.002 — — Carbon Dioxide Carbon Monoxide Carbon Tetrachloride Chloroacetic Acid — — — — <0.002 <0.002 <0.002 <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1269 11.7 Chemical Page 1270 Wednesday, December 31, 1969 17:00 Chemical Properties Table 333. CORROSION RATES OF TITANIUM AT 70˚F * (SHEET 3 OF 5) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Chlorine Gas Chromic Acid Citric Acid Diethylene Glycol — <0.002 <0.002 — >0.05 — — <0.002 Ethyl Chloride Ethylene Oxide Fatty Acids Ferric Chloride — — — <0.002 <0.002 <0.002 <0.002 — Ferric Nitrate Ferrous Chloride Ferrous Sulfate Formaldehyde <0.002 <0.002 <0.002 <0.002 — — — <0.002 Formic Acid Furfural Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) <0.02 — <0.02 <0.02 <0.02 <0.002 — — Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Fluoride Hydrogen Peroxide >0.05 >0.05 — <0.002 — >0.05 <0.002 >0.05 Hydrogen Sulfide Lactic Acid Lead Acetate Magnesium Chloride — <0.002 <0.002 <0.002 <0.002 <0.002 — <0.002 * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 1270 CRC Handbook of Materials Science & Engineering 11.7 Chemical Page 1271 Wednesday, December 31, 1969 17:00 Chemical Properties Table 333. CORROSION RATES OF TITANIUM AT 70˚F * (SHEET 4 OF 5) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Malic Acid Maganous Chloride Mercuric Chloride Methyl Ethyl Ketone — <0.002 <0.002 <0.002 <0.002 — — <0.002 Methyl Isobutyl Ketone Monochloroacetic Acid Nickel Chloride Nitric Acid <0.002 — <0.02 <0.002 <0.002 <0.002 — — Nitric Acid (Red Fuming) Nitric + Hydrochloric Acid Nitric + Hydrofluoric Acid Oleic Acid — — — — <0.002 <0.02 >0.05 <0.002 Oxalic Acid Phosphoric Acid (Areated) Phosphoric Acid (Air Free) Potassium Bromide <0.02 <0.02 — <0.002 — >0.05 >0.05 — Potassium Carbonate Potassium Chlorate Potassium Cyanide Potassium Dichromate <0.002 <0.002 — <0.002 — — >0.05 — Potassium Hydroxide Potassium Hypochlorite Potassium Iodide Potassium Nitrate <0.002 <0.002 <0.002 <0.002 — — <0.002 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC Shackelford & Alexander 1271 11.7 Chemical Page 1272 Wednesday, December 31, 1969 17:00 Chemical Properties Table 333. CORROSION RATES OF TITANIUM AT 70˚F * (SHEET 5 OF 5) Corrosive Medium Corrosion Rate* in 10% Corrosive Medium (ipy) Corrosion Rate** in 100% Corrosive Medium (ipy) Potassium Nitrite Propionic Acid Quinine Sulfate Silver Bromide <0.002 — — — <0.002 >0.05 <0.002 <0.002 Silver Chloride Sodium Chloride Sodium Hydroxide Sodium Hypochlorite <0.002 <0.002 <0.002 <0.002 — — — <0.002 Sodium Nitrite Sodium Sulfide Stannic Chloride Succinic Acid <0.002 <0.002 <0.002 <0.002 — — — <0.002 Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfurous Acid Tannic Acid <0.02 — <0.002 <0.002 >0.05 >0.05 <0.002 <0.002 Tartaric Acid Trichloroacetic Acid Trichloroethylene Zinc Chloride <0.002 <0.002 — <0.002 <0.002 >0.05 <0.002 — * 10% corrosive medium in 90% water. (Other % corrosive medium in parentheses.) ** Water-free, dry or maximum concentration of corrosive medium. Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). ©2001 CRC Press LLC 1272 CRC Handbook of Materials Science & Engineering 11.7 Chemical Page 1273 Wednesday, December 31, 1969 17:00 Chemical Properties \ Table 334. CORROSION RATES OF ACI HEAT–RESISTANT CASTINGS ALLOYS IN AIR Oxidation Rate in Air (mils/yr) Alloy (870 °C) (980 °C) (1090 °C) HC HD HE HF 10 10– 5– 5– 50 50– 25– 50+ 50 50– 35– 100 HH HI HK HL 5– 5– 10– 10+ 25– 10+ 10– 25– 50 35– 35– 35 HN HP HT HU 5 25– 5– 5– 10+ 25 10+ 10– 50– 50 50 35– HW HX 5– 5– 10– 10– 35 35– Based on 100–h tests. To convert mils/yr to µm/yr multiply by 25 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p392, (1993). ©2001 CRC Press LLC Shackelford & Alexander 1273 11.7 Chemical Page 1274 Wednesday, December 31, 1969 17:00 Chemical Properties Table 335. CORROSION RATES FOR ACI HEAT–RESISTANT CASTINGS ALLOYS IN FLUE GAS Corrosion rate (mils/yr) flue gas sulfur content 0.12 g/m3 flue gas sulfur content 2.3 g/m3 Alloy Oxidizing Reducing Oxidizing Reducing HC HD HE HF 25– 25– 25– 50+ 25+ 25– 25– 100+ 25 25– 25– 50+ 25– 25– 25– 250– HH HI HK HL 25– 25– 25– 25– 25 25– 25– 25– 25 25– 25– 25– 25– 25– 25– 25– HN HP HT HU 25– 25– 25 25– 25– 25– 25– 25– 25 25– 25 25– 25 25– 100 25 HW HX 25 25– 25– 25– 50– 25– 250 25– Basd on 100–h tests. To convert mils/yr to µm/yr multiply by 25 Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p392, (1993). ©2001 CRC Press LLC 1274 CRC Handbook of Materials Science & Engineering 11.8 Chemical L Page 1275 Wednesday, December 31, 1969 17:00 Table 336. FLAMMABILITY OF (SHEET 1 OF 11) POLYMERS Polymer Type Flammability, (ASTM D635) (ipm) ABS Resins; Molded, Extruded Medium impact High impact Very high impact 1.0—1.6 1.3—1.5 1.3—1.5 Low temperature impact Heat resistant 1.0—1.5 1.3—2.0 Acrylics; Cast, Molded, Extruded Thermoset Carbonate (0.125 in.) Cast Resin Sheets, Rods: General purpose, type I General purpose, type II 0.5—2.2 0.5—1.8 Moldings: Grades 5, 6, 8 High impact grade 0.9—1.2 0.8—1.2 Allyl diglycol carbonate 0.35 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.8 Chemical L Page 1276 Wednesday, December 31, 1969 17:00 Table 336. FLAMMABILITY OF (SHEET 2 OF 11) POLYMERS Polymer Type Flammability, (ASTM D635) (ipm) Alkyds; Molded Putty (encapsulating) Rope (general purpose) Granular (high speed molding) Glass reinforced (heavy duty parts) Nonburning Self extinguishing Self extinguishing Nonburning Cellulose Acetate; Molded, Extruded ASTM Grade: H6—1 H4—1 H2—1 0.5—2.0 0.5—2.0 0.5—2.0 MH—1, MH—2 MS—1, MS—2 S2—1 0.5—2.0 0.5—2.0 0.5—2.0 ASTM Grade: H4 MH S2 0.5—1.5 0.5—1.5 0.5—1.5 Cellulose Acetate Butyrate; Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.8 Chemical L Page 1277 Wednesday, December 31, 1969 17:00 Table 336. FLAMMABILITY OF (SHEET 3 OF 11) POLYMERS Polymer Type Flammability, (ASTM D635) (ipm) Cellusose Acetate Propionate; Molded, Extruded ASTM Grade: 1 3 6 0.5—1.5 0.5—1.5 0.5—1.5 Chlorinated Polymers Chlorinated polyether Chlorinated polyvinyl chloride Self extinguishing Nonburning Polycarbonates Polycarbonate Polycarbonate (40% glass fiber reinforced) Self extinguishing Self extinguishing Orlon filled Dacron filled Asbestos filled Glass fiber filled ignition time (s) 68 s 84—90 s 70 s 70—400 s Polytrifluoro chloroethylene (PTFCE) Polytetrafluoroethylene (PTFE) Noninflammable Noninflammable Diallyl Phthalates; Molded Fluorocarbons; Molded,Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.8 Chemical L Page 1278 Wednesday, December 31, 1969 17:00 Table 336. FLAMMABILITY OF (SHEET 4 OF 11) POLYMERS Polymer Type Flammability, (ASTM D635) (ipm) Fluorocarbons; Molded,Extruded (Con’t) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polyvinylidene— fluoride (PVDF) Noninflammable Noninflammable Self extinguishing Epoxies; Cast, Molded, Reinforced Standard epoxies (diglycidyl ethers of bisphenol A) Cast rigid Cast flexible Molded 0.3-0.34 Self extinguishing General purpose glass cloth laminate High strength laminate Filament wound composite Slow burn to Self extinguishing Self extinguishing Self extinguishing High performance resins (cycloaliphatic diepoxides) Cast, rigid Molded Glass cloth laminate Self extinguishing Self extinguishing Self extinguishing Epoxies—Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.8 Chemical L Page 1279 Wednesday, December 31, 1969 17:00 Table 336. FLAMMABILITY OF (SHEET 5 OF 11) POLYMERS Polymer Type Flammability, (ASTM D635) (ipm) Melamines; Molded Filler & type Unfilled Cellulose electrical Glass fiber Alpha cellulose and mineral Self extinguishing Self extinguishing Self extinguishing Self extinguishing Type 6 General purpose Glass fiber (30%) reinforced Cast Flexible copolymers Self extinguishing Slow burn Self extinguishing Slow burn, 0.6 Type 8 Type 11 Self extinguishing Self extinguishing Nylons; Molded, Extruded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.8 Chemical L Page 1280 Wednesday, December 31, 1969 17:00 Table 336. FLAMMABILITY OF (SHEET 6 OF 11) POLYMERS Polymer Type Flammability, (ASTM D635) (ipm) Nylons; Molded, Extruded (Con’t) 6/6 Nylon General purpose molding Glass fiber reinforced Glass fiber Molybdenum disulfide filled General purpose extrusion Self extinguishing Slow burn Slow burn Self extinguishing 6/10 Nylon General purpose Glass fiber (30%) reinforced Self extinguishing Slow burn Type and filler General: woodflour and flock Shock: paper, flock, or pulp High shock: chopped fabric or cord Very high shock: glass fiber Self extinguishing Self extinguishing Self extinguishing Self extinguishing Phenolics; Molded Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.8 Chemical L Page 1281 Wednesday, December 31, 1969 17:00 Table 336. FLAMMABILITY OF (SHEET 7 OF 11) POLYMERS Polymer Type Flammability, (ASTM D635) (ipm) Phenolics; Molded (Con’t) Arc resistant—mineral Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos Self extinguishing Self extinguishing Self extinguishing Self extinguishing ABS–Polycarbonate Alloy PVC–Acrylic Alloy Polyacetals 0.9 PVC–acrylic sheet PVC–acrylic injection molded Nonburning Nonburning Polyimides Unreinforced Unreinforced 2nd value Glass reinforced IBM Class A IBM Class A UL SE—0 Homopolymer: Standard 20% glass reinforced 22% TFE reinforced 1.1 0.8 0.8 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.8 Chemical L Page 1282 Wednesday, December 31, 1969 17:00 Table 336. FLAMMABILITY OF (SHEET 8 OF 11) POLYMERS Polymer Type Flammability, (ASTM D635) (ipm) Polyacetals (Con’t) Copolymer: Standard 25% glass reinforced High flow 1.1 1 1.1 Injection Moldings: General purpose grade Glass reinforced grades Slow burn Slow burn Glass reinforced self extinguishing General purpose grade Glass reinforced grade Self extinguishing Slow burn Slow burn Cast polyyester Rigid Flexible 0.87 to self extinguishing Slow burn to self extinguishing Polyester; Thermoplastic Polyesters: Thermosets Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.8 Chemical L Page 1283 Wednesday, December 31, 1969 17:00 Table 336. FLAMMABILITY OF (SHEET 9 OF 11) POLYMERS Polymer Type Flammability, (ASTM D635) (ipm) Reinforced polyester moldings High strength (glass fibers) Heat and chemical resistant (asbestos) Sheet molding compounds, general purpose Self extinguishing Self extinguishing Self extinguishing Phenylene Oxides SE—100 SE—1 Glass fiber reinforced Self extinguishing Self extinguishing Self extinguishing Phenylene oxides (Noryl) Standard Glass fiber reinforced Self extinguishing Self extinguishing Polyarylsulfone Polypropylene: Self extinguishing General purpose High impact 0.7—1 1 Asbestos filled Glass reinforced Flame retardant 1 1 Self extinguishing Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.8 Chemical L Page 1284 Wednesday, December 31, 1969 17:00 Table 336. FLAMMABILITY OF (SHEET 10 OF 11) POLYMERS Polymer Type Flammability, (ASTM D635) (ipm) Polyphenylene sulfide: Standard 40% glass reinforced Non—burning Non—burning Polyethylenes; Molded, Extruded Type I—lower density (0.910—0.925) Melt index 0.3—3.6 Melt index 6—26 Melt index 200 1 1 1 Type II—medium density (0.926—0.940) Melt index 20 Melt index l.0—1.9 1 1 Type III—higher density (0.941—0.965) Melt index 0.2—0.9 Melt index 0.l—12.0 Melt index 1.5—15 High molecular weight 1 1 1 1 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.8 Chemical L Page 1285 Wednesday, December 31, 1969 17:00 Table 336. FLAMMABILITY OF (SHEET 11 OF 11) POLYMERS Polymer Type Flammability, (ASTM D635) (ipm) Polystyrenes; Molded Polystyrenes General purpose Medium impact High impact Styrene acrylonitrile (SAN) 1.0—1.5 0.5—2.0 0.5—1.5 0.8 Polyvinyl Chloride And Copolymers; Molded, Extruded Nonrigid—general Self extinguishing Nonrigid—electrical Rigid—normal impact Vinylidene chloride Self extinguishing Self extinguishing Self extinguishing Silicones; Molded, Laminated Fibrous (glass) reinforced silicones Granular (silica) reinforced silicones Woven glass fabric/ silicone laminate Nonburning Nonburning 0.12 Ureas; Molded Alpha—cellulose filled (ASTM Type l) Cellulose filled (ASTM Type 2) Woodflour filled Self extinguishing Self extinguishing Self extinguishing Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 11.9 Chemical Page 1286 Wednesday, December 31, 1969 17:00 Chemical Properties Table 337. FLAMMABILITY OF FIBERGLASS REINFORCED PLASTICS Class Material Glass fiber content (wt%) Glass fiber reinforced thermosets Sheet molding compound (SMC) 15 to 30 5V Bulk molding compound(BMC) Preform/mat(compression molded) Cold press molding–polyester 15 to 35 25 to 50 20 to 30 5V V–0 V–0 Spray–up–polyester Filament wound–epoxy Rod stock–polyester Molding compound–phenolic 30 to 50 30 to 80 40 to 80 5 to 25 V–0 V–0 V–0 V–0 Glass–fiber–reinforced thermoplastics Flammability (UL94) Acetal 20 to 40 HB Nylon Polycarbonate Polyethylene 6 to 60 20 to 40 10 to 40 V–0 V–0 V–0 Polypropylene Polystyrene Polysulfone ABS(acrylonitrile butadiene styrene) 20 to 40 20 to 35 20 to 40 20 to 40 V–0 V–0 V–0 V–0 PVC (polyvinyl chloride) Polyphenylene oxide(modified) SAN (styrene acrylonitrile) Thermoplastic polyester 15 to 35 20 to 40 20 to 40 20 to 35 V–0 V–0 V–0 V–0 Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994). ©2001 CRC Press LLC 1286 CRC Handbook of Materials Science & Engineering Shackelford, James F.& Alexander, W. “Selecting Structural Properties” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001 12.0 sel Structure Page 1287 Wednesday, December 31, 1969 17:00 CHAPTER 10 List of Tables Selecting Structural Properties Atomic and IonicRadii Selecting Atomic Radii of the Elements Selecting Ionic Radii of the Elements Bond Lengths and Angles Selecting Bond Lengths Between Elements Selecting Bond Angles Between Elements Density Selecting Density of the Elements ©2001 CRC Press LLC 1287 12.1 sel Structure Page 1288 Wednesday, December 31, 1969 17:00 Selecting Structural Properties Table 338. SELECTING ATOMIC RADII OF THE ELEMENTS* (SHEET 1 OF 3) Atomic Number Symbol Atomic Radius (nm) 1 8 7 6 H O N C 0.046 0.060 0.071 0.077 5 16 17 15 B S Cl P 0.097 0.106 0.107 0.109 25 4 34 14 Mn Be Se Si 0.112 0.114 0.116 0.117 35 32 26 24 Br Ge Fe Cr 0.119 0.122 0.124 0.125 27 28 33 29 Co Ni As Cu 0.125 0.125 0.125 0.128 23 30 44 45 V Zn Ru Rh 0.132 0.133 0.134 0.134 31 76 77 42 Ga Os Ir Mo 0.135 0.135 0.135 0.136 Source: After a tabulation by R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. ©2001 CRC Press LLC 1288 CRC Handbook of Materials Science & Engineering 12.1 sel Structure Page 1289 Wednesday, December 31, 1969 17:00 Selecting Structural Properties Table 338. SELECTING ATOMIC RADII OF THE ELEMENTS* (SHEET 2 OF 3) Atomic Number Symbol Atomic Radius (nm) 53 46 74 75 I Pd W Re 0.136 0.137 0.137 0.138 78 92 84 13 Pt U Po Al 0.138 0.138 0.140 0.143 41 52 47 79 Nb Te Ag Au 0.143 0.143 0.144 0.144 22 73 48 80 Ti Ta Cd Hg 0.147 0.147 0.150 0.150 3 49 40 50 Li In Zr Sn 0.152 0.157 0.158 0.158 72 10 12 21 Hf Ne Mg Sc 0.159 0.160 0.160 0.160 51 81 71 69 Sb Tl Lu Tm 0.161 0.171 0.173 0.174 Source: After a tabulation by R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. ©2001 CRC Press LLC Shackelford & Alexander 1289 12.1 sel Structure Page 1290 Wednesday, December 31, 1969 17:00 Selecting Structural Properties Table 338. SELECTING ATOMIC RADII OF THE ELEMENTS* (SHEET 3 OF 3) Atomic Number Symbol Atomic Radius (nm) 68 82 67 65 Er Pb Ho Tb 0.175 0.175 0.176 0.177 66 64 90 39 Dy Gd Th Y 0.177 0.180 0.180 0.181 62 58 60 83 Sm Ce Nd Bi 0.181 0.182 0.182 0.182 59 11 57 18 Pr Na La Ar 0.183 0.186 0.187 0.192 70 20 36 63 Yb Ca Kr Eu 0.193 0.197 0.197 0.204 38 56 54 19 Sr Ba Xe K 0.215 0.217 0.218 0.231 37 55 Rb Cs 0.251 0.265 Source: After a tabulation by R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. * The ionic radii are based on the calculations of V. M. Goldschmidt, who assigned radii based on known interatomic distances in various ionic crystals. ©2001 CRC Press LLC 1290 CRC Handbook of Materials Science & Engineering 12.1 sel Structure Page 1291 Wednesday, December 31, 1969 17:00 Selecting Structural Properties Table 339. SELECTING IONIC RADII OF THE (SHEET 1 OF 5) Ion ELEMENTS* Ionic Radius (nm) N5+ C4+ 0.01–0.2 B3+ 0.02 P5+ 0.03–0.04 Cr6+ 0.03–0.04 6+ 0.03–0.04 6+ 0.034 4+ 0.039 V5+ 0.04 Se S Si <0.02 5+ ~0.04 4+ 0.044 2+ Pd 0.050 Mn4+ 0.052 As Ge 2+ 0.052 2+ 0.054 4+ Pt 0.055 Al3+ 0.057 4+ 0.061 3+ 0.062 7+ 0.062 Ti4+ 0.064 3+ 0.064 3+ 0.065 3+ 0.065 Pt Be V Ga At Cr V Co Source: After a tabulation by R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. ©2001 CRC Press LLC Shackelford & Alexander 1291 12.1 sel Structure Page 1292 Wednesday, December 31, 1969 17:00 Selecting Structural Properties Table 339. SELECTING IONIC RADII OF THE (SHEET 2 OF 5) ELEMENTS* Ion Ionic Radius (nm) Mo6+ 0.065 4+ 0.065 4+ 0.065 6+ W 0.065 Ir4+ 0.066 2+ 0.067 4+ 0.067 6+ 0.067 Mo4+ 0.068 3+ 0.068 5+ 0.068 4+ 0.068 Ti3+ 0.069 3+ 0.069 5+ 0.069 3+ Mn 0.070 Re4+ 0.072 4+ 0.074 4+ 0.074 2+ 0.076 Li+ 0.078 Ru Rh Fe Os Po Rh Ta W As Nb Nb Sn Ti 2+ 0.078 2+ 0.078 2+ 0.082 Mg Ni Co Source: After a tabulation by R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. ©2001 CRC Press LLC 1292 CRC Handbook of Materials Science & Engineering 12.1 sel Structure Page 1293 Wednesday, December 31, 1969 17:00 Selecting Structural Properties Table 339. SELECTING IONIC RADII OF THE (SHEET 3 OF 5) ELEMENTS* Ion Ionic Radius (nm) Sc2+ 0.083 2+ 0.083 4+ 0.084 4+ Pb 0.084 Fe2+ 0.087 Zn Hf 4+ 0.087 4+ Te 0.089 Tb4+ 0.089 Sb3+ 0.090 2+ 0.091 Zr Mn In 3+ 0.091 5+ 0.094 Cu+ 0.096 + 0.098 3+ 0.099 4+ 0.100 Yb3+ 0.100 4+ 0.102 2+ 0.103 3+ 0.104 Tm3+ 0.104 3+ 0.105 I Na Lu Pr Ce Cd Er Ho 4+ 0.105 2+ 0.106 U Ca Source: After a tabulation by R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. ©2001 CRC Press LLC Shackelford & Alexander 1293 12.1 sel Structure Page 1294 Wednesday, December 31, 1969 17:00 Selecting Structural Properties Table 339. SELECTING IONIC RADII OF THE (SHEET 4 OF 5) ELEMENTS* Ion Ionic Radius (nm) Y3+ 0.106 3+ 0.106 3+ 0.106 3+ Dy 0.107 Tb3+ 0.109 Pm Tl 4+ 0.110 3+ Gd 0.111 Hg2+ 0.112 Ag+ 0.113 Th 3+ 0.113 3+ 0.113 3+ Nd 0.115 Pr3+ 0.116 3+ 0.118 Sm Eu Ce 3+ 0.118 3+ Bi 0.120 La3+ 0.122 2+ 0.127 Ac Sr 2+ 0.13 2– 0.132 Pb2+ 0.132 – 0.133 + 0.133 + 0.137 Ba O F K Au Source: After a tabulation by R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. ©2001 CRC Press LLC 1294 CRC Handbook of Materials Science & Engineering 12.1 sel Structure Page 1295 Wednesday, December 31, 1969 17:00 Selecting Structural Properties Table 339. SELECTING IONIC RADII OF THE (SHEET 5 OF 5) ELEMENTS* Ion Ionic Radius (nm) Rb+ 0.149 + 0.149 + 0.152 – H 0.154 Cs+ 0.165 2– 0.174 + 0.180 – 0.181 Se2– 0.191 – 0.196 4– 0.198 2– 0.211 Sn4– 0.215 4– 0.215 – 0.220 Tl Ra S Fr Cl Br Si Te Pb I Source: After a tabulation by R. A. Flinn and P. K. Trojan, Engineering Materials and Their Applications, Houghton Mifflin Company, Boston, 1975. * The ionic radii are based on the calculations of V. M. Goldschmidt, who assigned radii based on known interatomic distances in various ionic crystals. ©2001 CRC Press LLC Shackelford & Alexander 1295 12.1 sel Structure Page 1296 Wednesday, December 31, 1969 17:00 Selecting Structural Properties Table 340. SELECTING BOND LENGTHS BETWEEN ELEMENTS (SHEET 1 OF 2) Elements Compound Bond length (Å) O-H H2O2 0.960 ± 0.005 O-H N-H N-N OD HNCS N 3H 0.9699 1.013 ± 0.005 1.02 ± 0.01 O-H [OH]+ 1.0289 N-H ]+ 1.034 ± 0.003 N-H N-H [NH4 NH ND N=O [NO]+ 1.0619 N-N [N2]+ 1.116 1.038 1.041 N-N N2O N=O N2O 1.126 1.186 ± ± 0.002 0.002 N-O B-O B-H NO2 BO Hydrides 1.188 ± 0.005 1.2049 1.21 ± .02 O-O [O2 ]+ 1.227 N-O NO2Cl 1.24 ± 0.01 1.26 ± 0.2 ± 0.01 ± ± 0.02 0.005 (av) ]- O-O B-F B-F [O2 BF BF3 S-D S-D N-F B-O SD2 SD NF3 B(OH)3 1.262 1.29 1.345 1.3473 1.36 1.362 To convert Å to nm, multiply by 10-1 Source: from Kennard, O., in Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed., CRC Press, Boca Raton, Fla., 1988, F-167. ©2001 CRC Press LLC 1296 CRC Handbook of Materials Science & Engineering 12.1 sel Structure Page 1297 Wednesday, December 31, 1969 17:00 Selecting Structural Properties Table 340. SELECTING BOND LENGTHS BETWEEN ELEMENTS (SHEET 2 OF 2) Elements Compound B-H bridge B-N Hydrides (BClNH)3 P-H [PH4]+ PD P-D Bond length (Å) 1.39 ± .02 1.42 1.42 ± ± .01 0.02 ± ± ± 0.02 0.01 0.005 1.49 ± 0.02 ± 0.003 (av) ± 0.005 1.72 ± 0.01 1.770 1.79 1.86 1.87 ± ± ± ± 0.013 0.02 0.02 0.02 2.03 2.04 2.17 ± ± ± 1.01 (av) 0.01 1.01 2.27 2.30 ± ± 0.02 0.02 1.429 S-O S-O O-O Si-H SO2 SOCl2 H2O2 SiH4 1.4321 1.45 1.48 1.480 O-O P-N Si-O [O2]- PN 1.4910 Si-F [SiO]+ SiF4 1.504 1.561 N-Si S-F B-Cl B-Cl SiN SOF2 BCl BCl3 B-B B2H6 N-Cl NO2Cl P-S B-Br PSBr3 (Cl3,F3) BBr3 B-Br Si-Cl BBF SiCl4 S-S Si-Br S2Cl2 SiBr4 S-Br Si-Si SOBr2 [Si2Cl2] 1.572 1.585 1.715 1.88 To convert Å to nm, multiply by 10-1 Source: from Kennard, O., in Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed., CRC Press, Boca Raton, Fla., 1988, F-167. ©2001 CRC Press LLC Shackelford & Alexander 1297 12.1 sel Structure Page 1298 Wednesday, December 31, 1969 17:00 Selecting Structural Properties Table 341. SELECTING Bond BOND ANGLES BETWEEN ELEMENTS Compound Bond angle (•) F-S-F SOF2 Br-S-Br O-O-H F-N-F SOBr2 H2O2 NF3 92.8 96 100 102.5 ± ± ± ± 1 2 2 1.5 H-N-N’ O-S-O O-B-O Br-B-Br N3H SO2 B(OH)3 BBr3 112.65 119.54 119.7 120 ± 0.5 ± 6 Cl- B-Cl F-B-F B-N-B H-B-H BCl3 BF3 (BClNH)3 B2H6 120 120 121 121.5 ± 3 ± 7.5 O-N-O H-N-C O-N-O NO2Cl HNCS NO2 126 ± 2 130.25 ± 0.25 134.1 ± 0.25 Source: from Kennard, O., in Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed., CRC Press, Boca Raton, Fla., 1988, F-167. ©2001 CRC Press LLC 1298 CRC Handbook of Materials Science & Engineering 12.1 sel Structure Page 1299 Wednesday, December 31, 1969 17:00 Selecting Structural Properties Table 342. SELECTING DENSITY OF THE (SHEET 1 OF 3) ELEMENTS Element At. No. Sym. Solid Density (Mg/m3) Lithium Potassium Sodium Calcium 3 19 11 20 Li K Na Ca 0.533 0.862 0.966 1.53 Rubidium Magnesium Phosphorus (White) 37 12 Rb Mg 1.53 1.74 15 P 1.82 Beryllium Cesium Sulfur Carbon 4 55 16 6 Be Ce S C 1.85 1.91 2.09 2.27 Silicon Boron Strontium Aluminum 14 5 38 13 Si B Sr Al 2.33 2.47 2.58 2.7 Scandium Barium Yttrium Titanium 21 56 39 22 Sc Ba Y Ti 2.99 3.59 4.48 4.51 Selenium Iodine Europium Germanium 34 53 63 32 Se I Eu Ge 4.81 4.95 5.25 5.32 Arsenic Gallium Vanadium Lanthanum 33 31 23 57 As Ga V La 5.78 5.91 6.09 6.17 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988). ©2001 CRC Press LLC Shackelford & Alexander 1299 12.1 sel Structure Page 1300 Wednesday, December 31, 1969 17:00 Selecting Structural Properties Table 342. SELECTING DENSITY OF THE (SHEET 2 OF 3) ELEMENTS Element At. No. Sym. Solid Density (Mg/m3) Tellurium Zirconium Antimony Cerium 52 40 51 58 Te Zr Sb Ce 6.25 6.51 6.69 6.77 Praseodymium Ytterbium Neodymium Zinc 59 70 60 30 Pr Yb Nd Zn 6.78 6.97 7.00 7.13 Chromium Indium Tin Manganese 24 49 50 25 Cr In Sn Mn 7.19 7.29 7.29 7.47 Samarium Iron Gadolinium Terbium 62 26 64 65 Sm Fe Gd Tb 7.54 7.87 7.87 8.27 Dysprosium Niobium Cadmium Cobalt 66 41 48 27 Dy Nb Cd Co 8.53 8.58 8.65 8.8 Holmium Nickel Copper Erbium 67 28 29 68 Ho Ni Cu Er 8.80 8.91 8.93 9.04 Polonium Thulium Bismuth Lutetium 84 69 83 71 Po Tm Bi Lu 9.2 9.33 9.80 9.84 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988). ©2001 CRC Press LLC 1300 CRC Handbook of Materials Science & Engineering 12.1 sel Structure Page 1301 Wednesday, December 31, 1969 17:00 Selecting Structural Properties Table 342. SELECTING DENSITY OF THE (SHEET 3 OF 3) ELEMENTS Element At. No. Sym. Solid Density (Mg/m3) Molybdenum Silver Lead Technetium 42 47 82 43 Mo Ag Pb Tc 10.22 10.50 11.34 11.5 Thorium Thallium Palladium Ruthenium 90 81 46 44 Th Tl Pd Ru 11.72 11.87 12.00 12.36 Rhodium Hafnium Tantalum Uranium 45 72 73 92 Rh Hf Ta U 12.42 13.28 16.67 19.05 Tungsten Gold Plutonium Rhenium 74 79 94 75 W Au Pu Re 19.25 19.28 19.81 21.02 Platinum Iridium Osmium 78 77 76 Pt Ir Os 21.44 22.55 22.58 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988). ©2001 CRC Press LLC Shackelford & Alexander 1301 Shackelford, James F. et al. “Selecting Thermodynamic and Kinetic Properties” Materials Science And Engineering Handbook Ed. James F. Shackelford, et al. Boca Raton: CRC Press LLC, 2001 13.0 sel Thermodynamics Page 1303 Wednesday, December 31, 1969 17:00 CHAPTER 11 List of Tables Selecting Thermodynamic and Kinetic Properties Bond Strengths Selecting Bond Strengths in Diatomic Molecules Selecting Bond Strengths of Polyatomic Molecules Heat of Formation Selecting Heat of Formation of Inorganic Oxides Specific Heat Selecting Specific Heat of Elements Selecting Specific Heat of Polymers Melting Points Selecting Melting Points of The Elements Selecting Melting Points of Elements and Inorganic Compounds Selecting Melting Points of Ceramics Heat of Fusion Selecting Heat of Fusion For Elements and Inorganic Compounds Entropy Selecting Entropy of the Elements Diffusion Activation Energy Selecting Diffusion Activation Energy in Metallic Systems ©2001 CRC Press LLC 1303 13.1 sel Thermodynamics Page 1304 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 1 OF 18) Molecule kcal • mol-1 Ar–Ar N–I Mg–I Xe–Xe 0.2 ~.38 ~.68 ~ 0.7 Hg–Tl Cd–Cd Ga–Ga Mn–Mn 1 2.7 3 4 Ga–Ag Hg–Hg Zn–Zn Mg–Mg 4 4.1 7 8? ±3 ± 0.5 O–Xe I–Hg H–Hg F–Xe 9 9 9.5 11 ±5 Cs–Cs Rb–Rb K–K Na–Rb 11.3 12.2 12.8 14 Tl–Tl Na–K H–Cd Be–Be 15? 15.2 16.5 17 Br–Hg Ca–Au Na–Na At–At 17.3 18 18.4 19 Range ± 0.2 ±3 ±3 ±1 ± 0.7 ± 0.1 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC 1304 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1305 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 2 OF 18) Molecule kcal • mol-1 Range H–Zn As–Se In–In Cl–Hg 20.5 23 23.3 24 ± 0.5 Fe–Fe Pb–Pb Li–Li Sc–Sc 24 24 24.55 25.9 ±5 ±5 ± 0.14 ±5 Cl–Ti F–Hg Au–Pb Pb–Bi 26 31 31 32 ± 2 ±9 ± 23 ±5 Ag–Sn Zn–Se Zn–I Cd–I 32.5 33 33 33 ±5 ±3 ±7 ±5 Pd–Pd Ti–Ti Pd–Au In–Sb 33? 34 34.2 36.3 ±5 ±5 ± 2.5 I–I Cr –Cu Cr–Cr F–F 36.460 37 <37 37.5 ± 0.002 ±5 H–Yb Br–Cd Ba–Au Y–Y 38 ~38 38 38.3 ±1 ± 2.5 ± 2 ± 2.3 ± 14 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC Shackelford & Alexander 1305 13.1 sel Thermodynamics Page 1306 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 3 OF 18) Molecule kcal • mol-1 Range H–Sr Co–Cu H–Rb Co–Co 39 39 40 40 ±2 ±5 ±5 ±6 H–Ca Cr–Ge Ag–Ag Cu–Ag 40.1 41 41 41.6 ±7 ±2 ± 2.2 H–Ba H–Pb Cu–Te Cu–Sn 42 42 42 42.3 ±4 ±5 ±9 ±4 H–Cs Br–I H–K Al–Al 42.6 42.8 43.8 44 ± 0.9 ± 0.1 ± 3.5 Mn–Au Po–Po H–Ti Fe–Au 44 44.4 45 45 ±3 ± 2.3 ±2 ±4 Bi–Bi Bi–Br Cu–Cu Sn–Sn 45 46.336 46.6 46.7 ±2 ± 0.001 ± 2.2 ±4 H–Mg O–I Bi–Sn I–Pb 47 47 47 47 ± 12 ±7 ± 23 ±9 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC 1306 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1307 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 4 OF 18) Molecule kcal • mol-1 Cu–I H–Na S–Cd Mn–Se 47? 48 48 48 Ni–Cu Y–La Ag–Au S–Zn 48 48.3 48.5 49 Cu–Ge Zn–Te Cl–Cd C–I 49 49? 49.9 50 ±5 Fe–Ge Ga–As Cl–I O–Ag 50 50.1 50.5 51 ±7 ± 0.3 ± 0.1 ± 20 S–Hg Co–Au Ga–Au Cr–Au 51 51 51 51.3 ±3 ± 23 ± 3.5 Al–P In–Te I–Bi Cl–Br 52 52 52 52.3 ±3 ±4 ±1 ± 0.2 Au–Au H–Be Cl–Zn N–Xe 52.4 54 54.7 55 ± 2.2 Range ±5 ±3 ±5 ± 2.2 ±3 ±5 ± 4.7 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC Shackelford & Alexander 1307 13.1 sel Thermodynamics Page 1308 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 5 OF 18) Molecule kcal • mol-1 Range Cu–Au Ni–Ni F–Br H–Mn 55.4 55.5 55.9 56 ± 2.2 ±5 O–F O–Pd P–Ga Ag–I 56 56 56 56 ±9 ±7 Te–Bi Mg–S O–Br H–Li 56 56? 56.2 56.91 ±3 ± 0.6 ± 0.01 O–K Co–Ge V–V Te–Eu 57 57 58 58 ±8 ±6 ±5 ±4 Cl–Cl Sn–Au La–Ld H–Ag 58.066 58.4 58.6 59 ± 0.001 ±4 H–In H–Bi Mg–Au Fe–Br 59 59 59 59 ±2 ±7 ± 23 ± 23 Ni–Au Se–in Br–Pb Te–Au 59 59 59 59 ±5 ±4 ±9 ± 16 ±7 ±7 ±1 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC 1308 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1309 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 6 OF 18) Molecule kcal • mol-1 Range F–Cl Ga–Te Sb–Bi Te–Pb 59.9 60 60 60 ± 0.1 ± 6 ±1 ±3 O–Rb H–Ni O–Na Ge–Br (61) 61 61 61 ± 20 ±7 ±4 ±7 Sb–Te F–Bi Te–Ho N–F 61 62 62 62.6 ±4 ±4 ± 0.8 H–Sn Sr–Au Te–Te Br–Bi 63 63 63.2 63.9 ±1 ± 23 ± 0.2 ±1 H–Te Se–Te O–Cl H–As 64 64 64.29 65 ±1 ±2 ± 0.03 ±3 Al–Au I–Ti Ge–Ge Si–Co 65 65 65.8 66 ±2 ±3 ±4 Ce–Ce O–Zn O–Cd B–B 66 ≤ 66 ≤ 67 ~ 67 ±1 ±5 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC Shackelford & Alexander 1309 13.1 sel Thermodynamics Page 1310 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 7 OF 18) Molecule kcal • mol-1 Range Be–Au H–Cr H –Cu C–Br ~ 67 67 67 67 ± 12 ±2 ±5 N–Br O–Cs Se–Bi F–I 67 67 67.0 67? ±5 ±8 ± 1.5 Ni–Ge Mn–I H–Al H –Ga 67.3 67.6 68 68 ±4 ± 2.3 ±2 ±5 O–Ga Cr–I S–In Th–Th 68 68.6 69 <69 ± 15 ± 5.8 ±4 P–S Ca–I Ni–I Cu–Se 70 70 70 70 ± 23 ±5 ±9 Ge–Au Br–Ag Ag–Te Nd–Au 70 70 70 70 ± 23 ±7 ± 23 ±6 B–Th N–Al Si–Fe H–Si 71 71 71 71.4 ± 23 ±6 ± 1.2 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC 1310 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1311 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 8 OF 18) Molecule kcal • mol-1 Range H–I Sb–Sb N–Sb Si–Ge 71.4 71.5 72 72 ± 0.2 ± 1.5 ± 12 ±5 S–Mn S–Cu Cl–Pb Cl–Bi 72 72 72 72 ±4 ± 12 ±7 ±1 Se–Eu Se–Pb Na–I H–Se 72 72.4 72.7 73 ±4 ±1 ±1 ±1 F–Cd P–W Te–Nd Pr–Au 73 73 73 74 ±5 ±1 ±4 ±5 H–N H–Au Si–Pd Si–Au 75 75 75 75 ±4 ±3 ±4 ±3 Mg–Br S–Ca S–Sr Cl–Ag 75 75 75 75 ± 23 ±5 ±5 ±9 Se–Cd Br–Sb CI–Sn Mn–Br ~75 75 75? 75.1 ± 14 ± 23 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC Shackelford & Alexander 1311 13.1 sel Thermodynamics Page 1312 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 9 OF 18) Molecule kcal • mol-1 Range S–Bi Si–Si Si–Ni Mg–Cl 75.4 76 76 76 ± 1.1 ±5 ±4 ±3 Sn–Te Ce–Au Au–U Rb–I 76 76 76 76.7 ±1 ±4 ±7 ±1 H–Ge K–I O–In Li–O 76.8 76.8 ≤ 77 78 ± 0.2 ± 0.5 Al–U S–Fe Te–Lu Cr–Br 78 78 78 78.4 ±7 H–B B–Pd O–Mg Al–S 79 79 79 79 Cl–Sc Cu–Br Se–Se Br–Ti 79 79 79.5 79.8 Se–Ho In–I La–Au H–C 80 80 80 80.9 ±6 ±4 ±5 ±1 ±5 ±7 ±65 ± 0.1 ± 0.4 ±4 ±5 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC 1312 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1313 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 10 OF 18) Molecule kcal • mol-1 Range S–Te Ga–I O–Bi H–P 81 81 81.9 82 ±5 ±2 ± 1.5 ±7 B–Au O–Cu Si–Br Cl–Y 82 82 82 82 ±4 ± 15 ± 12 ± 23 Cl–Au Cl–Ra Te–Gd Cl–Ge 82 82 82 82? ± 2 ± 18 ±4 H–S I–Cs S–Pb O–Pt 82.3 82.4 82.7 83 ± 2.9 ±1 ± 0.4 ±8 H–Pt O–Ca Cl–Cu Cl–Fe 84 84 84 84? ±9 ±7 ±6 Li–I F–Ag B–Te F–Pb 84.6 84.7 85 85 ±2 ± 3.9 ±5 ±2 Cl–Sb Ni–Br Cl–Mn Na–Br 86 86 86.2 86.7 ± 12 ±3 ± 2.3 ±1 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC Shackelford & Alexander 1313 13.1 sel Thermodynamics Page 1314 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 11 OF 18) Molecule kcal • mol-1 Range S–Eu H–Br Cl–Cr O–Co 87 87.4 87.5 88 ±4 ± 0.5 ± 5.8 ±5 F–Cu Al–I Be–S O–Ni 88 88 89 89 ±9 ± 14 ±5 O–Sb F–Ni Cl–Ni Cl–Ti 89 89 89 89.0 ± 20 ±4 ±5 ± 0.5 O–Rh P–Th O–Pb Br–Rb 90 90 90.3 90.4 ± 15 K–Br S–Se Te–La As–As 90.9 91 91 91.7 ± 0.5 ±5 ±4 Se–Nd Be–Cl B–N C–Cl 92 92.8 93 93 ±4 ± 2.2 ± 12 N–Cl O–Sr Ge–Te Br–In 93 93 93 93 ± 12 ±6 ±2 ± 1.0 ±1 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC 1314 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1315 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 12 OF 18) Molecule kcal • mol-1 Range O–Fe O–Ir Si–Ru Si–Rh 93.4 ≤ 94 95 95 ±2 Cl–Ca Se–Sn O–Mn O–Fe 95 95.9 96 96 ±3 ± 1.4 ±8 ±5 S–Ba Br–Cs Cl–Sr Na–Cl 96 96.5 97 97.5 ±5 ±1 ±3 ± 0.5 Be–O O–Yb S–Au Se–Lu 98 98 100 100 ±7 ± 15 ±6 ±4 B–Ce Li–Br Cl–Rb B–Br ~ l00 100.2 100.7 101 ±2 ±1 ±5 O–Se Ga–Br F–Mn Cl–K 101 101 101.2 101.3 ±4 ± 3.5 ± 0.5 S–S S–Ho H–O Se–Gd 101.9 102 102.34 103 ± 2.5 ±4 ± 0.30 ±4 ±5 ±5 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC Shackelford & Alexander 1315 13.1 sel Thermodynamics Page 1316 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 13 OF 18) Molecule kcal • mol-1 Range H–Cl Al–Br Cl–In C–Si 103.1 103.1 103.3 104 ±5 H–H F–Cr N–Si N–Se 104.207 104.5 105 105 ± 0.001 ± 4.7 ±9 ± 23 F–P Si–Cl F–Sb H–D 105 105 105 105.030 ± 23 ± 12 ± 23 ± 0.001 Cl–Ba D–D Cl–Cs F–Ti 106 106.010 106.2 106.4 ±3 ± 0.001 ± 1 ± 4.6 B–Ru C–Ce B–Se C–Ge 107 109 110 110 ±5 ±7 ±4 ±5 O–Cr F–Mg Si–Ir C–U 110 110 110 111 ± 10 ±1 ±5 ±7 N–Ti S–Sn F–Sn Li–Cl 111 111 111.5 111.9 ±1 ±3 ±2 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC 1316 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1317 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 14 OF 18) Molecule kcal • mol-1 Range S– Nd B–Rh B–Pt F–Na 113 114 114 114 ±4 ±5 ±4 ±1 S–Sc Ge–Se Se–La Cl–Ga 114 114 114 114.5 ±3 ± ±4 O–As O–Mo O–Ru N–As 115 115 115 116 ±3 ± 12 ± 15 ± 23 O–Al F–Si F–Ge F–Rb 116 116 116 116.1 ±5 ± 12 ±5 ±1 P–P O–O F–K B–Cl 117 118.86 118.9 119 ±3 ± 0.04 ± 0.6 Al–Cl O–P F–Cs N–S 119.0 119.6 119.6 ~ 120 ±1 ±3 ±1 ±6 Si–Pt Si–Te F–In S–Lu 120 121 121 121 ±5 ±9 ±4 ±4 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC Shackelford & Alexander 1317 13.1 sel Thermodynamics Page 1318 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 15 OF 18) Molecule kcal • mol-1 Range O–Tm S–Pr B–Ir O–S 122 122.7 123 124.69 ± 15 ±4 ± 0.03 F–Ca S–Gd F–Eu F–Sm 125 126 126.1 126.9 ±5 ±4 ± 4.4 ± 4.4 N–U O–Sn Si–Se S–Y 127 127 127 127 ±1 ±2 ±4 ±3 C–F C–Ti F–Pu F–Sr 128 ~128 129 129.5 ±5 ±7 ± 1.6 O–Eu F–Nd O–Ba S–Ge 130 130 131 131.7 ± 10 ±3 ±6 ± 0.6 C–V O–Sm O–Cm S–U 133 134 ≤ 134 135 H–F Be–F F–Ti S–La 135.9 136 136 137 ±8 ±2 ± 0.3 ±2 ±8 ±3 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC 1318 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1319 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 16 OF 18) Molecule kcal • mol-1 Range S–Ce Li– F N–Th F–Ga 137 137.5 138 138 ±3 ±1 ±1 ±4 B–S C–P C–Se C–Rh 138.8 139 139 139 ± 2.2 ± 23 ± 23 ±2 F–Ba F–Sc F–Gd O–Os 140.3 141 141. < 142 ± 1.6 ±3 ± 46.5 C–C F–Y C–Pt O–Dy 144 144 146 146 ±5 ±5 ±2 ± 10 O–Er N–P Si–S C–Ir 147 148 148 149 ± 10 ±5 ±3 ±3 O–Ho N–O C–Ru O–V 149 150.8 152 154 ± 10 ± 0.2 ±3 ±5 O–Sc O–W O–Ti O–Ge 155 156 158 158.2 ±5 ±6 ±8 ±3 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC Shackelford & Alexander 1319 13.1 sel Thermodynamics Page 1320 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 17 OF 18) Molecule kcal • mol-1 Range O–Lu F–Al O–Y O–Gd 159 159 162 162 ±8 ±3 ±5 ±6 O–Pu O–Tb O–Nd O–Np 163 165 168 172 ± 15 ±8 ±8 ±7 C–S B–F O–Zr O–U 175 180 181 182 ±7 ±3 ± 10 ±8 O–Ta O–Pr C–N O–Si 183 183.7 184 184 ± 15 O–Hf O–La O–Ce O–Nb 185 188 188 189 ± 10 ±5 ±6 ± 10 ±1 ±3 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. ©2001 CRC Press LLC 1320 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1321 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 343. SELECTING BOND STRENGTHS IN DIATOMIC MOLECULES * (SHEET 18 OF 18) Molecule kcal • mol-1 Range O–Th B–O N–N C–O 192 192.7 226.8 257.26 ± 10 ± 1.2 ± 1.5 ± 0.77 To convert kcal to KJ, multiply by 4.184. Source: from Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F-204. * The strength of a chemical bond, ∆(R - X), often known as the bond dissociation energy, is defined as the heat of the reaction: RX -> R + X. It is given by: ∆(R - X) = ∆Hf˚(R) + ∆Hf˚(X) - ∆Hf˚(RX). Some authors list bond strengths for 0 K, but here the values for 298K are given because more thermodynamic data are available for this temperature. Bond strengths, or bond dissociation energies, are not equal to, and may differ considerable from, mean bond energies derived solely from thermochemical data on molecules and atoms. The values in this table have usually been measured spectroscopically or by mass spectrometric analysis of hot gases effusing from a Knudsen cell. ©2001 CRC Press LLC Shackelford & Alexander 1321 13.1 sel Thermodynamics Page 1322 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 344. SELECTING BOND STRENGTHS OF POLYATOMIC MOLECULES * Bond (SHEET 1 OF 6) Strength Kcal • mol –1 NO – NO2 NO2 – NO2 NF2 – NF2 CH3CO2 – O2CCH3 9.5 12.9 21 30.4 ± 0.5 ± 0.5 ±1 ±2 C2H5CO2 – O2CC2H5 n -C3H7CO2 – O2Cn –C3H7 Cl – NF2 BH3–BH3 30.4 30.4 32 35 ±2 ±2 CH3 –Tl(CH3)2 s -C4H9O – O s –C4H9 (CH3)3CCH2O – OCH2C(CH3)3 CH3O – OCH3 36.4 36.4 36.4 36.9 ± 0.6 ±1 ±1 ±1 i –C3H7O – O i –C3H7 n –C3H7O – O n –C3H7 C2H5O – OC2H5 t –C4H9O – O t –C4H9 37.0 37.2 37.3 37.4 ±1 ±1 ± 1.2 ±1 C6H5CH2N:N–C6H5CH2 O – N2 i –C3H7 – Hg i –C3H7 CH2 = N2 37.6 40 40.7 41.7 ±1 HO – OC(CH3)3 t –C4H9N:N–t –C4H9 F – OCF3 C2H5 – HgC2H5 42.5 43.5 43.5 43.7 ± 0.5 ±1 To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213. ©2001 CRC Press LLC 1322 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1323 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 344. SELECTING BOND STRENGTHS OF POLYATOMIC MOLECULES * Bond (SHEET 2 OF 6) Strength Kcal • mol –1 s –C4H9N:N–s –C4H9 n –C3H7 – Hg n –C3H7 i –C3H7N:N–i –C3H7 i –C4H9N:N–i –C4H9 46.7 47.1 47.5 49.0 CH3 – Pb(CH3)3 Allyl–O2SCH3 HO – N:CHCH3 C2H5N:N–C2H5 49.4 49.6 49.7 50.0 n –C4H9N:N–n –C4H9 HO – OH NH2 – NHC6H5 50.0 51 51.1 CH3N:N – CH3 52.5 C6H5CH2 – O2SCH3 I – CF3 C6H5CH2 – SCH3 52.9 53.5 53.8 CH3 – CdCH3 54.4 CF3N:N – CF3 Br – OH I – OH Br – CBr3 55.2 56 56 56.2 I – CH3 CH3 – HgCH3 56.3 57.5 O – O2CIF 58.4 ClO3 – ClO4 58.4 ±1 ±1 ±2 ±3 ±3 ± 1.8 ±1 To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213. ©2001 CRC Press LLC Shackelford & Alexander 1323 13.1 sel Thermodynamics Page 1324 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 344. SELECTING BOND STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 3 OF 6) Strength Kcal • mol –1 Bond O – ClO (C6H5CH2)2CH–COOH 59 59.4 CH3 – Ga(CH3)2 59.5 C6H5C(CH3 )(CN) – CH3 59.9 C6H5S – CH3 Cl – OH C6H5CH2 – N(CH3)2 60 60 60.9 C2H5 – NO2 62 1–norbornyl NH2 – N(CH3)2 62.5 62.7 Br – COC6H5 64.2 NH2 – NHCH3 64.8 CF3 – NF2 65 C6H5N(CH2) – CH3 65.2 C6H5CH2CO – CH2C6H5 65.4 C6H5CO – COC6H5 66.4 Br –n –C3F 66.5 CH3 – O2SCH3 66.8 C6H5CH2–n –C3H7 67 C6H5CH2 – O2CCH3 67 CH3CO – COCH3 67.4 C6H5NH–CH3 67.7 C6H5 – HgC6H5 68 C6H5CH2 – COOH 68.1 ±3 ±3 ±1 ± 2.5 ± 2.5 ± 2.5 ±2 ± 2.3 To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213. ©2001 CRC Press LLC 1324 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1325 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 344. SELECTING BOND STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 4 OF 6) Strength Kcal • mol –1 Bond C6H5CH2 – NHCH3 68.7 ±1 Br – C2F5 68.7 ± 1.5 ±2 C6H5CH2–C2H5 69 C6H5CH2 – O2CC6H5 69 CH3–C(CH3)2CH:CH2 Br – CH3 CH3–C(CH3)2CN Br – CF3 69.4 70.0 70.2 70.6 ± 1.2 ±2 ± 1.0 ±2 NH2 – NH2 70.8 C6H5CH(CH3) – CH3 71 C6H5CH2 –NH2 71.9 ±1 CH3–CH2CN 72.7 ±2 Cl – CCl2F I – CN O – NO 73 73 73 73.8 ±2 ±1 Cl – COC6H5 74 ±3 CF2 = CF2 H–ONO H–pentadien–1,4–yi–3 76.3 78.3 80 ±3 ± 0.5 ±1 (CH3)3Si – Si(CH3)3 80.5 SiH3 – SiH3 H–cyclopentadien–1,3–yl–5 Cl – C2F5 81 81.2 82.7 C6H5CO – CF3 ±4 ± 1.2 ± 1.7 To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213. ©2001 CRC Press LLC Shackelford & Alexander 1325 13.1 sel Thermodynamics Page 1326 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 344. SELECTING BOND STRENGTHS OF POLYATOMIC MOLECULES * (SHEET 5 OF 6) Strength Kcal • mol –1 Bond H–methdllyl Br – CN Cl – CF3 H–OC6H5 83 83 86.1 88 ±1 ±1 ± 0.8 ±5 H3C–CH3 88 ±2 CH2F – CH2F H–SCH? H–allyl 88 ≥ 88 89 ±2 ±1 H–O2H H–SH H–Si(CH3)3 90 90 90 ±2 ±2 ±3 H–t–C4H9 92 ± 1.2 H–propargyl H–SiH3 H–i–C3H7 93.9 94 95 ± 1.2 ±3 ±1 H–s–C4H9 95 ±1 H–cyclobutyl CF3 – CF3 Cl – CN H–cyclopropycarbinyl 96.5 96.9 97 97.4 ±1 ±2 ±1 ± 1.6 H–C2H5 98 ±1 H–n–C3H7 H–cyclopropyl H–ONO2 98 100.7 101.2 ±1 ±1 ± 0.5 To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213. ©2001 CRC Press LLC 1326 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1327 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 344. SELECTING BOND STRENGTHS OF POLYATOMIC MOLECULES * Bond (SHEET 6 OF 6) Strength Kcal • mol –1 H–CH H–O2Cn–C3H7 F – CH3 H–OCH3 102 103 103 103.6 ±2 ±4 ±3 ±1 H–OC2H5 H–CH3 103.9 104 104.7 ≥ 108 ±1 ±1 ±1 ±2 H–O2CC2H3 110 110 ±2 ±4 H–O2CCH3 H–OH 112 119 ±4 ±1 O = PBr3 O = PCl3 O=CO H–ethynyl 119 122 127.2 128 ±5 ±5 ± 0.1 ±5 NC–CN O = PF3 O – SO H2C=CH2 128 130 132 172 ±1 ±5 ±2 ±2 HC=CH 230 ±2 H–OC(CH3)3 H–vinyl H–CH2 To convert kcal to KJ, multiply by 4.184. Source: data from: Kerr, J. A., Parsonage, M. J., and Trotman–Dickenson, A. F., in Handbook of Chemistry and Physics, 55th ed., Weast, R. C., Ed., CRC Press, Cleveland, 1974, F–213. * The values refer to a temperature of 298 K and have mostly been determined by kinetic methods. Some have been calculated from formation of the species involved according to equations: D(R–X) = ∆Hf˚ (R•) + ∆Hf˚(X•) – ∆Hf˚ (RX) or D(R–X) = 2∆Hf˚ (R•) – ∆Hf˚ (RR) ©2001 CRC Press LLC Shackelford & Alexander 1327 13.1 sel Thermodynamics Page 1328 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 345. SELECTING HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 1 OF 9) Reaction Temperature Range of Validity ∆H0 6 V(c) + 13/2 O2(g) = V6O13(c) 3 U(l) + 4 O2(g) = U3O8(c) 3 U(α) + 4 O2(g) = U3O8(c) 3 U(γ) + 4 O2(g) = U3O8(c) 298.16–1,000K 1,405–1,500K 298.16–935K 1,045–1,405K –1,076,340 –869,460 –863,370 –863,230 3 U(β) + 4 O2(g) = U3O8(c) 935–1,045K 298.16–1,700K 298.16–317.4K 298.16–2,000K –856,720 –745,730 –711,520 –492,790 1,785–2,000K 298.16–1,785K 298.16–1,000K 1,048–1,900K –463,630 –458,640 –446,090 –440,400 298.16–1,048K 298.16–1,773K 931.7–2,000K 298.16–931.7K –435,600 –419,600 –407,950 –404,080 298.16–2,000K 298.16–943K 473–1,150K 298.16–473K –382,050 –381,960 –369,710 –360,660 345–1,818K 209.16–345K 298.16–1,000K 298.16–723K –345,330 –342,890 –332,400 –304,690 4W(c) + 11/2 O2(g) = W4O11(c) 4 P (white) + 5 O2(g) = P4H10 (hexagonal) 2 Ta(c) + 5/2 O2(g) = Ta2O5(c) 2 Nb(c) + 5/2 O2(g) = Nb2O5(l) 2 Nb(c) + 5/2 O2(g) = Nb2O5(c) 2 Ac(c) + 3/2 O2(g) = Ac2O3(c) 2 Ce(l) + 3/2 O2(g) = Ce2O3(c) 2 Ce(c) + 3/2 O2(g) = Ce2O3(c) 2 Y(c) + 3/2 O2(g) = Y2O3(c) 2 Al(l) + 3/2 O2(g) = Al2O3 (corundum) 2 Al(c) + 3/2 O2(g) = Al2O3 (corundum) 2 Nb(c) + 2 O2(g) = Nb2O4(c) 2 V(c) + 5/2 O2(g) = V2O5(c) 2 Ti(α) + 3/2 O2(g) = Ti2O3(β) 2 Ti(α) + 3/2 O2(g) = Ti2O3(α) 2 V(c) + 2 O2(g) = V2O4(β) 2 V(c) + 2 O2(g) = V2O4(α) 3 Mn(α) + 2 O2(g) = Mn3O4(α) 2 B(c) + 3/2 O2(g) = B2O(c) The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 1328 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1329 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 345. SELECTING HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 2 OF 9) Reaction 2 Re(c) + 7/2 07(g) = Re2O7(c) 2 V(c) + 3/2 O2(g) = V2O3(c) 2 B(c) + 3/2 O2(g) = B2O3(gl) 2 Re(c) + 7/2 07(g) = Re2O7(l) Th(c) + O2(g) = ThO2(c) U(α) + 3/2 O2(g) = UO3 (hexagonal) U(γ) + 3/2 O2(g) = UO3 (hexagonal) U(β) + 3/2 O2(g) = UO3 (hexagonal) 2 Cr(l) + 3/2 O2(g) = Cr2O3(β) 3 Fe(γ) + 2 O2(g) = Fe3O4(β) 2 Cr(c) + 3/2 O2(g) = Cr2O3(β) 3 Fe(α) + 2 O2(g) = Fe3O4(β) Hf(c) + O2(g) = HfO2 (monoclinic) 3 Fe(α) + 2 O2(g) = Fe3O4(magnetite) U(l) + O2(g) = UO2(l) Zr(β) + O2(g) = ZrO2(α) 3 Fe(β) + 2 O2(g) = Fe3O4(β) Zr(α) + O2(g) = ZrO2(α) U(α) + O2(g) = UO2(c) U(γ) + O2(g) = UO2(c) Zr(β) + O2(g) = ZrO2(β) U(β) + O2(g) = UO2(c) Ce(l) + O2(g) = CeO2(c) Ce(c) + O2(g) = CeO2(c) Temperature Range of Validity ∆H0 298.16–569K 298.16–2,000K 298.16–723K 569–635.5K –301,470 –299,910 –298,670 –295,810 298.16–2,000K 298.16–935K 1,045–1,400K 935–1,045K –294,350 –294,090 –294,040 –291,870 1,823–2,000K 1,179–1,674K 298.16–1,823K 900–1,033K –278,030 –276,990 –274,670 –272,300 298.16–2,000K 298.16–900K 1,405–1,500K 1,135–1,478K –268,380 –268,310 –264,790 –264,190 1,033–1,179K 298.16–1,135K 298.16–935K 1,045–1,405K –262,990 –262,980 –262,880 –262,830 1.478–2,000K 935–1,045K 1,048–2,000K 298.16–1,048K –262,290 –260,660 –247,930 –245,490 The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC Shackelford & Alexander 1329 13.1 sel Thermodynamics Page 1330 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 345. SELECTING HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 3 OF 9) Reaction 2 Mn(α) + 3/2 O2(g) = Mn2O3(c) Si(l) + O2(g) = SiO2(l) Ti(α) + O2(g) = TiO2 (rutile) Ti(α) + O2(g) = TiO2 (rutile) 2 As(c) + 5/2 O2(g) = As2O5(c) Si(c) + O2(g) = SiO2(α–quartz) Si(c) + O2(g) = SiO2(β–quartz) Si(c) + O2(g) = SiO2(β–cristobalite) Si(c) + O2(g) = SiO2(β–tridymite) Si(c) + O2(g) = SiO2(α–cristobalite) Si(c) + 02(g ) = SiO2(α–tridymite) W(c) + 3/2 O2(g) = WO3(l) 2 Fe(α) + 3/2 O2(g) = Fe2O3(β) 2 Fe(γ) + 3/2 O2(g) = Fe2O3(γ) W(c) + 3/2 O2(g) = WO3(c) 2 Fe(α) + 3/2 O2(g) = Fe2O3(hematite) 2 Fe(β) + 3/2 O2(g) = Fe2O3(β) 2 Fe(β) + 3/2 O2(g) = Fe2O3(γ) 2 Fe(α) + 3/2 O2(g) = Fe2O3(γ) Mo(c) + 3/2 O2(g) = MoO3(c) Mg(g) + 1/2 O2(g) = MgO (periclase) 3 Pb(c) + 2 O2(g) = Pb3O4(c) 2 Sb(c) + 3/2 O2(g) = Sb2O3 (cubic) 2 Sb(c) + 3/2 O2(g) = Sb2O3 (orthorhombic) Temperature Range of Validity ∆H0 298.16–1,000K 1,883–2,000K 1,150–2,000K 298.16–1,150K –230,610 –228,590 –228,380 –228,360 298.16–883K 298.16–848K 848–1,683K 523–1,683K –217,080 –210,070 –209,920 –209,820 390–1,683K 298.16–523K 298.16–390K 1,743–2,000K –209,350 –207,330 –207,030 –203,140 950–1,033K 1,179–1,674K 298.16–1,743K 298.16–950K –202,960 –202,540 –201,180 –200,000 1,033–1,050K 1,050–1,179K 1,674–1,800K 298.16–1,068K –196,740 –193,200 –192,920 –182,650 1,393–2,000K 298.16–600.5K 298.16–842K 298.16–903K –180,700 –174,920 –169,450 –168,060 The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 1330 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1331 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 345. SELECTING HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 4 OF 9) Reaction 2 As(c) + 3/2 O2(g) = As2O3 (orthorhombic) Ca(α) + 1/2 O2(g) = CaO(c) Ca(β) + 1/2 O2(g) = CaO(c) 2 As(c) + 3/2 O2(g) = As2O3 (monoclinic) Re(c) + 3/2 O2(g) = ReO3(c) 2 Cs(g) + 3/2 O2(g) = Cs2O3(l) Re(c) + 3/2 O2(g) = ReO3(l) Mg(l) + 1/2 O2(g) = MgO (periclase) Be(c) + 1/2 O2(g) = BeO(c) Mg(c) + 1/2 O2(g) = MgO (periclase) Cr(c) + O2(g) = CrO2 (c) Sr(c) + 1/2 O2(g) = SrO(c) 2 Bi(l) + 3/2 O2(g) = Bi2O3(c) 2 Li(c) + 1/2 O2(g) = Li2O(c) Cr(c) + 3/2 O2(g) = CrO3(c) Cr(c) + 3/2 O2(g) = Cr2O3(l) 2 Bi(c) + 3/2 O2(g) = Bi2O3(c) W(c) + O2(g) = WO2(c) Ba(α) + 1/2 O2(g) = BaO(c) Ba(β) + 1/2 O2(g) = BaO(c) 2 K(g) + 1/2 O2(g) = K2O(c) Mo(c) + O2(g) = MoO2(c) Ra(c) + 1/2 O2(g) = RaO(c) Mn(α) + O2(g) = MnO2(c) Temperature Range of Validity ∆H0 298.16–542K 298.16–673K 673–1,124K 298.16–586K –154,870 –151,850 –151,730 –150,760 298.16–433K 963–1,500K 433–1,000K 923–1,393K –149,090 –148,680 –146,750 –145,810 298.16–1,556K 298.16–923K 298.16–1,000K 298.16–1,043K –144,220 –144,090 –142,500 –142,410 544–1,090K 298.16–452K 298.16–471K 471–600K –142,270 –142,220 –141,590 –141,580 298.16–544K 298.16–1,500K 298.16–648K 648–977K –139,000 –137,180 –134,590 –134,140 1,049–1,500K 298.16–2,000K 298.16–1,000K 298.16–1,000K –133,090 –132,910 –130,000 –126,400 The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC Shackelford & Alexander 1331 13.1 sel Thermodynamics Page 1332 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 345. SELECTING HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 5 OF 9) Reaction Ti(α) + 1/2 O2(g) = TiO(α) Ti(α) + 1/2 O2(g) = TiO(α) 2 Na(c) + O2(g) = Na2O2(c) 2 Cs(l) + 3/2 O2(g) = Cs2O3(c) 2 Cs(g) + 1/2 O2(g) = Cs2O(l) 2 Cs(c) + 3/2 O2(g) = Cs2O3(c) S(rhombohedral) + 3/2 O2(g) = SO3(c–I) 2 Cs(l) + 3/2 O2(g) = Cs2O3(l) 1/2 S2(g) + 3/2 O2(g) = SO3(g) S(rhombohedral) + 3/2 O2(g) = SO3(c–II) S(rhombohedral) + 3/2 O2(g) = SO3(l) V(c) + 1/2 O2(g) = VO(c) 2 Na(l) + 1/2 O2(g) = Na2O(c) 2 Na(c) + 1/2 O2(g) = Na2O(c) 2 Tl(α) + 3/2 O2(g) = Tl2O3(c) S(monoclinic) + 3/2 O2(g) = SO3(g) S(rhombohedral) + 3/2 O2(g) = SO3(g) S(lλ,µ) + 3/2 O2(g) = SO3(g) C(graphite) + O2(g) = CO2(g) Mn(l) + 1/2 O2(g) = MnO(c) Mn(α) + 1/2 O2(g) = MnO(c) Mn(β) + 1/2 O2(g) = MnO(c) Mn(γ) + 1/2 O2(g) = Mno(c) Mn(δ) + 1/2 O2(g) = MnO(c) Temperature Range of Validity ∆H0 1,150–1,264K 298.16–1,150K 298.16–371K 301.5–775K –125,040 –125,010 –122,500 –113,840 963–1,500K 298.16–301.5K 298.16–335.4K 775–963K –113,790 –112,690 –111,370 –110,740 298.16–1,500K 298.16–305.7K 298.16–335.4K 298.16–2,000K –110,420 –108,680 –107,430 –101,090 371–1,187K 298.16–371K 298.16–505.5K 368.6–392K –100,150 –99,820 –99,410 –95,120 298.16–368.6K 392–718K 298.16–2,000K 1,517–2,000K –95,070 –94,010 –93,690 –93,350 298.16–1,000K 1,000–1,374K 1,374–1,410K 1,410–1,517K –92,600 –91,900 –89,810 –89,390 The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 1332 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1333 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 345. SELECTING HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 6 OF 9) Reaction 2 K(l) + 1/2 O2(g) = K2O(c) 2 K(c) + 1/2 O2(g) = K2O(c) 1/2 S2(g) + O2 (g) = SO2(g) Zn(c) + 1/2 O2(g) = ZnO(c) 2 Rb(l) + 1/2 O2(g) = Rb2O(c) 2 Rb(c) + 1/2 O2(g) = Rb2O(c) 2 Cs(l) + 1/2 O2(g) = Cs2O(c) 2 Cs(c) + 1/2 O2(g) = Cs2O(c) 2 Cs(l) + 1/2 O2(g) = Cs2O(l) D2(g) + 1/2 O2(g) = D2O(l) S(monoclinic) + O2(g) = SO2(g) S(rhombohedral) + O2(g) = SO2(g) H2(g) + 1/2 O2(g) = H2O(l) S(lλ,µ) + O2(g) = SO2(g) Sn(l) + 1/2 O2(g) = SnO(c) Sn(c) + 1/2 O2(g) = SnO(c) 0.947 Fc(β) + 1/2 O2(g) = Fe0.9470(c) Pb(c) + O2(g) = PbO2(c) 0.947 Fe(α) + 1/2 O2(g) = Fe0.9470(c) 0.947 Fe(γ) + 1/2 O2(g) = Fe0.9470(l) 0.947 Fe(δ) + 1/2 O2(g) = Fe0.9470(l) Cd(l) + 1/2 O2(g) = CdO(c) 0.947 Fe(α) + 1/2 O2(g) = Fe0.9470(c) Cd(c) + 1/2 O2(g) = CdO(c) Temperature Range of Validity ∆H0 336.4–1,049K 298.16–336.4K 298.16–2,000K 298.16–692.7K –87,380 –86,400 –86,330 –84,670 312.2–750K 298.16–312.2K 301.5–763K 298.16–301.5K –79,950 –78,900 –76,900 –75,900 763–963K 298.16–374.5K 368.6–392K 298.16–368.6K –75,370 –72,760 –71,020 –70,980 298.16–373.16K 392–718K 505–1,300K 298.16–505K –70,600 –69,900 –69,670 –68,600 1,179–1,650K 298.16–600.5K 298.16–1,033K 1,650–1,674K –66,750 –66,120 –65,320 –64,200 1,803–2,000K 594–1,038K 1,033–1,179K 298.16–594K –63,660 –63,240 –62,380 –62,330 The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC Shackelford & Alexander 1333 13.1 sel Thermodynamics Page 1334 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 345. SELECTING HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 7 OF 9) Reaction 0.947 Fe(γ) + 1/2 O2(g) = Fe0.9470(l) D2(g) + 1/2 O2(g) = D2O(g) Co(γ) + 1/2 O2(g) = CoO(c) I2(g) + 5/2 O2(g) = I2O5(c) Ni(α) + 1/2 O2(g) = NiO(c) Ni(β) + 1/2 O2(g) = NiO(c) H2(g) + 1/2 O2(g) = H2O(g) Co(α,β) + 1/2 O2(g) = CoO(c) Pb(l) + 1/2 O2(g) = PbO (red) Pb(l) + 1/2 O2(g) = PbO (yellow) Bi(l) + 1/2 O2(g) = BiO(c) Pb(c) + 1/2 O2(g) = PbO (red) Pb(c) + 1/2 O2(g) = PbO (yellow) Bi(c) + 1/2 O2(g) = BiO(c) 2 Tl(β) + O2(g) = Tl2O(c) 2 Tl(α) + O2(g) = Tl2O(c) 2 Cu(l) + 1/2 O2(g) = Cu2O(c) I2(l) + 5/2 O2(g) = I2O5(c) I2(c) + 5/2 O2(g) = I2O5(c) Cu(l) + 1/2 O2(g) = CuO(l) Ir(c) + O2(g) = IrO2(c) Cu(l) + 1/2 O2(g) = CuO(c) 2 Al(l) + 1/2 O2(g) = Al2O(g) Cu(c) + 1/2 O2(g) = CuO(c) Temperature Range of Validity ∆H0 1,647–1,803K 298.16–2,000K 1,400–1,763K 456–500K –59,650 –58,970 –58,160 –58,020 298.16–633K 633–1,725K 298.16–2,000K 298.16–1,400K –57,640 –57,460 –56,930 –56,910 600.5–762K 600.5–1,159K 544–1,600K 298.16–600.5K –53,780 –53,020 –52,920 –52,800 298.16–600.5K 298.16–544K 505.5–573K 298.16–505.5K –52,040 –50,450 –44,260 –44,110 1,357–1,502K 386.8–456K 298.16–386.8K 1,720–2,000K –43,880 –43,490 –42,040 –41,060 298.16–1,300K 1,357–1,720K 931.7–2,000K 298.16–1,357K –39,480 –39,410 –38,670 –37,740 The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 1334 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1335 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 345. SELECTING HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 8 OF 9) Reaction 2 Cu(l) + 1/2 O2(g) = Cu2O(l) 2 Al(c) + 1/2 O2(g) = Al2O(g) Si(l) + 1/2 O2(g) = SiO(g) C(graphite) + 1/2 O2(g) = CO(g) 2 Hg(l) + 1/2 O2(g) = Hg2O(c) Hg(l) + 1/2 O2(g) = HgO (red) Si(c) + 1/2 O2(g) = SiO(g) P(l) + 1/2 O2(g) = PO(g) P (white) + 1/2 O2(g) = PO(g) 2 Ag(c) + 1/2 O2(g) = Ag2O2(c) 1/2 Se2(g) + 1/2 O2(g) = SeO(g) 2 Ag(c) + O2(g) = Ag2O2(c) 2 Au(c) + 3/2 O2(g) = Au2O3(c) 1/2 S2 (g) + 1/2 O2(g) = SO(g) Al(l) + 1/2 O2(g) = AlO(g) Se(c) + 1/2 O2(g) = SeO(g) Se(l) + 1/2 O2(g) = SeO(g) 2 Cu(c) + 1/2 O2(g) = Cu2O(c) Al(c) + 1/2 O2(g) = AlO(g) Cl2(g) + 1/2 O2(g) = Cl2O(g) S(monoclmic) + 1/2 O2(g) = SO(g) S(rhombohedral) + 1/2 O2(g) = SO(g) S(lλ,µ ) + 1/2 O2(g) = SO(g) 1/2 Cl2(g) + 1/2 O2(g) = ClO(g) Temperature Range of Validity ∆H0 1,502–2,000K 298.16–931.7K 1,683–2,000K 298.16–2,000K –37,710 –31,660 –30,170 –25,400 298.16–629.88K 298.16–629.88K 298.16–1,683K 317.4–553K –22,400 –21,760 –21,090 –9,390 298.16–317.4K 298.16–1,000K 1,027–2,000K 298.16–500K –9,370 –7,740 –7,400 –6,620 298.16–500K 298.16–2,000K 931.7–2,000K 298.16–490K –2,160 +3,890 +8,170 +9,280 490–1,027K 298.16–1,357K 298.16–931.7K 298.16–2,000K +9,420 +10,550 +10,740 +17,770 368.6–392K 298.16–368.6K 392–718K 298.16–1,000K +19,200 +19,250 +20,320 +33,000 The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC Shackelford & Alexander 1335 13.1 sel Thermodynamics Page 1336 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 345. SELECTING HEAT OF FORMATION OF INORGANIC OXIDES (SHEET 9 OF 9) Temperature Range of Validity ∆H0 Te(c) + 1/2 O2(g) = TeO(g) 298.16–2,000K 298.16–500K 723–1,360K 298.16–723K +33,980 +37,740 +39,750 +43,110 V(c) + 1/2 O2(g) = VO(g) 298.16–2,000K +52,090 Reaction 3/2 O2(g) = O3(g) 2 Cl2(g) + 3/2 O2(g) = ClO(g) Te(l) + 1/2 O2(g) = TeO(g) The ∆Ho values are given in gram calories per mole . Source: data from CRC Handbook of Materials Science, Vol II, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 1336 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1337 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 346. SELECTING SPECIFIC HEAT OF ELEMENTS (SHEET 1 OF 4) Cp at 25 ˚C Element (cal • g-l • K–1) Radon Thorium Uranium Radium 0.0224 0.0271 0.0276 0.0288 Protactinium Bismuth Polonium Thallium 0.029 0.0296 0.030 0.0307 Gold Osmium Iridium Platinum 0.0308 0.03127 0.0317 0.0317 Tungsten Rhenium Mercury Tantalum 0.0317 0.0329 0.0331 0.0334 Ytterbium Hafnium Lutetium Xenon 0.0346 0.035 0.037 0.0378 Lead Thulium Hollnium Erbium 0.038 0.0382 0.0393 0.0401 See also: Thermodynamic Coefficients of the Elements. Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-144., Kelly, K. K., Bulletin 592, Bureau of Mines, Washington, D. C., 1961.and Hultgren, R., Orr, R L., Anderson, P. D., and Kelly, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, New York, (1963). ©2001 CRC Press LLC Shackelford & Alexander 1337 13.1 sel Thermodynamics Page 1338 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 346. SELECTING SPECIFIC HEAT OF ELEMENTS (SHEET 2 OF 4) Cp at 25 ˚C Element (cal • g-l • K–1) Dysprosium Europium Samarium Terbium 0.0414 0.0421 0.043 0.0437 Promethium Barium Praseodymium Lanthanum 0.0442 0.046 0.046 0.047 Tellurium Antimony Cerium Neodymium 0.0481 0.049 0.049 0.049 Tin (α) Tin (β) Gadolinium Cadmium 0.0510 0.0530 0.055 0.0555 Indium Silver Cesium Ruthenium 0.056 0.0566 0.057 0.057 Technetium Rhodium Palladium Krypton 0.058 0.0583 0.0584 0.059 Niobium Zirconium Yttrium Strontium 0.064 0.0671 0.068 0.0719 See also: Thermodynamic Coefficients of the Elements. Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-144., Kelly, K. K., Bulletin 592, Bureau of Mines, Washington, D. C., 1961.and Hultgren, R., Orr, R L., Anderson, P. D., and Kelly, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, New York, (1963). ©2001 CRC Press LLC 1338 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1339 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 346. SELECTING SPECIFIC HEAT OF ELEMENTS (SHEET 3 OF 4) Cp at 25 ˚C Element (cal • g-l • K–1) Selenium (Se2) Germanium Arsenic Rubidium 0.0767 0.077 0.0785 0.0861 Gallium Copper Zinc lodine (I2) 0.089 0.092 0.0928 0.102 Iron (α) Nickel Chromium Cobalt 0.106 0.106 0.107 0.109 Bromine (Br2) Chlorine (Cl2) Manganese, a Vanadium 0.113 0.114 0.114 0.116 Argon Carbon, diamond Titanium Scandium 0.124 0.124 0.125 0.133 Calcium Phosphorus, red, triclinic Silicon Carbon, graphite 0.156 0.160 0.168 0.170 See also: Thermodynamic Coefficients of the Elements. Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-144., Kelly, K. K., Bulletin 592, Bureau of Mines, Washington, D. C., 1961.and Hultgren, R., Orr, R L., Anderson, P. D., and Kelly, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, New York, (1963). ©2001 CRC Press LLC Shackelford & Alexander 1339 13.1 sel Thermodynamics Page 1340 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 346. SELECTING SPECIFIC HEAT OF ELEMENTS (SHEET 4 OF 4) Cp at 25 ˚C Element (cal • g-l • K–1) Sulfur, yellow Potassium Phosphorus, white Fluorine (F2) 0.175 0.180 0.181 0.197 Aluminum Oxygen (O2) Magnesium Boron 0.215 0.219 0.243 0.245 Neon Nitrogen (N2) Sodium Beryllium 0.246 0.249 0.293 0.436 Molybdenum Lithium Manganese (β) Helium 0.599 0.85 1.119 1.24 Hydrogen (H2) 3.41 See also: Thermodynamic Coefficients of the Elements. Source: data from Weast, R. C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, 1974, D-144., Kelly, K. K., Bulletin 592, Bureau of Mines, Washington, D. C., 1961.and Hultgren, R., Orr, R L., Anderson, P. D., and Kelly, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, New York, (1963). ©2001 CRC Press LLC 1340 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1341 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 347. SELECTING SPECIFIC HEAT OF POLYMERS (SHEET 1 OF 3) Polymer Specific Heat (Btu/lb/•F) Polymide: Glass reinforced Reinforced polyester moldings: Sheet molding compounds, general purpose Standard Epoxies: High strength laminate Polytrifluoro chloroethylene (PTFCE) 0.15—0.27 Silicone: Woven glass fabric/ silicone laminate Phenylene oxides (Noryl): Standard Standard Epoxies: Filament wound composite Polystyrenes; Molded: Glass fiber -30% reinforced 0.246 0.24 0.24 0.256 Polytetrafluoroethylene (PTFE) Polymide: Unreinforced Reinforced polyester moldings: High strength (glass fibers) Polyphenylene sulfide: Standard 0.25 0.25—0.35 0.25—0.35 0.26 Phenolics; Molded; General: Arc resistant—mineral filled Fluorinated ethylene propylene(FEP) Nylon, Type 6: Type 12 Phenolics; Molded; General: Very high shock: glass fiber filled 0.27—0.37 0.28 0.28 0.28—0.32 PVC–acrylic sheet Phenolics; Molded; General: High shock: chopped fabric or cord filled Polystyrenes; Molded: General purpose Polystyrenes; Molded: High impact 0.293 0.30—0.35 0.30—0.35 0.30—0.35 Polystyrenes; Molded: Medium impact Polyesters: Thermoset Cast; Rigid Vinylidene chloride Polyvinylidene— fluoride (PVDF) 0.30—0.35 0.30—0.55 0.32 0.33 Rubber phenolic—woodflour or flock Styrene acrylonitrile (SAN) Acrylic Moldings: High impact grade Acrylic Moldings: Grades 5, 6, 8 0.33 0.33 0.34 0.35 0.20—0.25 0.21 0.22 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1341 13.1 sel Thermodynamics Page 1342 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 347. SELECTING SPECIFIC HEAT OF POLYMERS (SHEET 2 OF 3) Polymer Specific Heat (Btu/lb/•F) Acrylics; Cast Resin Sheets, Rods: General purpose, type I Acrylics; Cast Resin Sheets, Rods: General purpose, type II Polyacetal Copolymer: High flow Polyacetal Copolymer: Standard 0.35 0.35 0.35 0.35 Polyacetal: Standard ABS Resins; Molded, Extruded; Low temperature impact Phenolics; Molded; General: woodflour and flock filled ABS Resins; Molded, Extruded; High impact 0.35 0.35—0.38 0.35—0.40 0.36—0.38 ABS Resins; Molded, Extruded; Medium impact ABS Resins; Molded, Extruded; Very high impact ABS Resins; Molded, Extruded; Heat resistant Chlorinated polyvinyl chloride 0.36—0.38 0.36—0.38 0.37—0.39 0.3 Polycarbonate Thermoset Carbonate: Allyl diglycol carbonate Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 0.3 0.3 0.3—0.42 0.3—0.42 Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: MH—1, MH—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: MS—1, MS—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 0.3—0.42 0.3—0.42 0.3—0.42 0.3—0.42 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1 0.3—0.4 0.3—0.4 0.3—0.4 0.3—0.4 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 6/10 Nylon: General purpose 6/6 Nylon: General purpose extrusion 0.3—0.4 0.3—0.4 0.3—0.5 0.3—0.5 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1342 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1343 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 347. SELECTING SPECIFIC HEAT OF POLYMERS (SHEET 3 OF 3) Polymer Specific Heat (Btu/lb/•F) 6/6 Nylon: General purpose molding Standard Epoxies: Cast rigid Polypropylene: General purpose Polypropylene: High impact 0.3—0.5 0.4-0.5 0.45 0.45—0.48 Polyethylenes; Molded, Extruded; Type III: Melt index 0.2—0.9 Polyethylenes; Molded, Extruded; Type III: Melt index 0.l—12.0 Polyethylenes; Molded, Extruded; Type III: Melt index 1.5—15 Nylon, Type 6: Cast 0.46—0.55 0.46—0.55 0.46—0.55 0.4 Nylon, Type 6: General purpose Nylon, Type 6: Type 8 Polyethylenes; Molded, Extruded; Type I: Melt index 0.3—3.6 Polyethylenes; Molded, Extruded; Type I: Melt index 200 0.4 0.4 0.53—0.55 0.53—0.55 Polyethylenes; Molded, Extruded; Type I: Melt index 6—26 Polyethylenes; Molded, Extruded; Type II: Melt index 20 Polyethylenes; Molded, Extruded; Type II: Melt index l.0—1.9 0.53—0.55 0.53—0.55 0.53—0.55 Nylon, Type 6: Type 11 0.58 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1343 13.1 sel Thermodynamics Page 1344 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 348. SELECTING MELTING POINTS OF THE ELEMENTS (SHEET 1 OF 4) At. No. Element Sym. Melting Point (˚C) 2 1 10 9 Helium Hydrogen Neon Fluorine He H N F -272.2 -259.14 -248.67 -219.62 8 7 18 36 Oxygen Nitrogen Argon Krypton O N Ar Kr -218.4 -209.86 -189.2 -156.6 54 17 86 80 Xenon Chlorine Radon Mercury Xe Cl Rn Hg -111.9 -100.98 -71 -38.87 35 56 87 55 Bromine Barium Francium Cesium Br Ba Fr Ce -7.2 7.25 ~27 28.4 31 37 15 Gallium Rubidium Phosphorus (White) Ga Rb P 29.78 38.89 44.1 19 11 16 53 Potassium Sodium Sulfur Iodine K Na S I 63.65 97.81 112.8 113.5 49 3 34 50 Indium Lithium Selenium Tin In Li Se Sn 156.61 180.54 217 231.9681 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988). ©2001 CRC Press LLC 1344 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1345 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 348. SELECTING MELTING POINTS OF THE ELEMENTS (SHEET 2 OF 4) At. No. Element Sym. Melting Point (˚C) 84 83 85 81 Polonium Bismuth Asatine Thallium Po Bi At Tl 254 271.3 302 303.5 48 82 30 52 Cadmium Lead Zinc Tellurium Cd Pb Zn Te 320.9 327.502 419.58 449.5 51 93 94 12 Antimony Neptunium Plutonium Magnesium Sb Np Pu Mg 630.74 640 641 648.8 13 88 38 58 Aluminum Radium Strontium Cerium Al Ra Sr Ce 660.37 700 769 798 33 63 70 20 Arsenic Europium Ytterbium Calcium As Eu Yb Ca 817 822 824 839 57 59 32 47 Lanthanum Praseodymium Germanium Silver La Pr Ge Ag 920 931 937.4 961.93 95 60 89 79 Americium Neodymium Actinium Gold Am Nd Ac Au 994 1010 1050 1064.43 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988). ©2001 CRC Press LLC Shackelford & Alexander 1345 13.1 sel Thermodynamics Page 1346 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 348. SELECTING MELTING POINTS OF THE ELEMENTS (SHEET 3 OF 4) At. No. Element Sym. Melting Point (˚C) 62 61 29 92 Samarium Promethium Copper Uranium Sm Pm Cu U 1072 ~1080 1083.4 1132 25 4 64 96 Manganese Beryllium Gadolinium Curium Mn Be Gd Cm 1244 1278 1311 1340 65 66 14 28 Terbium Dysprosium Silicon Nickel Tb Dy Si Ni 1360 1409 1410 1453 67 27 68 39 Holmium Cobalt Erbium Yttrium Ho Co Er Y 1470 1495 1522 1523 26 21 69 46 Iron Scandium Thulium Palladium Fe Sc Tm Pd 1535 1539 1545 1552 91 71 22 90 Protoactinium Lutetium Titanium Thorium Pa Lu Ti Th <1600 1659 1660 1750 78 40 24 23 Platinum Zirconium Chromium Vanadium Pt Zr Cr V 1772 1852 1857 1890 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988). ©2001 CRC Press LLC 1346 CRC Handbook of Materials Science & Engineering 13.1 sel Thermodynamics Page 1347 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 348. SELECTING MELTING POINTS OF THE ELEMENTS (SHEET 4 OF 4) At. No. Element Sym. Melting Point (˚C) 45 43 72 5 Rhodium Technetium Hafnium Boron Rh Tc Hf B 1966 2172 2227 2300 44 41 77 42 Ruthenium Niobium Iridium Molybdenum Ru Nb Ir Mo 2310 2408 2410 2617 73 76 75 74 Tantalum Osmium Rhenium Tungsten Ta Os Re W 2996 3045 3180 3410 6 Carbon C ~3550 Source: data from James F. Shackelford, Introduction to Materials Science for Engineers, Second Edition, Macmillian Publishing Company, New York, pp.686-688, (1988). ©2001 CRC Press LLC Shackelford & Alexander 1347 13.2 sel Thermodynamics Page 1348 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 349. SELECTING MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 1 OF 12) Compound Formula Melting Point •C Hydrogen H2 –259.25 Neon Fluorine Oxygen Ne F2 O2 –219.6 –218.8 Nitrogen Carbon monoxide Nitric oxide Boron trifluoride N2 CO NO BF3 Hydrogen chloride Xenon Boron trichloride Chlorine HCl Xe BCl3 Cl2 –248.6 –210 –205 –163.7 –128.0 –114.3 –111.6 –107.8 –103±5 Nitrous oxide N2O Hydrogen sulfide, di– Hydrogen bromide Hydrogen sulfide H2S2 HBr H2S –86.96 Sulfur dioxide Silicon tetrachloride Bromine pentafluoride Carbon dioxide SO2 SiCl4 BrF5 CO2 –73.2 –67.7 –61.4 –57.6 Hydrogen iodide Hydrogen telluride Boron tribromide Hydrogen nitrate HI H2Te BBr3 HNO3 –50.91 –90.9 –89.7 –85.6 –49.0 –48.8 –47.2 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC 1348 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1349 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 349. SELECTING MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 2 OF 12) Compound Formula Mercury Tin chloride,tetra– Hg SnCl4 Silane, hexafluoro– Si2F6 Cyanogen C2N2 Titanium chloride, tetra– Iron pentacarbonyl Arsenic trichloride Nitrogen tetroxide TiCl4 Fe(CO)5 AsCl3 Bromine Arsenic trifluoride Cyanogen chloride Hydrogen peroxide Br2 AsF3 CNCl H2O2 –7.2 –6.0 Tungsten hexafluoride Hydrogen oxide (water) Phosphorus oxychloride Deuterium oxide WF6 H2O POCl3 –0.5 0 1.0 3.78 Antimony pentachloride Seleniumoxychloride Hydrogen sulfate lodine chloride (β) Sulfur trioxide (α) Molybdenum hexafluoride lodine chloride (α) Phosphorus acid, hypo– N2O4 D2O SbCl5 SeOCl3 H2SO4 ICl SO3 MoF6 ICl H3PO2 Melting Point •C –39 –33.3 –28.6 –27.2 –23.2 –21.2 –16.0 –13.2 –5.2 –0.7 4.0 9.8 10.4 13.8 16.8 17 17.1 17.3 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC Shackelford & Alexander 1349 13.2 sel Thermodynamics Page 1350 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 349. SELECTING MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 3 OF 12) Compound Formula Melting Point •C Rhenium hexafluoride Niobium pentachloride Phosphorus trioxide Cesium ReF6 NbCl5 19.0 21.l 23.7 Gallium Tin bromide, tetra– Arsenic tribromide Sulfur trioxide (β) Ga SnBr4 AsBr3 Titanium bromide, tetra– Cesium chloride Rubidium Osmium tetroxide (white) TiBr4 CsCl Rb OsO4 Phosphoric acid Phosphorus, yellow Phosphoric acid. hypo– Osmium tetroxide (yellow) H3PO4 P4 H4P2O6 OsO4 Hydrogen selenate H2SeO4 Sulfur trioxide (γ) Potassium Antimony trichloride SO3 57.8 62.1 K SbCl3 73.3 Phosphorus acid, ortho– Arsenic pentafluoride Hydrogen fluoride Aluminum bromide H3PO3 AsF5 HF Al2Br6 P4O6 Cs SO3 28.3 29 29.8 30.0 32.3 38 38.5 38.9 41.8 42.3 44.1 54.8 55.8 63.4 73.8 80.8 83.11 87.4 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC 1350 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1351 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 349. SELECTING MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 4 OF 12) Compound Formula Melting Point •C Antimony tribromide Sodium lodine Sulfur (monatomic) SbBr3 Na I2 S 96.8 Tin iodide, tetra– Indium Lithium Potassium thiocyanate SnI4 In Li KSCN 143.4 Argon Aluminum iodide Ar Al2I6 190.2 Aluminum chloride Chromium trioxide Al2Cl6 CrO3 Tantalum pentachloride Thallium nitrate Silver nitrate Selenium TaCl5 TINO3 AgNO3 Se 206.8 207 209 Bismuth trichloride Tin Tin bromide, di– Mercury bromide BiCl3 Sn SnBr2 HgBr2 223.8 Tin chloride, di– Lithium nitrate Mercury iodide Sodium chlorate SnCl2 LiNO3 HgI2 NaClO3 247 250 250 255 Bismuth Thallium carbonate Mercury chloride Zincchloride Bi Tl2CO3 HgCl2 ZnCl2 273 276.8 283 97.8 112.9 119 156.3 178.8 179 190.9 192.4 197 217 231.7 231.8 241 271 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC Shackelford & Alexander 1351 13.2 sel Thermodynamics Page 1352 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 349. SELECTING MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 5 OF 12) Compound Formula Rhenium heptoxide Thallium Iron (III) chloride Rubidium nitrate Re2O7 Tl Fe2Cl6 RbNO3 Sodium nitrate Arsenic trioxide Cadmium Sodium hydroxide NaNO3 Sodium thiocyanate Tungsten tetrachloride Lead Potassium nitrate NaSCN WCl4 Pb KNO3 Silver cyanide Potassium hydroxide Cadmium iodide AgCN KOH CdI2 Potassium dichromate K2Cr2O7 Beryllium chloride Cesium nitrate Lead iodide Zinc BeCl2 CsNO3 PbI2 Zn 404.8 406.8 412 Thallium chloride, mono– Copper (I) chloride Copper (II) chloride Silver bromide TICl CuCl CuCl2 AgBr 427 429 Lithium iodide Thallium iodide, mono– Boron trioxide LiI TlI B2O3 Thallium sulfide Tl2S As4O6 Cd NaOH Melting Point •C 296 302.4 303.8 305 310 312.8 320.8 322 323 327 327.3 338 350 360 386.8 398 419.4 430 430 440 440 448.8 449 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC 1352 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1353 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 349. SELECTING MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 6 OF 12) Compound Formula Melting Point •C Tellurium Silver chloride Sodium peroxide Thallium bromide, mono– Te AgCl Na2O2 TlBr 453 455 Lithium hydroxide Copper(l) cyanide Beryllium bromide Lead bromide LiOH Cu2(CN)2 BeBr2 PbBr2 Potassium peroxide K2O2 Antimony trisulfide Lithium bromide Silver iodide Sb4S6 LiBr Agl Calcium nitrate Sodium cyanide Cadmium bromide Cadmium chloride Ca(NO3)2 NaCN CdBr2 CdCl2 560.8 Phosphorus pentoxide Copper (I) iodide Uranium tetrachloride P4O10 CuI UCl4 569.0 Barium nitrate Ba(NO3)2 Lithium chloride Europium trichloride Potassium cyanide Antimony LiCl EuCl3 KCN Sb Thallium sulfate Rubidium iodide Strontium bromide Magnesium Tl2SO4 RbI SrBr2 Mg 460 460 462 473 487.8 487.8 490 546.0 552 557 562 567.8 567.8 587 590 594.8 614 622 623 630 632 638 643 650 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC Shackelford & Alexander 1353 13.2 sel Thermodynamics Page 1354 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 349. SELECTING MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 7 OF 12) Compound Formula Melting Point •C Manganese dichloride Antimony trioxide MnCl2 Silver sulfate Aluminum Ag2SO4 Al 650 655.0 657 Sodium iodide Vanadium pentoxide Iron (II) chloride Rubidium bromide Nal V2O5 FeCl2 RbBr Potassium iodide Sodium molybdate KI Na2MoO4 Sodium tungstate Na2WO4 Lithium molybdate Li2MoO4 Barium iodide Magnesium bromide Magnesium chloride Rubidium chloride BaI2 MgBr2 MgCl2 RbCl Barium Bismuth trifluoride Molybdenum dichloride Cobalt (II) chloride Ba BiF3 MoCl2 CoCl2 Zirconium dichloride Calcium bromide Lithium tungstate Potassium bromide ZrCl2 CaBr2 Li2WO4 KBr Sodium bromide Strontium Thorium chloride Potassium chloride NaBr Sr ThCl4 KCl Sb4O6 658.5 662 670 677 677 682 687 702 705 710.8 711 712 717 725 726.0 726.8 727 727 729.8 742 742 747 757 765 770 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC 1354 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1355 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 349. SELECTING MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 8 OF 12) Compound Formula Melting Point •C Cerium Calcium chloride Ce CaCl2 Nickel subsulfide Molybdenum trioxide Ni3S2 MoO3 Sodium chloride Chromium (II) chloride NaCl CrCl2 Bismuth trioxide Arsenic Bi2O3 As Lead fluoride Ytterbium Europium Rubidium fluoride PbF2 Yb Eu RbF 823 Silver sulfide Barium bromide Mercury sulfate Calcium Ag2S BaBr2 HgSO4 Ca 841 846.8 850 Sodium carbonate Na2CO3 Lithium sulfate Strontium chloride Potassium fluoride Li2SO4 SrCl2 KF 854 857 872 Sodium silicate, di– Na2Si2O5 Sodium sulfate Lead oxide Lithium fluoride Na2SO4 PbO LiF Potassium carbonate Lanthanum Sodium sulfide Praseodymium K2CO3 La Na2S Pr 775 782 790 795 800 814 815.8 816.8 823 826 833 851 875 884 884 890 896 897 920 920 931 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC Shackelford & Alexander 1355 13.2 sel Thermodynamics Page 1356 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 349. SELECTING MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 9 OF 12) Compound Formula Melting Point •C Potassium borate, meta– Germanium Barium chloride Silver KBO2 Ge BaCl2 Ag 947 Sodium borate, meta– NaBO2 Sodium pyrophosphate Na4P2O7 Potassium chromate Sodium phosphate, meta– K2CrO4 NaPO3 Titanium oxide Sodium fluoride Cadmium sulfate Neodymium TiO NaF CdSO4 Nd Vanadium dichloride Nickel chloride Tin oxide Actinium227 VCl2 NiCl2 SnO Ac Gold Lead molybdate Samarium Potassium sulfate Au PbMoO4 Sm K2SO4 Copper Lead sulfate Cu PbSO4 Sodium silicate, meta– Na2SiO3 Potassium pyro–phosphate K4P2O7 Sodiumsilicate,aluminum– Cadmium fluoride Lead sulfide Copper (I) sulfide NaAlSi3O8 CdF2 PbS Cu2S 959 959.8 961 966 970 984 988 991 992 1000 1020 1027 1030 1042 1050±50 1063 1065 1072 1074 1083 1087 1087 1092 1107 1110 1114 1129 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC 1356 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1357 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 349. SELECTING MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 10 OF 12) Compound Formula Melting Point •C Uranium235 Lithium metasilicate Iron (II) sulfide Manganese U Li2SiO3 FeS Mn ~1133 1177 1195 1220 Magnesium fluoride Iron carbide MgF2 Copper (I) oxide Cu2O Lithium orthosilicate Li4SiO4 Tungsten dioxide Manganese metasilicate Beryllium Calcium carbonate WO2 MnSiO3 Be CaCO3 1270 1274 Barium fluoride Calcium sulfate Gadolinium Magnesium sulfate BaF2 CaSO4 Gd MgSO4 1286.8 1297 Potassium phosphate Barium sulfate Terbium Iron (II) oxide K3PO4 BaSO4 Tb FeO 1340 1350 Calcium fluoride Strontium fluoride Dysprosium Silicon CaF2 SrF2 Dy Si 1382 1400 Copper (II) oxide Nickel Holmium CuO Ni Ho 1446 1452 1461 Fe3C 1221 1226.8 1230 1249 1278 1282 1312 1327 1356 1380 1407 1427 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC Shackelford & Alexander 1357 13.2 sel Thermodynamics Page 1358 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 349. SELECTING MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 11 OF 12) Compound Formula Melting Point •C Tungsten trioxide Cobalt Erbium Yttrium WO3 Co Er Y 1470 Niobium pentoxide Calcium metasilicate Magnesium silicate Iron Nb2O5 CaSiO3 MgSiO3 Fe 1511 1512 1524 Scandium Thulium Palladium Manganese oxide Sc Tm Pd Mn3O4 Iron oxide Lutetium Barium phosphate Zinc sulfide Fe3O4 Lu Ba3(PO4)2 ZnS 1596 Platinum Manganese (II) oxide Titanium Titanium dioxide Pt MnO Ti TiO2 1770 1784 1800 Thorium Zirconium Tantalum pentoxide Chromium Th Zr Ta2O5 Cr Vanadium Barium oxide Zinc oxide Aluminum oxide V BaO ZnO Al2O3 1490 1496 1504 1530.0 1538 1545 1555 1590 1651 1727 1745 1825 1845 1857 1877 1890 1917 1922.8 1975 2045.0 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC 1358 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1359 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 349. SELECTING MELTING POINTS OF ELEMENTS AND INORGANIC COMPOUNDS (SHEET 12 OF 12) Compound Formula Melting Point •C Vanadium oxide VO 2077 Hafnium Yttrium oxide Hf Y2O3 2227 Chromium (III) sequioxide Boron Strontium oxide Niobium Cr2O3 B SrO Nb 2279 Beryllium oxide Molybdenum Magnesium oxide Osmium BeO Mo MgO Os 2550.0 2622 2642 2700 Calcium oxide Zirconium oxide Thorium dioxide Tantalum CaO ZrO2 ThO2 Ta 2715 2952 2996 ± 50 Rhenium Tungsten Re W 3167±60 3387 2214 2300 2430 2496 2707 Source: data from: Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973), p.479 . ©2001 CRC Press LLC Shackelford & Alexander 1359 13.2 sel Thermodynamics Page 1360 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 350. SELECTING MELTING POINTS OF CERAMICS (SHEET 1 OF 11) Compound (K) TaC NbC VC ZrC 3813 3770 3600 3533 ThO2 TiC Ta2N 3493 ZrB2 3433 3360 3313 TiB2 ZrN TiN CaO 3253 UO2 WB ZrO2 3151 UN 3123 MgO BN SiC Mo2C 3098 3000 2970 2963 SrO ThN WC ThC 2933 2903 2900 2898 CeO2 UC BeO B4C >2873 3250 3200 3183 3133 3123 2863 2725 2720 Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC 1360 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1361 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 350. SELECTING MELTING POINTS OF CERAMICS (SHEET 2 OF 11) Compound (K) Si3N4 TaSi2 2715 2670 MoB Cr2O3 >2603 VN MoSi2 BaB4 Be3N2 2625 2593 2553 2543 2513 SrB6 AlN CeB6 >2475 CeS 2400 Be2C VB2 >2375 2373 NbN Al2O3 2323 WSi2 BaO SrS MgS ThB4 TaB NbB NiO ZnO BeB2 NbSi2 ThS2 2508 2463 2322 2320 2283 >2275 >2275 >2270 >2270 >2270 2257 2248 >2243 2203 2198 Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC Shackelford & Alexander 1361 13.2 sel Thermodynamics Page 1362 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 350. SELECTING MELTING POINTS OF CERAMICS (SHEET 3 OF 11) Compound (K) In2O3 2183 2168 2123 2113 Cr3C2 CrB2 TiO2 Fe3C Ta2O5 VSi2 2110 2100 2023 CdS 2023 Al4C3 SiO2 2000 1978 >1975 1970 Li2O USi2 SrC2 SrSO4 Fe2O3 BaSO4 CrSi2 MnO ZrS2 >1970 1878 1864 1853 1843 1840 TiSi2 1823 1813 CdO UB2 >1770 CrN Nb2O5 1773 1770 1764 Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC 1362 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1363 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 350. SELECTING MELTING POINTS OF CERAMICS (SHEET 4 OF 11) Compound (K) WO3 SrF2 CaSO4 1744 1736 1723 1710 CeF2 CaF2 BaF2 TaS4 AlF3 MgF2 WS2 Cu2O TiF3 BaS FeS Ca3N2 MoS2 Na2S PbSO4 InF3 Cu2S MgSO4 PbS US2 ThF4 1675 1627 >1575 1564 1535 1523 1508 1475 1473 1468 1468 1458 1453 1443 1443 1400 1397 1387 >1375 1375 Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC Shackelford & Alexander 1363 13.2 sel Thermodynamics Page 1364 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 350. SELECTING MELTING POINTS OF CERAMICS (SHEET 5 OF 11) Compound (K) Mg2Si CdF2 1375 1373 1373 Al2S3 SnO K2SO4 In2S3 FeF3 NiCl3 1353 1342 1323 >1275 1274 NiF2 CdSO4 NaF NiBr2 1273 1273 BaCl2 UF4 1235 1233 1198 Li2S PbO Na2SO4 SnS SrCl2 ZnF2 Li2SO4 KF MnF2 CuF2 1267 1236 1159 1157 1153 1148 1145 1132 1131 1129 1129 Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC 1364 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1365 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 350. SELECTING MELTING POINTS OF CERAMICS (SHEET 6 OF 11) Compound (K) Cu4Si BaBr2 1123 1123 1121 NiSO4 LiF Li3N K2S B2O3 Ag2S PbF2 CeCl3 VF3 NaCl NiS NiI2 MoO3 CaCl2 1119 1118 1113 1098 1098 1095 1095 >1075 1073 1070 1070 1068 1055 FI2 ThCl4 KCl 1048 1043 Al2(SO4)3 1043 CeI3 NaBr Bi2S3 1025 BaI2 1043 1023 1020 1013 Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC Shackelford & Alexander 1365 13.2 sel Thermodynamics Page 1366 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 350. SELECTING MELTING POINTS OF CERAMICS (SHEET 7 OF 11) Compound (K) KBr TeO2 CaBr2 BiF3 1006 1003 1000 MgCl2 MgBr2 SnF4 NaC2 987 984 978 973 KI FeBr2 V2O5 FeCl2 958 NaI Ag2SO4 Sb2O3 MnCl2 SrBr2 MgI2 ThBr4 LiCl CuI V2S3 ZrF4 ZnSO4 1008 955 947 945 935 933 928 923 916 <910 883 883 878 >875 873 873 Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC 1366 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1367 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 350. SELECTING MELTING POINTS OF CERAMICS (SHEET 8 OF 11) Compound (K) TiI2 Ba(NO3)2 873 865 854 848 PtCl2 CaI2 BeSO4 UCl4 CdCl2 CdBr2 848 843 841 841 Cd(NO3)2 AgI LiBr SbS3 834 BeF2 BeBr2 UBr4 SnI2 813 793 789 788 BeI2 UI4 783 779 CuBr ZrI4 772 PbCl2 Fe2(SO4)3 Pb(NO3)2 AgCl 831 823 820 777 771 753 743 728 Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC Shackelford & Alexander 1367 13.2 sel Thermodynamics Page 1368 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 350. SELECTING MELTING POINTS OF CERAMICS (SHEET 9 OF 11) Compound (K) B2O3 LiI ZnI2 723 722 BeCl2 719 713 InBr3 709 AgF K2O3 703 AgBr 703 CuCl Zr(SO4)2 BiI3 695 Bi(SO4)3 PbI2 ZnBr2 BS4 Sr(NO3)2 PbBr2 SnSO4 PtI2 ZrBr2 ZrCl2 Ca(NO3)2 TeBr2 KNO3 708 683 681 678 675 667 663 643 643 >635 633 >625 623 623 612 610 Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC 1368 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1369 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 350. SELECTING MELTING POINTS OF CERAMICS (SHEET 10 OF 11) Compound (K) SrI2 NaNO3 SnCl2 593 583 581 573 Na2N Cu3N Ag2O SbF3 ZnCl2 WCl6 TaBr5 LiNO3 PtBr2 573 573 565 548 548 538 527 523 PtS2 BiCl3 InCl BiBr3 508 507 TaCl5 SnBr2 InI3 AgNO3 489 488 483 483 Ce(SO4)2 AlCl3 468 465 AlI TeCl2 448 498 491 464 Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC Shackelford & Alexander 1369 13.2 sel Thermodynamics Page 1370 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 350. SELECTING MELTING POINTS OF CERAMICS (SHEET 11 OF 11) Compound (K) SbI3 CdI2 MoI4 443 423 373 371 AlBr3 TaF5 SbBr3 SbCl3 TiBr4 MoF6 TiCl4 VCl4 370 370 346 312 BBr3 290 250 245 227 SiF4 BCl3 BF3 183 166 146 Source: data from Lynch, Charles T., Ed., CRC Handbook of Materials Science, Vol. 1, CRC Press, Boca Raton, 1974, 348. ©2001 CRC Press LLC 1370 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1371 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 351. SELECTING HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 1 OF 15) Heat of fusion Compound Formula Melting point •C Hydrogen H2 –259.25 13.8 28 Neon Oxygen Nitrogen Ne O2 N2 –248.6 3.83 77.4 –218.8 –210 3.3 6.15 106.3 172.3 Carbon monoxide Fluorine Argon Sulfur (monatomic) CO F2 Ar S Hydrogen chloride Boron trifluoride Boron trichloride Cesium HCl BF3 BCl3 Cs Rubidium Nitric oxide Mercury Potassium cal/g cal/g mole –205 7.13 199.7 –219.6 6.4 244.0 190.2 119 7.25 9.2 290 295 –114.3 13.0 476.0 –128.0 –107.8 7.0 (4.3) 480 (500) 28.3 3.7 500 Rb NO Hg K 38.9 –163.7 –39 63.4 6.1 18.3 2.7 14.6 525 549.5 557.2 574 Hydrogen bromide Phosphorus, yellow Hydrogen nitrate Sodium HBr P4 HNO3 Na –86.96 7.1 575.1 44.1 –47.2 4.8 9.5 600 601 97.8 27.4 630 Hydrogen iodide Boron tribromide Xenon Indium HI BBr3 Xe In –50.91 5.4 686.3 –48.8 (2.9) (700) –111.6 156.3 5.6 6.8 740 781 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC Shackelford & Alexander 1371 13.2 sel Thermodynamics Page 1372 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 351. SELECTING HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 2 OF 15) Heat of fusion Compound Formula Melting point •C Seleniumoxychloride Thallium Hydrogen fluoride Lithium SeOCl3 Tl HF Li 9.8 6.1 1010 302.4 83.11 178.8 5.0 54.7 158.5 1030 1094 1100 Sodium sulfide Selenium Lead Gallium Na2S Se Pb Ga 920 15.4 (1200) 217 327.3 29 15.4 5.9 19.1 1220 1224 1336 Rubidium nitrate Bromine pentafluoride Lithium iodide Hydrogen oxide (water) RbNO3 BrF5 LiI H2O 305 –61.4 9.1 7.07 1340 1355 440 (10.6) (1420) 0 79.72 1436 Mercury sulfate Cadmium Deuterium oxide Chlorine HgSO4 Cd D2O Cl2 Nitrous oxide Zinc Hydrogen telluride Neodymium N2O Zn H2Te Nd Tin Tin bromide, di– Tungsten hexafluoride Hydrogen sulfide, di– Sn SnBr2 WF6 H2S2 cal/g cal/g mole 850 (4.8) (1440) 320.8 12.9 1460 3.78 –103+5 75.8 22.8 1516 1531 –90.9 35.5 1563 419.4 24.4 1595 –49.0 12.9 1670 1020 11.8 1700 231.7 14.4 1720 231.8 –0.5 –89.7 (6.1) 6.0 27.3 (1720) 1800 1805 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC 1372 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1373 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 351. SELECTING HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 3 OF 15) Heat of fusion Compound Formula Melting point •C Barium Silicon tetrachloride Lead fluoride Carbon dioxide Ba SiCl4 PbF2 CO2 725 13.3 1830 –67.7 823 –57.6 10.8 7.6 43.2 1845 1860 1900 Potassium hydroxide Sodium hydroxide Cyanogen KOH NaOH C2N2 SO2 360 322 (35.3) 50.0 (1980) 2000 –27.2 –73.2 39.6 32.2 2060 2060 16.8 38 1723 25.8 (5.6) 35.0 2060 (2060) 2100 775 27.2 2120 650 430 757 88.9 11.6 25.0 2160 2180 2190 –33.3 8.4 2190 Sulfur dioxide cal/g cal/g mole Sulfur trioxide (α) Titanium bromide, tetra– Silicon dioxide (Cristobalite) Cerium TiBr4 SiO2 Ce Magnesium Silver bromide Strontium Tinchloride,tetra– Mg AgBr Sr SnCl4 Ytterbium Calcium Cyanogen chloride Titanium chloride, tetra– Yb Ca CNCl TiCl4 823 851 –5.2 12.7 55.7 36.4 2200 2230 2240 –23.2 11.9 2240 Potassium thiocyanate Silver iodide lodine chloride (β) Thallium nitrate KSCN AgI 179 557 23.1 9.5 2250 2250 ICl 13.8 207 13.3 8.6 2270 2290 SO3 TINO3 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC Shackelford & Alexander 1373 13.2 sel Thermodynamics Page 1374 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 351. SELECTING HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 4 OF 15) Heat of fusion Melting point •C cal/g cal/g mole 17.3 41.8 10.4 35.0 9.2 24.0 2310 2340 2360 896 (91.1) (2360) 2400 Compound Formula Phosphorus acid, hypo– Osmium tetroxide (white) Hydrogen sulfate Lithium fluoride H3PO2 OsO4 Antimony pentachloride Lanthanum Arsenic trichloride Lithium hydroxide SbCl5 La AsCl3 LiOH Arsenic trifluoride Europium Molybdenum hexafluoride Molybdenum trioxide AsF3 Eu MoF6 MoO3 Bismuth Phosphoric acid Aluminum Bromine Bi H3PO4 Al Br2 Bismuth trichloride Copper (I) iodide Samarium Copper (I) chloride BiCl3 CuI Sm CuCl 223.8 8.2 2600 587 1072 429 (13.6) 17.3 26.4 (2600) 2600 2620 lodine chloride (α) Praseodymium Silver Silver cyanide ICl 17.1 16.4 2660 Pr Ag AgCN 931 961 350 19.0 25.0 20.5 2700 2700 2750 H2SO4 LiF 4.0 8.0 920 17.4 2400 –16.0 13.3 2420 462 103.3 2480 –6.0 18.9 2486 826 16.4 2500 17 795 11.9 (17.3) 2500 (2500) 271 12.0 2505 42.3 25.8 2520 658.5 94.5 2550 –7.2 16.1 2580 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC 1374 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1375 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 351. SELECTING HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 5 OF 15) Compound Formula Silver nitrate Arsenic pentafluoride Arsenic tribromide Copper (II) oxide AgNO3 AsF5 AsBr3 CuO Lead oxide Potassium nitrate PbO KNO3 Sulfur trioxide (β) Lithium bromide Heat of fusion Melting point •C cal/g cal/g mole 209 80.8 30.0 16.2 16.5 8.9 2755 2800 2810 1446 35.4 2820 890 12.6 2820 SO3 338 32.3 78.1 36.1 2840 2890 LiBr 552 33.4 2900 Hydrogen peroxide Rubidium iodide Barium fluoride Beryllium chloride H2O2 Rbl BaF2 BeCl2 –0.7 8.58 2920 638 14.0 2990 1286.8 17.1 3000 404.8 (30) (3000) Thallium sulfide Tl2S SnBr4 SbCl3 Au 449 29.8 73.3 6.8 6.8 13.3 3000 3000 3030 1063 (15.3) 3030 857 247 73.8 27.6 16.0 37.4 3040 3050 3070 1083 49.0 3110 Tin bromide, tetra– Antimony trichloride Gold Lithium sulfate Tin chloride, di– Phosphorus acid, ortho– Copper Li2SO4 SnCl2 H3PO3 Cu For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC Shackelford & Alexander 1375 13.2 sel Thermodynamics Page 1376 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 351. SELECTING HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 6 OF 15) Heat of fusion Compound Formula Melting point •C Phosphorus oxychloride Thallium iodide, mono– Silver chloride Lithium chloride POCl3 TlI AgCl LiCl 1.0 20.3 3110 440 455 614 9.4 22.0 75.5 3125 3155 3200 Tellurium Cesium nitrate Iron pentacarbonyl Phosphorus trioxide Te CsNO3 Fe(CO)5 Silver sulfide Ag2S P4O6 Actinium227 Ac Hydrogen selenate Manganese H2SeO4 Mn Magnesium sulfate Potassium cyanide Antimony tribromide Iron MgSO4 KCN SbBr3 Fe Cesium chloride Sodium molybdate Cobalt lodine CsCl Na2MoO4 Co I2 Cadmium iodide Chromium Gadolinium Rubidium bromide CdI2 Cr Gd RbBr cal/g cal/g mole 453 25.3 3230 406.8 –21.2 23.7 16.6 16.5 15.3 3250 3250 3360 841 1050±50 57.8 13.5 (11.0) 23.8 3360 (3400) 3450 1220 62.7 3450 1327 28.9 3500 623 (53.7) (3500) 96.8 9.7 3510 1530.0 63.7 3560 38.5 21.4 3600 3600 687 17.5 1490 62.1 3640 112.9 14.3 3650 386.8 10.0 3660 1890 1312 677 62.1 23.8 22.4 3660 3700 3700 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC 1376 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1377 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 351. SELECTING HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 7 OF 15) Heat of fusion Melting point •C cal/g cal/g mole ~1133 310 197 20 44.2 37.7 3700 3760 3770 1538 84.4 3800 3900 Compound Formula Uranium235 Sodium nitrate Chromium trioxide Scandium NaNO3 CrO3 Sc Silane, hexaHuoro– Terbium Mercury bromide Osmium tetroxide (yellow) Si2F6 Tb HgBr2 OsO4 –28.6 22.9 1356 24.6 3900 241 55.8 10.9 15.5 3960 4060 Calcium fluoride Dysprosium Erbium Holmium CaF2 Dy Er Ho 1382 52.5 4100 1407 1496 1461 25.2 24.5 24.8 4100 4100 4100 Potassium iodide Strontium chloride Yttrium Palladium Kl SrCl2 Y Pd Rubidium fluoride Lead sulfide Mercury chloride Calcium bromide RbF PbS HgCl2 CaBr2 U Chromium (III) sequioxide Cr2O3 Lithium molybdate Nickel Vanadium Li2MoO4 Ni V 682 24.7 4100 872 26.5 4100 1504 1555 46.1 38.6 4100 4120 833 1114 39.5 17.3 4130 4150 276.8 729.8 15.3 20.9 4150 4180 2279 705 27.6 24.1 4200 4200 1452 1917 71.5 (70) 4200 (4200) For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC Shackelford & Alexander 1377 13.2 sel Thermodynamics Page 1378 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 351. SELECTING HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 8 OF 15) Heat of fusion Melting point •C cal/g cal/g mole 1400 34.0 4260 427 17.7 4260 657 487.8 (13.7) 11.7 (4280) 4290 Compound Formula Strontium fluoride Thallium chloride, mono– Silver sulfate Leadbromide SrF2 TICl Ag2SO4 PbBr2 Tin iodide, tetra– Sodium cyanide Rubidium chloride Thallium carbonate SnI4 NaCN RbCl Tl2CO3 143.4 (6.9) (4330) 562 717 (88.9) 36.4 (4360) 4400 273 9.5 4400 Thulium Sodium thiocyanate Zinc oxide Beryllium bromide Tm NaSCN ZnO BeBr2 1545 323 1975 26.0 54.8 54.9 4400 4450 4470 487.8 (26.6) (4500) Mercury iodide Thorium Lutetium Platinum HgI2 Th Lu Pt 250 9.9 4500 1845 1651 1770 (<19.8) 26.3 24.1 (<4600) 4600 4700 Antimony Strontium bromide Cadmium sulfate Copper (II) chloride Sb SrBr2 CdSO4 CuCl2 630 39.1 4770 643 1000 430 19.3 22.9 24.7 4780 4790 4890 Sodium phosphate, meta– Cadmium bromide Iron (II) sulfide Potassium bromide NaPO3 CdBr2 FeS KBr 988 567.8 (48.6) (18.4) (4960) (5000) 1195 742 56.9 42.0 5000 5000 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC 1378 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1379 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 351. SELECTING HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 9 OF 15) Compound Formula Rhenium hexafluoride Titanium Calcium nitrate Sodium chlorate ReF6 Ti Ca(NO3)2 NaClO3 Boron Cadmium chloride Sodium iodide Barium chloride B CdCl2 NaI BaCl2 Cadmium fluoride Copper(l) cyanide CdF2 Cu2(CN)2 Aluminum bromide Al2Br6 Boron trioxide B2O3 Copper (I) sulfide Cu2S Thallium sulfate Zirconium Nitrogen tetroxide Tl2SO4 Zr N2O4 Zinc chloride Lead chloride Potassium borate, meta– Hydrogen sulfide ZnCl2 PbCl2 KBO2 H2S Melting point •C Heat of fusion cal/g cal/g mole 19.0 16.6 5000 1800 (104.4) (5000) 560.8 255 31.2 49.7 5120 5290 2300 (490) (5300) 567.8 28.8 5300 662 35.1 5340 959.8 25.9 5370 1110 473 87.4 448.8 (35.9) (30.1) 10.1 78.9 (5400) (5400) 5420 5500 1129 632 62.3 10.9 5500 5500 1857 (60) (5500) –13.2 60.2 5540 283 497.8 947 –85.6 (406) 20.3 (69.1) 16.8 (5540) 5650 (5660) 5683 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC Shackelford & Alexander 1379 13.2 sel Thermodynamics Page 1380 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 351. SELECTING HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 10 OF 15) Compound Formula Heat of fusion Melting point •C cal/g cal/g mole 790 702 884 460 25.8 19.6 41.0 75.1 5800 5800 5830 5860 Nickel subsulfide Ni3S2 Sodium tungstate Na2WO4 Sodium sulfate Na2SO4 Sodium peroxide Na2O2 Barium nitrate Magnesium fluoride Lead iodide Thallium bromide, mono– Ba(NO3)2 MgF2 PbI2 TlBr 594.8 1221 412 (22.6) 94.7 17.9 (5900) 5900 5970 460 21.0 5990 Barium bromide Hafnium Molybdenum dichloride Tungsten tetrachloride BaBr2 Hf MoCl2 WCl4 846.8 21.9 6000 2214 (34.1) (6000) 726.8 327 3.58 18.4 6000 6000 Lithium nitrate Calcium chloride Potassium peroxide Sodium bromide LiNO3 CaCl2 250 782 490 87.8 55 55.3 6060 6100 6100 747 59.7 6140 Bismuth trifluoride BiF3 Sulfur trioxide (γ) Tin oxide Potassium chloride SO3 726.0 62.1 (23.3) 79.0 (6200) 6310 SnO KCl 1042 770 (46.8) 85.9 (6400) 6410 K2O2 NaBr For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC 1380 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1381 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 351. SELECTING HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 11 OF 15) Heat of fusion Compound Formula Melting point •C Niobium Potassium fluoride Molybdenum Arsenic Nb KF Mo As 2496 875 2622 816.8 (68.9) 111.9 (68.4) (22.0) (6500) 6500 (6600) (6620) Calcium sulfate CaSO4 Lithium tungstate Barium iodide Bismuth trioxide Li2WO4 BaI2 1297 742 710.8 815.8 49.2 (25.6) (17.3) 14.6 6700 (6700) (6800) 6800 Potassium chromate Osmium Sodium carbonate Sodium fluoride K2CrO4 Os Na2CO3 NaF Lithium metasilicate Sodium chloride Zirconium dichloride Manganese dichloride Li2SiO3 NaCl ZrCl2 MnCl2 Cobalt (II) chloride Lithium orthosilicate Tantalum Chromium (II) chloride CoCl2 Bi2O3 Li4SiO4 Ta CrCl2 cal/g cal/g mole 984 35.6 6920 2700 (36.7) (7000) 854 66.0 7000 992 166.7 7000 1177 80.2 7210 800 123.5 7220 727 650 45.0 58.4 7300 7340 727 1249 56.9 60.5 7390 7430 2996 ± 50 34.6–41.5 (7500) 814 65.9 7700 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC Shackelford & Alexander 1381 13.2 sel Thermodynamics Page 1382 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 351. SELECTING HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 12 OF 15) Compound Formula Iron (II) oxide Iron (II) chloride FeO FeCl2 Potassium carbonate Rhenium K2CO3 Re Aluminum iodide Al2I6 Arsenic trioxide Europium trichloride Vanadium dichloride As4O6 EuCl3 VCl2 Magnesium chloride Potassium sulfate Manganese metasilicate Germanium K2SO4 MnSiO3 Ge Magnesium bromide Phosphoric acid. hypo– Niobium pentachloride Tungsten H4P2O6 NbCl5 W Sodium silicate, di– Sodium borate, meta– Potassium dichromate Potassium phosphate MgCl2 MgBr2 Na2Si2O5 NaBO2 K2Cr2O7 K3PO4 Heat of fusion Melting point •C cal/g cal/g mole 1380 (107.2) (7700) 677 897 61.5 56.4 7800 7800 3167±60 (42.4) (7900) 190.9 312.8 622 1027 9.8 22.2 (20.9) 65.6 7960 8000 (8000) 8000 712 1074 1274 82.9 46.4 (62.6) 8100 8100 (8200) 959 (114.3) (8300) 711 54.8 21.1 45.0 51.2 30.8 8300 8300 8400 3387 (45.8) (8420) 884 966 398 1340 46.4 134.6 29.8 41.9 8460 8660 8770 8900 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC 1382 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1383 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 351. SELECTING HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 13 OF 15) Melting point •C Heat of fusion Compound Formula Tantalum pentachloride Zinc sulfide Silicon Lead sulfate TaCl5 ZnS Si PbSO4 206.8 25.1 9000 1745 1427 (93.3) 337.0 (9100) 9470 1087 31.6 9600 Barium sulfate Sodium silicate, meta– Uranium tetrachloride Antimony trisulfide BaSO4 Na2SiO3 UCl4 1350 1087 590 546.0 41.6 84.4 27.1 33.0 9700 10300 10300 11200 Titanium dioxide Calcium oxide Iron carbide Calcium carbonate TiO2 CaO Fe3C CaCO3 1825 (142.7) (11400) 2707 (218.1) (12240) 1226.8 1282 68.6 (126) 12330 (12700) Manganese (II) oxide Sodiumsilicate, aluminum– Calcium metasilicate Copper (I) oxide MnO NaAlSi3O8 CaSiO3 1784 183.3 13000 1107 1512 1230 50.1 115.4 (93.6) 13150 13400 (13400) Sodium pyrophosphate Barium oxide Tungsten dioxide Tungsten trioxide Na4P2O7 BaO WO2 WO3 (13700) Sb4S6 Cu2O cal/g cal/g mole 970 (51.5) 1922.8 93.2 13800 1270 1470 60.1 60.1 13940 13940 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC Shackelford & Alexander 1383 13.2 sel Thermodynamics Page 1384 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 351. SELECTING HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 14 OF 15) Heat of fusion Melting point •C cal/g cal/g mole 1092 42.4 14000 991 219 14000 1524 146.4 14700 2077 224.0 15000 296 670 30.1 85.5 15340 15560 2430 2550.0 161.2 679.7 16700 17000 17080 18470 Compound Formula Potassium pyro–phosphate Titanium oxide Magnesium silicate Vanadium oxide K4P2O7 TiO MgSiO3 VO Rhenium heptoxide Re2O7 Vanadium pentoxide Strontium oxide Beryllium oxide V2O5 SrO BeO Phosphorus pentoxide P4O10 NiCl2 MgO Ba3(PO4)2 569.0 1030 60.1 142.5 2642 459.0 18500 1727 30.9 18600 Aluminum chloride Al2Cl6 Iron (III) chloride Zirconium oxide Thorium chloride Fe2Cl6 ZrO2 ThCl4 192.4 303.8 2715 765 63.6 63.2 168.8 61.6 19600 20500 20800 22500 Niobium pentoxide Nb2O5 Yttrium oxide Lead molybdate Aluminum oxide Y2O3 PbMoO4 1511 2227 1065 2045.0 91.0 110.7 70.8 (256.0) 24200 25000 (25800) (26000) Nickel chloride Magnesium oxide Barium phosphate Al2O3 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) ©2001 CRC Press LLC 1384 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1385 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 351. SELECTING HEAT OF FUSION FOR ELEMENTS AND INORGANIC COMPOUNDS * (SHEET 15 OF 15) Compound Formula Antimony trioxide Sb4O6 Heat of fusion Melting point •C cal/g cal/g mole (46.3) 142.5 (170.4) (26990) 33000 (39000) 108.6 1102.0 48000 291100 Iron oxide Fe3O4 Manganese oxide Mn3O4 655.0 1596 1590 Tantalum pentoxide Thorium dioxide Ta2O5 ThO2 1877 2952 For heat of fusion in J/kg, multiply values in cal/g by 4184. For heat of fusion in J/mol, multiply values in cal/g-mol (=cal/mol) by 4.184. For melting point in K, add 273.15 to values in ˚C. Source: data from Weast, R C., Ed., Handbook of Chemistry and Physics, 55th ed., CRC Press, Cleveland, (1974); and Bolz, R. E. and Tuve, G. L., Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, (1973) * Values in parentheses are of uncertain reliability. ©2001 CRC Press LLC Shackelford & Alexander 1385 13.2 sel Thermodynamics Page 1386 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 352. SELECTING ENTROPY OF THE (SHEET 1 OF 3) ELEMENTS Element Phase Entropy at 298K (e.u.) C B Be Si solid solid solid solid 1.3609 1.42 2.28 4.50 Cr Fe Li Al solid solid, α solid solid Co Mo Ru V solid, α solid solid, α solid 6.83 Ni Ti Mn Rh solid, α solid, α solid, α solid 7.137 7.334 7.59 S Mg Os Cu solid, α solid solid solid 7.62 Tc W Nb As solid solid solid solid 8.0 8.0 8.3 8.4 Ir Re Pd Sc solid solid solid solid 8.7 8.89 8.9 9.0 5.68 6.491 6.70 6.769 6.8 6.9 7.05 7.6 7.77 7.8 7.97 Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC 1386 CRC Handbook of Materials Science & Engineering 13.2 sel Thermodynamics Page 1387 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 352. SELECTING ENTROPY OF THE (SHEET 2 OF 3) ELEMENTS Entropy at 298K (e.u.) Element Phase Zr Ga Ca Zn solid, α solid solid, α solid 9.29 Pt Ge Se Ag solid solid solid solid 10.0 10.1 10.144 10.20 Sb Y Au Te solid (α, β, γ) solid solid solid, α 10.5 U Cd Sn Na solid, α solid solid (α, β) solid 12.03 Th Ac Am Po solid solid solid solid 12.76 13 13 13 Pu Sr Hf Pa solid solid solid solid 13.0 13.0 13.1 13.5 Pr Bi La Ce solid solid solid solid 13.5 13.6 13.7 13.8 9.82 9.95 9.95 11 11.32 11.88 12.3 12.3 12.31 Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC Shackelford & Alexander 1387 13.2 sel Thermodynamics Page 1388 Wednesday, December 31, 1969 17:00 Selecting Thermodynamic and Kinetic Properties Table 352. SELECTING ENTROPY OF THE (SHEET 3 OF 3) ELEMENTS Element Phase Entropy at 298K (e.u.) In Nd Np Sm solid solid solid solid 13.88 13.9 14 15 K Tl Pb Ba solid solid, α solid solid, α Rb Ra Hg Cs solid solid liquid solid 16.6 17 18.46 19.8 H2 P4 N2 F2 gas solid, white gas gas 31.211 42.4 45.767 48.58 O2 Cl2 Ta gas gas 49.003 53.286 solid 99 15.2 15.4 15.49 16 Source: data from Weast, R. C. Ed., Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, Fla., 1988, D44. ©2001 CRC Press LLC 1388 CRC Handbook of Materials Science & Engineering 13.3 sel Thermodynamics L Page 1389 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 1 OF 33) Activation Energy, Q kcal • mol–1 Frequency Factor, D o Crystal Form Purity % Temperature Range ˚C P P 99.996 99.999 99.99 25–100 338–415 1.0–77 1.2 2.0 2.21 — 2.0 3.34 x l0–4 P⊥c 99.999 110–260 2.8 2.0 x 10–5 Metal Tracer Selenium Hg203 Zinc Sodium Cu64 S⊥c Au198 cm2 • s–1 α-Thallium Au Potassium Au198 P 99.95 5.6–52.5 3.23 1.29 x10–3 α-Thallium Au198 P||c 99.999 110–260 5.2 5.3 x 10–4 Cobalt 35 198 S Au198 P 99.99 1150–1250 5.4 1.3 β-Thallium P 99.999 230–310 6.0 5.2 x 10–4 Indium Au198 Potassium Na22 Sodium K42 Sodium Rb86 S P P P 99.99 99.7 99.99 99.99 25–140 0–62 0–91 0–85 6.7 7.45 8.43 8.49 9 x 10–3 0.058 0.08 0.15 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 13.3 sel Thermodynamics L Page 1390 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 2 OF 33) Metal Tracer Potassium Rb86 Selenium Lithium Potassium 59 Fe Cu64 K42 Phosphorus P32 Lead Au198 Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o Crystal Form Purity % P P 99.95 0.1–59.9 40–100 8.78 8.88 0.090 — P 99.98 51–120 9.22 0.47 S 99.7 –52–61 9.36 0.16 99.999 99.99 92.5 0–44 190–320 0–98 47–153 9.4 10.0 10.09 10.49 1.07 x 10–3 8.7 x 10–3 0.145 0.21 135–225 11.0 5.8 x 10–3 cm2 • s–1 Sodium Na Lithium Au195 P S P P Tin Au198 S||c 110 P||c 99.999 80–250 11.2 2.7 x 10–2 Ag110 S||c P 99.99 25–140 35–140 11.5 11.7 0.11 α-Thallium Indium Selenium 22 Ag 75 Se Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 1.4 x 10–4 13.3 sel Thermodynamics L Page 1391 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 3 OF 33) Activation Energy, Q kcal • mol–1 Frequency Factor, D o Metal Tracer Crystal Form Purity % Temperature Range ˚C α-Thallium Ag110 P⊥c 99.999 80–250 11.8 3.8 x 10–2 99.999 99.99 230–310 787–990 11.9 12.0 4.2 x 10–2 2.69 x 10–4 135–225 12.3 7.1 x 10–3 cm2 • s–1 β-Thallium γ-Uranium Ag Fe55 P P Tin Ag110 S||c γ-Uranium Co60 Lithium Li6 Lithium Na22 Indium Ag110 P P P S⊥c 99.99 99.98 92.5 99.99 783–989 35–178 52–176 25–140 12.57 12.60 12.61 12.8 3.51 x 10–4 0.14 0.41 0.52 Lithium Ag110 Lithium 72 Ga Lithium Zn65 Mo99 92.5 99.98 92.5 99.995 65–161 58–173 60–175 400–630 12.83 12.9 12.98 13.1 0.37 0.21 0.57 Aluminum P P P P 110 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 1.04 x 10–9 13.3 sel Thermodynamics L Page 1392 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 4 OF 33) Metal Tracer g-Uranium Mn54 Lithium Hg203 Lead Ag110 Lead Cu64 Tin Tl204 Lithium Sn113 Indium Tl204 Selenium S35 g-Uranium Ni63 Aluminum Ni63 Lithium In114 Lithium Cd115 Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o Crystal Form Purity % P P P S 99.99 99.98 99.9 787–939 58–173 200–310 150–320 13.88 14.18 14.4 14.44 1.81 x 10–4 1.04 0.064 0.046 P P S S||c 99.999 99.95 99.99 137–216 108–174 49–157 60–90 14.7 15.0 15.5 15.6 1.2 x 10–3 0.62 0.049 1100 P P P P 99.99 99.99 92.5 92.5 787–1039 360–630 80–175 80–174 15.66 15.7 15.87 16.05 5.36 x10–4 2.9 x 10–8 0.39 2.35 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC cm2 • s–1 13.3 sel Thermodynamics L Page 1393 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 5 OF 33) Activation Energy, Q kcal • mol–1 Frequency Factor, D o Metal Tracer Crystal Form Purity % Temperature Range ˚C a-Praseodymium Co60 P 99.93 660–780 16.4 4.7 x 10–2 95 cm2 • s–1 γ-Uranium γ–Plutonium Zr Pu238 P P 800–1000 190–310 16.5 16.7 3.9 x 10–4 2.1 x 10–5 Tin Au198 S⊥c 135–225 17.7 0.16 a-Zirconium Cr51 P 99.9 700–850 18.0 1.19 x 10–8 β–Zirconium Cr51 P 99.9 700–850 18.0 1.19 x 10–8 Lanthanum La140 99.97 Zinc Ga72 P S⊥c 690–850 240–403 18.1 18.15 2.2 x 10–2 0.018 Tin Ag110 Zinc Ga72 Zinc Sn113 S⊥c S||c S⊥c 135–225 240–403 298–400 18.4 18.4 18.4 0.18 0.016 0.13 ε-Plutonium Pu238 P 500–612 18.5 2.0 x 10–2 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 13.3 sel Thermodynamics L Page 1394 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 6 OF 33) Metal Tracer Indium In114 Indium 114 In Tellurium Hg203 Cadmium Zn65 Zinc In114 Cadmium Cd115 Zinc Sn113 Aluminum V48 Zinc In114 Aluminum 95 Nb Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 44–144 44–144 270–440 180–300 18.7 18.7 18.7 19.0 3.7 2.7 99.995 271–413 110–283 298–400 400–630 19.10 19.3 19.4 19.6 S⊥c P 99.95 271–413 350–480 19.60 19.65 1.66 x 10–7 99.93 650–780 19.7 4.3 x 10–2 260–413 19.70 0.056 Crystal Form Purity % S⊥c S||c P S 99.99 99.99 S||c S S||c P α-Praseodymium Au195 P Zinc Hg203 S||c 99.99 99.95 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC cm2 • s–1 3.14 x 10–5 0.0016 0.062 0.14 0.15 6.05 x 10–8 0.14 13.3 sel Thermodynamics L Page 1395 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 7 OF 33) Metal Tracer Crystal Form Silicon Fe59 S 14 Purity % Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 1000–1200 20.0 6.2 x 10–3 cm2 • s–1 β-Titanium β-Praseodymium C Au195 P P 99.62 99.93 1100–1600 800–910 20.0 20.1 3.02 x 10–3 3.3 x 10–2 Zinc Cd115 S⊥c 99.999 225–416 20.12 0.117 Zinc Hg203 20.18 20.2 20.54 0.073 99.995 99.999 260–413 400–630 225–416 1.92 x 10–7 0.114 Zinc Cd115 S⊥c P S||c β-Thallium Tl204 S 99.9 230–280 20.7 0.7 Magnesium Fe59 Lead Cd115 99.95 99.999 Na24 400–600 150–320 800–1100 21.2 21.23 21.25 4 x 10–6 0.409 Molybdenum P S S 2.95 x 10–9 β-Praseodymium Ag110 P 99.93 800–900 21.5 3.2 x 10–2 Aluminum 103 Pd Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 13.3 sel Thermodynamics L Page 1396 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 8 OF 33) Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 920–1600 240–418 140–217 21.82 21.9 22.0 3.26 x 10–3 0.13 5.5 Crystal Form Purity % 99.99 99.999 Co60 P S||c S,P α-Zirconium Sn113 P 300–700 22.0 1.0 x 10–8 b–Zirconium Sn113 Niobium K42 Tl204 P S 300–700 900 1100 22.0 22.10 1 x 10–8 2.38 x 10–7 Metal Tracer b–Zirconium Co60 Zinc Zn65 Tin α-Thallium Aluminum 153 Sm cm2 • s–1 S⊥c 99.9 135–230 22.6 0.4 P 99.995 450–630 22.88 3.45 x 10–7 Magnesium Ni63 P 99.95 400 600 22.9 1.2 x 10–5 α-Thallium α-Zirconium Tl204 V48 S||c P 99.9 99.99 135–230 600–850 22.9 22.9 0.4 1.12 x 10–8 Silicon Cu64 P 800–1100 23.0 4 x 10–2 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 13.3 sel Thermodynamics L Page 1397 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 9 OF 33) Activation Energy, Q kcal • mol–1 Frequency Factor, D o 0.18 Metal Tracer Crystal Form Purity % Temperature Range ˚C Zinc Zn65 S⊥c Calcium Fe59 99.999 99.95 240–418 500–800 23.0 23.3 2.7 x 10–3 δ–Plutonium Pu238 P 350–440 23.8 4.5 x 10–3 Aluminum 142 Pr P 99.995 520–630 23.87 3.58 x 10–7 g-Uranium Cu64 P 99.99 787–1039 24.06 1.96 x 10–3 β-Titanium P32 P 99.7 950–1600 24.1 3.62x10–3 Copper Tm170 Lead Tl205 P P 99.999 99.999 705–950 207–322 24.15 24.33 7.28 x 10–9 0.511 g-Uranium Cr51 P 99.99 797–1037 24.46 5.37 X 10–3 α-Zirconium Mo99 P 600–850 24.76 6.22 x 10–8 Germanium Fe59 Zn65 S 775–930 24.8 0.13 766–603 24.8 0.18 α-Praseodymium P 99.96 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC cm2 • s–1 13.3 sel Thermodynamics L Page 1398 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 10 OF 33) Activation Energy, Q kcal • mol–1 Frequency Factor, D o 25.0 25.04 25.1 25.2 4.8 x 10–7 5.5 x 10–9 10.7 160 Crystal Form Purity % P S S⊥c P 99.995 99.999 99.95 450–630 800–1100 160–226 129–169 Ag110 S 99.99 180–300 25.4 2.21 110 P 99.93 610 730 25.4 0.14 S S||c 99.999 99.998 150–320 181–221 25.52 25.6 0.887 12.2 Metal Tracer Aluminum Nd147 Molybdenum K42 Tin Sn113 Lithium Pb204 Cadmium α-Praseodymium Temperature Range ˚C Ag cm2 • s–1 Lead Pb204 Tin 114 In Tin Sn113 La140 S||c 99.999 160–226 25.6 7.7 P 99.96 800–930 25.7 1.8 114 S⊥c S||c 99.998 99.999 181–221 271–413 25.8 26.0 34.1 0.32 β-Praseodymium Tin In Zinc Ag110 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 13.3 sel Thermodynamics L Page 1399 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 11 OF 33) Metal Tracer Crystal Form Purity % Temperature Range ˚C Copper Lu177 P 99.999 857–1010 P β-Praseodymium 166 Ho Chromium C14 Aluminum Ce141 Copper Eu152 Activation Energy, Q kcal • mol–1 Frequency Factor, D o 26.15 4.3 x 10–9 cm2 • s–1 99.96 800–930 26.3 9.5 P P 99.995 120~1500 450–630 26.5 26.60 9.0 x 10–3 1.9 x 10–6 99.999 99.999 99.995 99.97 750–970 423–609 500–630 1020–1220 26.85 27.0 27.0 27.0 1.17 x 10–7 0.077 Aluminum Au Aluminum La140 Nickel Sb124 P S P P b-Praseodymium Zn65 P 99.96 822–921 27.0 0.63 β–Zirconium Ta182 P 99.6 900–1200 27.0 5.5 x 10–5 Vanadium C14 Magnesium U235 P P 99.7 99.95 845–1130 500–620 27.3 27.4 4.9 x 10–3 1.6 x 10–5 198 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 1.4 x 10–6 1.8 x 10–5 13.3 sel Thermodynamics L Page 1400 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 12 OF 33) Activation Energy, Q kcal • mol–1 Frequency Factor, D o Metal Tracer Crystal Form Purity % Temperature Range ˚C Copper Tb160 P 99.999 770–980 27.45 8.96 x 10–9 β–Uranium Co60 P 99.999 692–763 27.45 1.5 x 10–2 Copper Pm147 Aluminum In114 P P 99.999 99.99 720–955 400–600 27.5 27.6 3.62 x 10–8 0.123 Copper Ce141 Zinc Ag110 Aluminum Co60 Aluminum Ag110 P S⊥c S S 99.999 99.999 99.999 99.999 766–947 271–413 369–655 371–655 27.6 27.6 27.79 27.83 2.17 x 10–3 0.45 0.131 0.118 Molybdenum Cs134 Magnesium In114 99.99 99.9 Aluminum Sn113 U233 S P P 1000–1470 472–610 400–600 28.0 28.4 28.5 8.7 x 10–11 5.2 x 10–2 0.245 P 99.99 800–1070 28.5 2.33 x 10–3 γ-Uranium Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC cm2 • s–1 13.3 sel Thermodynamics L Page 1401 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 13 OF 33) Metal Tracer Magnesium Ag110 Magnesium 65 Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 28.50 28.6 28.6 28.8 0.34 0.41 99.99 476–621 467–620 320–440 450–650 99.999 99.95 357–653 550–800 28.86 28.9 1.0 x 10–6 Crystal Form Purity % 99.9 99.9 cm2 • s–1 Tellurium Se75 Aluminum 54 Mn P P P P Aluminum Zn65 S Calcium Ni63 β-Praseodymium In114 P 99.96 800–930 28.9 9.6 Aluminum 71 Ge S 99.999 401–653 28.98 0.481 Aluminum Sb124 Aluminum Ga72 P S 99.999 448–620 406–652 29.1 29.24 0.09 0.49 α-Iron β-Titanium C14 P P 99.98 99.9 616–844 900–400 29.3 29.3 2.2 Zn U235 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 2.6 x 10–2 0.22 0.259 5.1 x 10–4 13.3 sel Thermodynamics L Page 1402 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 14 OF 33) Metal Tracer b-Praseodymium Zinc β-Titanium Pr142 Aluminum Cu64 Ni63 115 Cd Zinc Au198 Activation Energy, Q kcal • mol–1 Frequency Factor, D o Crystal Form Purity % Temperature Range ˚C P 99.93 99.999 800–900 338–415 29.4 29.53 8.7 2.22 99.7 925–1600 29.6 9.2 x 10–3 S 99.999 441–631 29.7 1.04 S⊥c S||c 99.999 99.999 99.95 29.72 29.73 29.8 29.9 0.29 0.97 3.2 x 10–5 1700 S||c P cm2 • s–1 Zinc Au198 Calcium C14 Selenium S35 S⊥c 315–415 315–415 550–800 60–90 b–Zirconium Zr95 P 1100–1500 30.1 2.4 x 10–4 γ-Uranium β–Zirconium β-Titanium Au195 P P P 785–1007 900–1065 900–1600 30.4 30.5 30.6 4.86 x 10–3 5.7 x 10–4 1.2 x 10–2 235 U Co60 99.99 99.7 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 13.3 sel Thermodynamics L Page 1403 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 15 OF 33) Activation Energy, Q kcal • mol–1 Frequency Factor, D o Metal Tracer Crystal Form Purity % Temperature Range ˚C b–Zirconium Be7 P 99.7 915–1300 31.1 8.33 x 10–2 44 P P P 99.95 99.99 99.7 900–1540 740–857 900–1600 31.2 31.5 31.6 3.58 x 10–4 6.6 x 10–6 P P S||c 99.7 950–1600 800–1250 467–635 31.6 32.0 32.2 3.8 x 10–4 1.09 x 10–5 1.0 P 99.95 900–1545 32.2 3.1 x 10–4 S 99.999 433–652 32.27 0.647 P 99.95 940–1590 32.4 4.0 x 10–3 467–635 32.5 1.5 99.94 950–1200 33.3 0.33 β-Titanium α-Zirconium β-Titanium Ti Nb95 b-Titanium Sn113 Niobium C14 Magnesium Mg28 V48 β-Titanium Aluminum β-Titanium Magnesium β–Zirconium Fe59 Cu64 Sc46 Mg28 P32 S⊥c P Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC cm2 • s–1 7.8 x 10–3 13.3 sel Thermodynamics L Page 1404 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 16 OF 33) Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 33.7 34.0 34.0 6.1 x 10–3 1.71 0.21 Crystal Form Purity % 99.7 C14 P S P 99.82 900–1600 450–650 600–1400 14 C P 99.34 800–1400 34.0 0.15 Nickel Cl4 S35 P P 99.86 99.8 600–1400 1320 1520 34.0 34.0 0.012 Vanadium 3.1 x l0–2 β–Zirconium C14 P 96.6 1100–1600 34.2 3.57 x 10–2 Calcium U235 99.95 500–700 34.8 l.l x 10–5 b-Titanium Cr51 P 99.7 950–1600 35.1 5 x 10–3 β–Zirconium β-Titanium Mo99 Zr95 P P 98.94 900–1635 920–1500 35.2 35.4 1.99 x 10–6 4.7 x 10–3 Tellurium Te127 S||c 99.9999 300–400 35.5 130 Metal Tracer b-Titanium Mn54 Aluminum Al27 Cobalt γ-Iron Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC cm2 • s–1 13.3 sel Thermodynamics L Page 1405 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 17 OF 33) Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 700–850 640–870 35.9 36.5 8.6 x 10–6 0.084 1230–1635 36.6 7.8 x 10–4 600–1027 37.38 0.116 99.99 843–997 565–1065 640–870 653–948 37.5 37.6 37.9 38.1 4.8 x 10–4 0.52 0.15 0.079 99.95 700–865 500–800 38.1 38.5 0.22 8.3 97.9 1795–1995 38.7 1.2 x10–3 770–940 38.90 0.47 Crystal Form Purity % Silver P P 99.99 Ge77 β–Zirconium Nb95 P Gold Hg203 S Copper Pt195 Beryllium Be7 Silver Tl204 Silver Hg203 P S⊥c P P Silver Pb210 P Metal Tracer a-Titanium Ti44 Calcium 45 β–Hafnium Ca Hf181 P Silver Te125 P 99.994 99.75 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC cm2 • s–1 13.3 sel Thermodynamics L Page 1406 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 18 OF 33) Metal Tracer Silver Sb124 Beryllium 110 Activation Energy, Q kcal • mol–1 Frequency Factor, D o Crystal Form Purity % Temperature Range ˚C P S||c 99.999 99.75 780–950 650–900 39.07 39.3 0.234 0.43 P 99.7 1000–1600 39.3 5.0 x 10–3 39.30 0.255 cm2 • s–1 β-Titanium Ag Nb95 Silver Sn113 S 99.99 592–937 Beryllium S||c 99.75 565–1065 39.4 0.62 γ-Uranium Be7 Nb95 P 99.99 791–1102 39.65 4.87 x 10–2 Germanium In114 Silver S35 S S 99.999 600–920 600–900 39.9 40.0 2.9 x 10–4 1.65 a–Uranium U234 Gold Ag110 P S 99.99 580–650 699–1007 40.0 40.2 2 x 10–3 0.072 β-Titanium 7 Be P 99.96 Tantalum C14 P 915–1300 40.2 0.8 1450–2200 40.3 1.2 x 10–2 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 13.3 sel Thermodynamics L Page 1407 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 19 OF 33) Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 592–937 1200–1600 360–430 40.80 41.0 41.0 0.41 2.04 x 10–2 320 880–1600 41.4 3.16 41.5 41.5 41.6 41.6 1.6 x 1010 – 0.068 0.082 41.69 41.7 41.74 42.0 0.44 0.54 464 0.34 Crystal Form Purity % 99.99 99.98 Tl204 S P P β–Zirconium Ce141 P Lithium Sb124 Silicon Gold Co60 Gold 59 P S P P 99.95 P32 99.93 99.93 141–176 1100–1250 702–948 701–948 S S S S 99.99 99.99 99.999 99.999 592–937 640–925 422–654 600–1000 Metal Tracer Silver In114 Molybdenum C14 Tellurium Fe Silver Cd115 Silver Zn65 Aluminum Cr51 Copper Sb124 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC cm2 • s–1 13.3 sel Thermodynamics L Page 1408 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 20 OF 33) Crystal Form Purity % Temperature Range ˚C 198 P S 99.97 810–1075 850–1050 P 99.92 193 Au S, P b-Titanium Mo99 Beryllium β-Titanium Ag110 Ag110 P S⊥c Copper Metal Tracer Copper As76 Gold α-Iron Au K42 Activation Energy, Q kcal • mol–1 Frequency Factor, D o 42.13 42.26 0.20 0.107 cm2 • s–1 500–800 42.3 0.036 400–1050 42.6 0.03 99.7 99.75 900–1600 650–900 43.0 43.2 8.0 x 10–3 1.76 P 99.95 940 1570 43.2 3 x 10–3 Tl204 S 99.999 785–996 43.3 0.71 g-Iron P32 P 99.99 950–1200 43.7 0.01 β-Titanium W185 P 99.94 900–1250 43.9 3.6 x 10–3 Copper Hg203 U235 P _ 44.0 0.35 P 690–750 44.2 2.8 x10–3 Copper β–Uranium Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 13.3 sel Thermodynamics L Page 1409 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 21 OF 33) Metal Tracer Copper Ge68 Copper 113 Sn Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 44.76 45.0 45.1 45.2 0.397 0.11 1.5 0.67 Crystal Form Purity % S P P S 99.998 99.97 99.999 653–1015 680–910 600–800 640–955 cm2 • s–1 Lanthanum Au198 Silver Ag110 a-Zirconium Zr95 Copper Cd115 P S 99.95 99.98 750–850 725–950 45.5 45.7 5.6 x 10–4 0.935 β–Zirconium V48 P 99.99 870–1200 45.8 7.59 x 10–3 Copper Ga72 _ 45.90 0.55 Aluminum Fe59 550–636 880–940 717–945 1020–1400 46.0 46.0 46.1 46.2 135 0.30 1.23 0.019 Gold Ni63 Silver Cu64 Nickel Be7 S P P P 99.99 99.96 99.99 99.9 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 13.3 sel Thermodynamics L Page 1410 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 22 OF 33) Crystal Form Purity % Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 580–980 300–400 700–1300 540–920 46.5 46.7 47.0 47.2 0.61 3.91 x 104 2.75 x 10–3 102 5.3 x 1013 cm2 • s–1 Metal Tracer Copper Ag110 Tellurium Te127 Silicon Au198 Carbon Ni63 S, P S⊥c S ⊥c Lithium Bi P 99.95 141–177 47.3 Copper P 99.999 890–1000 47.50 0.73 α-Zirconium β–Zirconium Zn65 Fe55 Fe55 750–840 750–840 48.0 48.0 2.5 x 10–2 2.5 x 10–2 Silver Au198 Silver Co60 Silver Fe59 Copper S35 P S S S 718–942 700–940 720–930 800–1000 48.28 48.75 49.04 49.2 0.85 1.9 2.42 23 99.9999 P P 99.99 99.999 99.99 99.999 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 13.3 sel Thermodynamics L Page 1411 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 23 OF 33) Metal Tracer Vanadium P32 Germanium Sb124 Copper Cu67 Nickel Mo99 Nickel Pu238 Niobium P32 Beryllium Fe59 Copper Crystal Form Purity % P S S P 99.8 99.999 Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 1200–1450 720–900 698–1061 900–1200 49.8 50.2 50.5 51.0 2.45 x l0–2 0.22 0.78 1025–1125 1300–1800 700–1076 460–1070 51.0 51.5 51.6 52.0 0.5 5.1 x 10–2 0.67 1.36 cm2 • s–1 1.6 x 10–3 99.0 99.75 Fe59 P P S S. P a-Iron Mn54 P 99.97 800–900 52.5 0.35 γ-Iron S35 P 900–1250 53.0 1.7 Carbon Ni63 Copper 51 ||c S, P 750–1060 800–1070 53.3 53.5 2.2 1.02 Cr Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 13.3 sel Thermodynamics L Page 1412 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 24 OF 33) Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 53.5 53.8 54.0 54.1 8.91 x 10–3 1.1 2.5 x 10–4 1.93 Crystal Form Purity % P P P S 99.51 99.998 1200–1600 620–1080 1000–1500 701–1077 Ni63 S S 99.999 99.99 807–1056 749–950 54.37 54.8 1.71 21.9 α-Iron δ-Iron P32 P32 P P 99.99 860–900 1370–1460 55.0 55.0 2.9 2.9 Nickel Au198 W185 V48 W185 S,P 99.999 700–1075 55.0 0.02 99.7 755–875 755–875 900–1250 55.1 55.4 55.8 0.29 1.43 0.41 Metal Tracer Tungsten C14 Copper Ni63 Molybdenum Cr51 Copper Co60 Copper Pd102 Silver α-Iron α-Iron β–Zirconium P P P Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC cm2 • s–1 13.3 sel Thermodynamics L Page 1413 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 25 OF 33) Metal Tracer Crystal Form Germanium Te125 S 63 P α-Iron Purity % Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 770–900 56.0 2.0 cm2 • s–1 99.97 680–800 56.0 1.3 S 99.999 736–939 56.75 9.56 α-Iron Pd102 Cu64 P 99.9 800 1050 57.0 0.57 a-Iron Cr51 Silver Ni P 99.95 775–875 57.5 2.53 δ-Iron γ-Iron β–Zirconium 59 Fe Be7 V48 P P P 99.95 99.9 99.99 1428–1492 1100–1350 1200–1400 57.5 57.6 57.7 2.01 0.1 0.32 Beryllium Ni63 Chromium P P P P 800–1250 1100–1420 700–1350 1020–1263 58.0 58.0 58.0 58.6 0.2 99 Mo Nickel Sn113 Nickel Fe59 99.8 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 2.7 x 10–3 0.83 0.074 13.3 sel Thermodynamics L Page 1414 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 26 OF 33) Metal Tracer Platinum Cu64 95 Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o Crystal Form Purity % P P P 99.999 1098–1375 807–906 1192–1297 59.5 60.06 60.2 0.074 2.04 0.10 P 99.92 809–889 60.3 5.4 S||c P, S 99.98 900–1300 800–1060 60.3 60.9 0.82 7.6 cm2 • s–1 Copper Nb Cobalt α-Iron Ni63 Fe55 Yttrium Y90 Gold δ-Iron Pt195 Co60 P 99.995 1428–1521 61.4 6.38 Nickel Cu64 P 99.95 1050–1360 61.7 0.57 a-Iron Co60 P 99.995 638–768 62.2 7.19 α-Iron γ-Iron Au198 54 Mn P P 99.999 99.97 800–900 920–1280 62.4 62.5 31 0.16 Cobalt Fe59 P 99.9 1104–1303 62.7 0.21 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 13.3 sel Thermodynamics L Page 1415 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 27 OF 33) Metal Tracer Palladium Pd103 Carbon Vanadium 110 Ag Cr51 51 Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 1060–1500 750–1050 960–1200 1100–1270 63.6 64.3 64.6 65.1 0.205 9280 99.99 793–945 1149–1390 940–1240 800–1300 65.8 65.9 66.0 66.5 1.4 x 10–2 0.87 800–900 66.6 1100 99.97 930–2050 67.0 0.77 900–1300 1070–1400 67.1 67.2 5.2 0.33 Crystal Form Purity % S ⊥c P P 99.999 99.99 99.97 Nickel Cr Silver Ru103 Nickel Co60 Tungsten Fe59 Nickel V48 S P P P a-Iron Sb124 P γ-Iron Ni63 P Yttrium Y90 Silicon C14 S⊥c P 99.8 99.95 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC cm2 • s–1 9.54 x10–3 1.1 180 1.39 13.3 sel Thermodynamics L Page 1416 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 28 OF 33) Activation Energy, Q kcal • mol–1 Frequency Factor, D o Purity % Temperature Range ˚C P 99.9 1100–1405 67.7 0.83 P 99.98 1171–1361 67.86 0.49 195 Pt P P 99.95 99.99 1042–1404 1325–1600 68.0 68.2 1.9 0.33 Ge71 Ag110 V48 Cr51 S 766–928 68.5 7.8 P P P 9999 99.99 748–888 1120–1380 950–1400 69.0 69.3 69.7 1950 0.28 10.8 P 99.0 1970–2110 70.0 100 α-Zirconium S35 Ta182 P 99.6 700–800 70.0 100 Niobium Co60 Fe59 P P 99.85 Vanadium 1500–2100 960–1350 70.5 71.0 0.74 0.373 Metal Tracer Crystal Form Cobalt Co60 γ-Iron Fe59 Nickel Ni63 Platinum Germanium α-Iron γ-Iron γ-Iron Tantalum Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC cm2 • s–1 13.3 sel Thermodynamics L Page 1417 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 29 OF 33) Metal Tracer Tantalum Fe59 Nickel 185 γ-Iron α-Iron W Co60 Mo99 Niobium S35 Vanadium V48 Chromium Cr51 Platinum Co60 a-Thorium Pa231 Molybdenum 235 U Niobium U235 Niobium Fe51 Crystal Form P P Purity % Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 99.95 930–1240 1100–1300 71.4 71.5 0.505 2.0 P P 99.98 1138–1340 750–875 72.9 73.0 1.25 7800 S S,P P P 99.9 99.99 99.98 99.99 1100–1500 880–1360 1030–1545 900–1050 73.1 73.65 73.7 74.2 2600 0.36 0.2 19.6 P P P P 99.85 99.98 99.55 99.85 770–910 1500–2000 1500–2000 1400–2100 74.7 76.4 76.8 77.7 126 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC cm2 • s–1 7.6 x 10–3 8.9 x10–3 1.5 13.3 sel Thermodynamics L Page 1418 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 30 OF 33) Metal Tracer Germanium Tl204 Niobium 113 Sn α-Thorium Fe59 U233 Molybdenum P32 Tantalum Mo99 Chromium Molybdenum Ta 182 Activation Energy, Q kcal • mol–1 Frequency Factor, D o Crystal Form Purity % Temperature Range ˚C S P P 99.85 99.8 800–930 1850–2400 980–1420 78.4 78.9 79.3 1700 0.14 0.47 P 99.85 700–880 79.3 2210 P P P S 99.97 2000–2200 1750–2220 1700–2150 943–1435 80.5 81.0 83.0 83.5 0.19 1.8 x 10–3 3.5 x 10–4 0.30 99.99 1000–1400 994–1492 85.0 86.9 2.21 0.099 cm2 • s–1 Niobium Cr51 Niobium V48 Niobium Ti44 S S γ-Iron W185 P 99.5 1050–1250 90.0 1000 Copper 54 S 99.99 754–950 91.4 107 Mn Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC 13.3 sel Thermodynamics L Page 1419 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 31 OF 33) Metal Tracer Niobium W185 Silicon Sb124 Vanadium V48 Molybdenum 186 Re Niobium Nb95 Molybdenum Mo99 Silicon γ-Iron Ni63 Hf181 Tantalum Nb95 Tantalum Ta182 Niobium Ta182 Molybdenum S35 Crystal Form Purity % P S S,P P 99.8 99.99 Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 1800–2200 1190–1398 1360–1830 1700–2100 91.7 91.7 94.14 94.7 5 x 10–4 12.9 214.0 0.097 P, S P P 99.99 878–2395 1850–2350 450–800 96.0 96.9 97.5 1.1 0.5 1000 P 99.99 1110–1360 97.3 3600 P, S P, S P, S S 99.996 99.996 99.997 99.97 921–2484 1250–2200 878–2395 2220–2470 98.7 98.7 99.3 101.0 0.23 1.24 1.0 320 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC cm2 • s–1 13.3 sel Thermodynamics L Page 1420 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 32 OF 33) Metal Tracer Tungsten Mo99 Germanium Cd115 Molybdenum Co60 Molybdenum 95 Nb Molybdenum Wl85 Silicon Si31 Carbon Th228 Carbon U232 Carbon U232 95 Tungsten Nb Tungsten Ta182 Tungsten W185 Crystal Form P S P P P S ||c ⊥c ||c P P P Purity % Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 101.0 102.0 106.7 108.1 0.3 99.98 99.98 1700–2100 750–950 1850–2350 1850–2350 1.75 x 109 18 14 1700–2260 1225–1400 1800–2200 140~2200 110 110.0 114.7 115.0 1.7 1800 2.48 6760 1400 1820 1305–2367 1305–2375 1800–2403 129.5 137.6 139.9 140.3 385 3.01 3.05 1.88 99.98 99.99999 99.99 99.99 99.99 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. ©2001 CRC Press LLC cm2 • s–1 13.3 sel Thermodynamics L Page 1421 Wednesday, December 31, 1969 17:00 Table 353. SELECTING DIFFUSION ACTIVATION ENERGY IN METALLIC SYSTEMS * (SHEET 33 OF 33) Metal Tracer Tungsten Re186 Carbon Th228 Carbon C14 α-Thorium Th228 Crystal Form Purity % S ⊥c P 99.85 Temperature Range ˚C Activation Energy, Q kcal • mol–1 Frequency Factor, D o 2100–2400 1400–2200 2000–2200 141.0 145.4 163 19.5 1.33 x 10–5 5 720–880 716 395 Source: data from Askill, J.,in Handbook of Chemistry and Physics, 55th ed.,Weast, R.C., Ed., CRC Press, Cleveland,1974, F61. * The diffusion coefficient DT at a temperature T(K) is given by the following: DT =Do e–Q/RT Abbreviations: P= polycrystalline S = single crystal ⊥ c = perpendicular to c direction || c = parallel to c direction ©2001 CRC Press LLC cm2 • s–1 Shackelford, James F. & Alexander, W. “Selecting Thermal Properties” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001 14.0 sel Thermal Page 1423 Wednesday, December 31, 1969 17:00 CHAPTER 12 List of Tables Selecting Thermal Properties Thermal Conductivity Selecting Thermal Conductivity of Metals Selecting Thermal Conductivity of Metals at Temperature Selecting Thermal Conductivity of Alloy Cast Irons Selecting Thermal Conductivity of Ceramics Selecting Thermal Conductivity of Ceramics at Temperature Selecting Thermal Conductivity of Polymers Thermal Expansion Selecting Thermal Expansion of Tool Steels Selecting Thermal Expansion of Tool Steels at Temperature Selecting Thermal Expansion of Alloy Cast Irons Selecting Thermal Expansion of Ceramics Selecting Thermal Expansion of Glasses Selecting Thermal Expansion of Polymers Selecting Thermal Expansion Coefficients for Materials used in Integrated Circuits Selecting Thermal Expansion Coefficients for Materials used in Integrated Circuits at Temperature ©2001 CRC Press LLC 1423 14.1 sel Thermal Page 1424 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 1 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Titanium Titanium Titanium Titanium 1 2 3 4 0.0144 0.0288 0.0432 0.0576 Titanium Titanium Titanium Zirconium 5 6 7 1 0.0719 0.0863 0.101 0.111 Titanium Tantalum Titanium Titanium 8 1 9 10 0.115 0.115 0.129 0.144 Molybdenum Titanium Titanium Titanium 1 11 12 13 0.146 0.158 0.172 0.186 Titanium Titanium Titanium Titanium 600 700 500 800 0.194 0.194 0.197 0.197 Titanium Titanium Titanium Zirconium 14 900 400 600 0.2 0.202 0.204 0.207 Titanium Zirconium Zirconium Titanium 1000 700 500 1100 0.207 0.209 0.21 0.213 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1424 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1425 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 2 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Titanium Zirconium Zirconium Titanium 15 400 800 300 0.214 0.216 0.216 0.219 Titanium Zirconium Titanium Zirconium 1200 2 273 900 0.22 0.223 0.224 0.226 Zirconium Titanium Tantalum Zirconium 300 16 2 273 0.227 0.227 0.23 0.232 Titanium Zirconium Titanium Zirconium 1400 1000 200 1100 0.236 0.237 0.245 0.248 Niobium Zirconium Titanium Titanium 1 200 1600 18 0.251 0.252 0.253 0.254 Zirconium Titanium Zirconium Titanium 1200 1800 1400 20 0.257 0.271 0.275 0.279 Iron Zirconium Molybdenum Iron 1200 1600 2 1100 0.282 0.29 0.292 0.297 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1425 14.1 sel Thermal Page 1426 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 3 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Zirconium Iron Titanium Lead 1800 1400 100 600 0.302 0.309 0.312 0.312 Zirconium Titanium Lead Iron 2000 90 500 1000 0.313 0.324 0.325 0.326 Iron Zirconium Zirconium Titanium 1600 100 3 25 0.327 0.332 0.333 0.337 Lead Titanium Tantalum Zirconium 400 80 3 90 0.338 0.339 0.345 0.35 Lead Lead Titanium Lead 300 273 70 200 0.352 0.355 0.356 0.366 Zirconium Titanium Iron Titanium 80 60 900 30 0.373 0.377 0.38 0.382 Lead Titanium Lead Chromium 100 50 90 1 0.396 0.401 0.401 0.401 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1426 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1427 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 4 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Zirconium Lead Titanium Lead 70 80 35 70 0.403 0.407 0.411 0.415 Titanium Titanium Lead Iron 45 40 60 800 0.416 0.422 0.424 0.433 Lead Molybdenum Zirconium Zirconium 50 3 4 60 0.435 0.438 0.442 0.442 Lead Lead Tantalum Lead 45 40 4 35 0.442 0.451 0.459 0.462 Lead Iron Zirconium Niobium 30 700 50 2 0.477 0.487 0.497 0.501 Lead Niobium Niobium Zirconium 25 200 273 45 0.507 0.526 0.533 0.535 Niobium Iron Zirconium Niobium 300 600 5 100 0.537 0.547 0.549 0.552 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1427 14.1 sel Thermal Page 1428 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 5 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Niobium Niobium Niobium Tantalum 400 90 500 5 0.552 0.563 0.567 0.571 Tantalum Tantalum Tantalum Tantalum 273 200 300 400 0.574 0.575 0.575 0.578 Zirconium Niobium Tantalum Niobium 40 80 500 600 0.58 0.58 0.582 0.582 Molybdenum Tantalum Tantalum Lead 4 600 700 20 0.584 0.586 0.59 0.59 Tantalum Tantalum Tin Tantalum 100 800 500 90 0.592 0.594 0.596 0.596 Tantalum Niobium Tantalum Tantalum 900 700 1000 80 0.598 0.598 0.602 0.603 Tantalum Tantalum Niobium Chromium 1100 1200 70 1400 0.606 0.61 0.61 0.611 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1428 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1429 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 6 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Niobium Iron Tantalum Tantalum 800 500 70 1400 0.613 0.613 0.616 0.618 Tin Chromium Tantalum Niobium 400 1200 1600 900 0.622 0.624 0.626 0.629 Tantalum Chromium Tantalum Nickel 1800 1100 2000 1 0.634 0.636 0.64 0.64 Niobium Tantalum Zirconium Tantalum 1000 2200 35 60 0.644 0.647 0.65 0.651 Zirconium Nickel Chromium Nickel 6 700 1000 600 0.652 0.653 0.653 0.655 Tantalum Niobium Niobium Lead 2600 1100 60 18 0.658 0.659 0.66 0.66 Tantalum Tin Nickel Niobium 3000 300 800 1200 0.665 0.666 0.674 0.675 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1429 14.1 sel Thermal Page 1430 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 7 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Chromium Tantalum Tin Iron 900 6 273 400 0.678 0.681 0.682 0.694 Nickel Niobium Chromium Nickel 900 1400 800 1000 0.696 0.705 0.713 0.718 Platinum Tantalum Platinum Nickel 500 50 600 500 0.719 0.72 0.72 0.721 Platinum Platinum Platinum Platinum 400 700 800 300 0.722 0.723 0.729 0.73 Molybdenum Tin Platinum Niobium 5 200 273 1600 0.73 0.733 0.734 0.735 Platinum Nickel Zirconium Zirconium 900 1100 30 7 0.737 0.739 0.74 0.748 Platinum Platinum Niobium Iron 200 1000 3 1 0.748 0.748 0.749 0.75 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1430 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1431 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 8 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Chromium Platinum Niobium Nickel 700 1100 50 1200 0.757 0.76 0.76 0.761 Niobium Lead Platinum Tantalum 1800 16 1200 45 0.764 0.77 0.775 0.78 Tantalum Platinum Niobium Nickel 7 100 2000 400 0.788 0.79 0.791 0.801 Chromium Iron Nickel Chromium 2 300 1400 600 0.802 0.803 0.804 0.805 Platinum Platinum Niobium Molybdenum 1400 90 2200 2600 0.807 0.81 0.815 0.825 Iron Zirconium Platinum Niobium 273 8 80 45 0.835 0.837 0.84 0.84 Lead Platinum Chromium Zirconium 15 1600 500 25 0.84 0.842 0.848 0.85 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1431 14.1 sel Thermal Page 1432 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 9 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Tin Molybdenum Tantalum Chromium 100 2200 40 400 0.85 0.858 0.87 0.873 Molybdenum Platinum Tin Molybdenum 6 1800 90 2000 0.876 0.877 0.88 0.88 Tantalum Platinum Chromium Nickel 8 70 300 300 0.891 0.9 0.903 0.905 Molybdenum Tin Platinum Tungsten 1800 80 2000 3000 0.907 0.91 0.913 0.915 Zirconium Cadmium Tungsten Nickel 9 500 2600 273 0.916 0.92 0.94 0.94 Lead Iron Molybdenum Cadmium 14 200 1600 400 0.94 0.94 0.946 0.947 Chromium Tin Cadmium Niobium 273 70 300 40 0.948 0.96 0.968 0.97 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1432 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1433 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 10 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Cadmium Tungsten Zirconium Tantalum 273 2200 10 9 0.975 0.98 0.984 0.989 Tantalum Niobium Cadmium Molybdenum 35 4 200 1400 0.99 0.993 0.993 0.996 Tungsten Zirconium Platinum Molybdenum 2000 20 60 7 1 1.01 1.01 1.02 Tungsten Cadmium Zirconium Tin 1800 100 11 60 1.03 1.03 1.04 1.04 Cadmium Zinc Molybdenum Nickel 90 600 1200 200 1.04 1.05 1.05 1.06 Cadmium Tungsten Lead Zirconium 80 1600 13 12 1.06 1.07 1.07 1.08 Zirconium Tantalum Molybdenum Cadmium 18 10 1100 70 1.08 1.08 1.08 1.08 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1433 14.1 sel Thermal Page 1434 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 11 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Zirconium Zinc Tungsten Chromium 13 500 1400 200 1.11 1.11 1.11 1.11 Zirconium Molybdenum Zirconium Zirconium 16 1000 14 15 1.12 1.12 1.13 1.13 Cadmium Tungsten Tin Molybdenum 60 1200 50 900 1.13 1.15 1.15 1.15 Zinc Tantalum Tantalum Niobium 400 11 30 35 1.16 1.16 1.16 1.16 Molybdenum Tungsten Platinum Molybdenum 8 1100 50 800 1.17 1.18 1.18 1.18 Chromium Cadmium Zinc Tungsten 3 50 300 1000 1.2 1.2 1.21 1.21 Zinc Molybdenum Tin Niobium 273 700 45 5 1.22 1.22 1.23 1.23 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1434 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1435 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 12 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Lead Tungsten Tantalum Cadmium 12 900 12 45 1.23 1.24 1.24 1.25 Zinc Molybdenum Nickel Tungsten 200 600 2 800 1.26 1.26 1.27 1.28 Tantalum Molybdenum Magnesium Molybdenum 13 500 1 9 1.3 1.3 1.3 1.31 Zinc Platinum Iron Cadmium 100 45 100 40 1.32 1.32 1.32 1.32 Tungsten Zinc Molybdenum Tin 700 90 400 40 1.33 1.34 1.34 1.35 Tantalum Tantalum Zinc Molybdenum 14 25 80 300 1.36 1.36 1.38 1.38 Tungsten Molybdenum Tantalum Cadmium 600 273 15 35 1.39 1.39 1.4 1.41 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1435 14.1 sel Thermal Page 1436 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 13 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Molybdenum Tantalum Niobium Molybdenum 200 16 30 10 1.43 1.44 1.45 1.45 Magnesium Niobium Magnesium Lead 900 6 800 11 1.45 1.46 1.46 1.46 Iron Tantalum Tantalum Magnesium 90 18 20 700 1.46 1.47 1.47 1.47 Zinc Tungsten Magnesium Iron 70 500 600 2 1.48 1.49 1.49 1.49 Tin Platinum Magnesium Magnesium 35 40 500 400 1.5 1.51 1.51 1.53 Magnesium Cadmium Magnesium Nickel 300 30 273 100 1.56 1.56 1.57 1.58 Chromium Magnesium Molybdenum Chromium 100 200 11 4 1.58 1.59 1.6 1.6 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1436 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1437 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 14 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Tungsten Niobium Iron Chromium 400 7 80 90 1.62 1.67 1.68 1.68 Magnesium Zinc Nickel Molybdenum 100 60 90 12 1.69 1.71 1.72 1.74 Tin Tungsten Magnesium Lead 30 300 90 10 1.76 1.78 1.78 1.78 Molybdenum Cadmium Platinum Tungsten 100 25 35 273 1.79 1.79 1.8 1.82 Chromium Niobium Niobium Molybdenum 80 8 25 13 1.82 1.86 1.87 1.88 Nickel Molybdenum Nickel Magnesium 3 90 80 80 1.91 1.92 1.93 1.95 Tungsten Chromium Molybdenum Niobium 200 5 14 9 1.97 1.99 2.01 2.04 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1437 14.1 sel Thermal Page 1438 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 15 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Iron Chromium Molybdenum Zinc 70 70 80 50 2.04 2.08 2.09 2.13 Aluminum Molybdenum Niobium Aluminum 900 15 10 800 2.13 2.15 2.18 2.2 Nickel Tin Magnesium Iron 70 25 70 3 2.21 2.22 2.23 2.24 Cadmium Aluminum Platinum Molybdenum 20 700 30 16 2.26 2.26 2.28 2.28 Niobium Niobium Molybdenum Lead 20 11 70 9 2.29 2.3 2.3 2.3 Platinum Aluminum Tungsten Aluminum 1 600 100 273 2.31 2.32 2.35 2.36 Aluminum Aluminum Aluminum Chromium 200 300 500 6 2.37 2.37 2.37 2.38 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1438 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1439 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 16 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Niobium Aluminum Niobium Tungsten 12 400 18 90 2.39 2.4 2.42 2.44 Niobium Zinc Chromium Niobium 13 45 60 14 2.46 2.48 2.48 2.49 Niobium Niobium Molybdenum Nickel 16 15 18 4 2.49 2.5 2.53 2.54 Tungsten Magnesium Molybdenum Gold 80 2 60 1200 2.56 2.59 2.6 2.62 Cadmium Nickel Iron Gold 18 60 60 1100 2.62 2.63 2.65 2.71 Magnesium Tungsten Molybdenum Chromium 60 70 20 7 2.74 2.76 2.77 2.77 Gold Gold Gold Zinc 1000 900 800 40 2.78 2.85 2.92 2.97 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1439 14.1 sel Thermal Page 1440 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 17 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Iron Gold Molybdenum Aluminum 4 700 50 100 2.97 2.98 3 3.0 Gold Gold Gold Chromium 600 500 400 8 3.04 3.09 3.12 3.14 Platinum Gold Nickel Cadmium 25 300 5 16 3.15 3.15 3.16 3.16 Chromium Tungsten Gold Tin 50 60 273 20 3.17 3.18 3.18 3.2 Lead Molybdenum Molybdenum Gold 8 25 45 200 3.2 3.25 3.26 3.27 Nickel Aluminum Copper Gold 50 90 1200 100 3.36 3.4 3.42 3.45 Gold Copper Chromium Molybdenum 90 1100 9 40 3.48 3.5 3.5 3.51 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1440 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1441 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 18 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Gold Molybdenum Cadmium Copper 80 30 15 1000 3.52 3.55 3.55 3.57 Silver Gold Molybdenum Copper 1200 70 35 900 3.58 3.58 3.62 3.64 Silver Chromium Iron Copper 1100 45 5 800 3.66 3.67 3.71 3.71 Zinc Iron Silver Magnesium 35 50 1000 50 3.72 3.72 3.74 3.75 Nickel Copper Gold Silver 6 700 60 900 3.77 3.77 3.8 3.82 Copper Chromium Magnesium Copper 600 10 3 500 3.83 3.85 3.88 3.88 Silver Nickel Copper Silver 800 45 400 700 3.89 3.91 3.92 3.97 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1441 14.1 sel Thermal Page 1442 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 19 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Copper Tin Aluminum Copper 300 18 80 273 3.98 4 4.0 4.01 Cadmium Silver Silver Copper 14 600 500 200 4.01 4.05 4.13 4.13 Tungsten Chromium Silver Gold 50 11 400 50 4.17 4.18 4.2 4.2 Silver Silver Silver Chromium 300 273 200 40 4.27 4.28 4.3 4.3 Nickel Gold Iron Chromium 7 1 6 12 4.36 4.4 4.42 4.49 Silver Iron Magnesium Silver 100 45 45 90 4.5 4.5 4.57 4.6 Platinum Gold Nickel Cadmium 2 45 40 13 4.6 4.6 4.63 4.67 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1442 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1443 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 20 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Silver Chromium Copper Zinc 80 13 100 30 4.71 4.78 4.83 4.9 Platinum Lead Nickel Silver 20 7 8 70 4.9 4.9 4.94 4.97 Aluminum Chromium Chromium Tungsten 70 35 14 45 5.0 5.03 5.04 5.07 Iron Copper Magnesium Gold 7 90 4 40 5.13 5.14 5.15 5.2 Chromium Tin Chromium Nickel 15 16 16 9 5.27 5.3 5.48 5.49 Silver Iron Cadmium Chromium 60 40 12 30 5.5 5.55 5.56 5.58 Nickel Magnesium Copper Iron 35 40 80 8 5.62 5.7 5.7 5.8 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1443 14.1 sel Thermal Page 1444 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 21 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Chromium Nickel Chromium Chromium 18 10 20 25 5.81 6 6.01 6.07 Platinum Gold Tin Magnesium 18 35 15 5 6.1 6.1 6.3 6.39 Iron Nickel Tungsten Copper 9 11 40 70 6.45 6.48 6.5 6.7 Aluminum Platinum Iron Zinc 60 3 35 25 6.7 6.79 6.81 6.9 Nickel Cadmium Nickel Silver 12 11 30 50 6.91 6.91 6.95 7 Iron Nickel Magnesium Tin 10 13 35 14 7.05 7.3 7.4 7.6 Platinum Magnesium Gold Iron 16 6 30 11 7.6 7.6 7.6 7.62 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1444 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1445 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 22 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Nickel Aluminum Nickel Iron 14 1 15 12 7.64 7.8 7.92 8.13 Iron Nickel Nickel Lead 30 16 25 6 8.14 8.15 8.15 8.2 Silver Platinum Nickel Copper 45 15 18 60 8.4 8.4 8.45 8.5 Nickel Iron Magnesium Platinum 20 13 7 4 8.56 8.58 8.75 8.8 Cadmium Tungsten Gold Iron 10 35 2 14 8.87 8.9 8.9 8.97 Tin Platinum Iron Iron 13 14 15 25 9.3 9.3 9.3 9.36 Magnesium Iron Magnesium Iron 30 16 8 18 9.5 9.56 9.83 9.88 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1445 14.1 sel Thermal Page 1446 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 23 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Iron Aluminum Platinum Gold 20 50 13 25 9.97 10.0 10.1 10.2 Silver Platinum Zinc Magnesium 40 5 20 9 10.5 10.5 10.7 10.8 Platinum Tin Platinum Magnesium 12 12 11 10 10.9 11.6 11.7 11.7 Platinum Magnesium Copper Cadmium 6 25 50 9 11.8 12 12.2 12.2 Platinum Magnesium Aluminum Platinum 10 11 45 7 12.3 12.5 12.5 12.6 Platinum Platinum Tungsten Magnesium 9 8 30 12 12.8 12.9 13.1 13.1 Gold Zinc Magnesium Silver 3 18 13 35 13.1 13.3 13.6 13.7 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1446 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1447 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 24 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Lead Magnesium Magnesium Magnesium 5 20 14 15 13.8 13.9 14 14.3 Magnesium Tungsten Magnesium Tin 18 1 16 11 14.3 14.4 14.4 14.8 Gold Copper Aluminum Aluminum 20 45 2 40 15 15.3 15.5 16.0 Zinc Gold Gold Cadmium 16 4 18 8 16.9 17.1 17.7 18 Zinc Tin Silver Zinc 1 10 30 15 19 19.3 19.3 19.4 Tungsten Copper Gold Gold 25 40 5 16 20.4 20.5 20.7 20.9 Aluminum Zinc Lead Gold 35 14 4 15 21.0 22.4 22.4 22.6 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1447 14.1 sel Thermal Page 1448 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 25 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Aluminum Gold Gold Gold 3 6 14 13 23.2 23.7 24.1 25.5 Tin Gold Zinc Gold 9 7 13 12 26 26 26.1 26.7 Gold Lead Gold Cadmium 8 1 11 7 27.5 27.7 27.7 28 Gold Gold Aluminum Tungsten 9 10 30 2 28.2 28.2 28.5 28.7 Copper Copper Silver Zinc 1 35 25 12 28.7 29 29.5 30.8 Aluminum Tungsten Lead Tin 4 20 3 8 30.8 32.6 34 36 Zinc Zinc Aluminum Silver 11 2 5 1 36.4 37.9 38.1 39.4 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1448 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1449 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 26 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Tungsten Aluminum Lead Tungsten 18 25 2 3 40 40.0 42.4 42.6 Copper Zinc Cadmium Aluminum 30 10 6 6 43 43.2 44.2 45.1 Cadmium Tungsten Silver Aluminum 1 16 20 7 48.7 49.3 51 51.5 Zinc Tin Tungsten Zinc 9 7 15 3 51.9 52 54.8 55.5 Tungsten Aluminum Copper Aluminum 4 20 2 8 55.6 56.5 57.3 57.3 Tungsten Zinc Aluminum Aluminum 14 8 9 18 60.4 61.8 62.2 63.5 Silver Aluminum Tungsten Tungsten 18 10 13 5 66 66.1 66.4 67.1 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1449 14.1 sel Thermal Page 1450 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 27 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Copper Aluminum Cadmium Aluminum 25 16 5 11 68 68.4 69 69.0 Zinc Aluminum Aluminum Aluminum 4 15 12 14 69.7 70.2 70.8 71.3 Aluminum Zinc Tungsten Tin 13 7 12 6 71.5 71.7 72.4 76 Tungsten Zinc Tungsten Zinc 6 5 11 6 76.2 77.8 77.9 78 Silver Tungsten Tungsten Silver 2 7 10 16 78.3 82.4 82.4 85 Tungsten Tungsten Copper Cadmium 9 8 3 2 85.1 85.3 85.5 89.3 Cadmium Silver Cadmium Copper 4 15 3 20 92 96 104 105 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1450 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1451 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 28 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Silver Copper Silver Tin 14 4 3 5 109 113 115 117 Silver Copper Copper Silver 13 18 5 12 124 124 138 139 Copper Silver Silver Copper 16 4 11 15 145 147 154 156 Copper Copper Silver Silver 6 14 10 5 159 166 168 172 Copper Copper Tin Silver 13 7 4 9 176 177 181 181 Copper Silver Copper Silver 12 6 8 8 185 187 189 190 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1451 14.1 sel Thermal Page 1452 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 354. SELECTING THERMAL CONDUCTIVITY OF METALS * (SHEET 29 OF 29) Metal Temperature (K) Thermal Conductivity (watt • cm-1 • K-1) Silver Copper Copper 7 11 9 193 193 195 Copper Tin 10 3 196 297 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. * These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate. ©2001 CRC Press LLC 1452 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1453 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 1 2 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 1 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Titanium Zirconium Tantalum Molybdenum 0.0144 0.111 0.115 0.146 Niobium Chromium Nickel Iron 0.251 0.401 0.64 0.75 Magnesium Platinum Gold Aluminum 1.3 2.31 4.4 7.8 Tungsten Zinc Lead Copper 14.4 19 27.7 28.7 Silver Cadmium 39.4 48.7 Titanium Zirconium Tantalum Molybdenum 0.0288 0.223 0.23 0.292 Niobium Chromium Nickel Iron 0.501 0.802 1.27 1.49 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1453 14.1 sel Thermal Page 1454 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 3 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 2 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Magnesium Platinum Gold Aluminum 2.59 4.6 8.9 15.5 Tungsten Zinc Lead Copper 28.7 37.9 42.4 57.3 Silver Cadmium 78.3 89.3 Titanium Zirconium Tantalum Molybdenum 0.0432 0.333 0.345 0.438 Niobium Chromium Nickel Iron 0.749 1.2 1.91 2.24 Magnesium Platinum Gold Aluminum 3.88 6.79 13.1 23.2 Lead Tungsten Zinc Copper 34 42.6 55.5 85.5 Cadmium Silver Tin 104 115 297 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1454 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1455 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 4 5 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 3 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Titanium Zirconium Tantalum Molybdenum 0.0576 0.442 0.459 0.584 Niobium Chromium Nickel Iron 0.993 1.6 2.54 2.97 Magnesium Platinum Gold Lead 5.15 8.8 17.1 22.4 Aluminum Tungsten Zinc Cadmium 30.8 55.6 69.7 92 Copper Silver Tin 113 147 181 Titanium Zirconium Tantalum Molybdenum 0.0719 0.549 0.571 0.73 Niobium Chromium Nickel Iron 1.23 1.99 3.16 3.71 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1455 14.1 sel Thermal Page 1456 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 6 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 4 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Magnesium Platinum Lead Gold 6.39 10.5 13.8 20.7 Aluminum Tungsten Cadmium Zinc 38.1 67.1 69 77.8 Tin Copper Silver 117 138 172 Titanium Zirconium Tantalum Molybdenum 0.0863 0.652 0.681 0.876 Niobium Chromium Nickel Iron 1.46 2.38 3.77 4.42 Magnesium Lead Platinum Gold 7.6 8.2 11.8 23.7 Cadmium Aluminum Tin Tungsten 44.2 45.1 76 76.2 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1456 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1457 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 7 8 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 5 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Zinc Copper Silver 78 159 187 Titanium Zirconium Tantalum Molybdenum 0.101 0.748 0.788 1.02 Niobium Chromium Nickel Lead 1.67 2.77 4.36 4.9 Iron Magnesium Platinum Gold 5.13 8.75 12.6 26 Cadmium Aluminum Tin Zinc 28 51.5 52 71.7 Tungsten Copper Silver 82.4 177 193 Titanium Zirconium Tantalum Molybdenum 0.115 0.837 0.891 1.17 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1457 14.1 sel Thermal Page 1458 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 9 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 6 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Niobium Chromium Lead Nickel 1.86 3.14 3.2 4.94 Iron Magnesium Platinum Cadmium 5.8 9.83 12.9 18 Gold Tin Aluminum Zinc 27.5 36 57.3 61.8 Tungsten Copper Silver 85.3 189 190 Titanium Zirconium Tantalum Molybdenum 0.129 0.916 0.989 1.31 Niobium Lead Chromium Nickel 2.04 2.3 3.5 5.49 Iron Magnesium Cadmium Platinum 6.45 10.8 12.2 12.8 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1458 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1459 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 10 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 7 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Tin Gold Zinc Aluminum 26 28.2 51.9 62.2 Tungsten Silver Copper 85.1 181 195 Titanium Zirconium Tantalum Molybdenum 0.144 0.984 1.08 1.45 Lead Niobium Chromium Nickel 1.78 2.18 3.85 6 Iron Cadmium Magnesium Platinum 7.05 8.87 11.7 12.3 Tin Gold Zinc Aluminum 19.3 28.2 43.2 66.1 Tungsten Silver Copper 82.4 168 196 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1459 14.1 sel Thermal Page 1460 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 11 12 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 8 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Titanium Zirconium Tantalum Lead 0.158 1.04 1.16 1.46 Molybdenum Niobium Chromium Nickel 1.6 2.3 4.18 6.48 Cadmium Iron Platinum Magnesium 6.91 7.62 11.7 12.5 Tin Gold Zinc Aluminum 14.8 27.7 36.4 69 Tungsten Silver Copper 77.9 154 193 Titanium Zirconium Lead Tantalum 0.172 1.08 1.23 1.24 Molybdenum Niobium Chromium Cadmium 1.74 2.39 4.49 5.56 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1460 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1461 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 13 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 9 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Nickel Iron Platinum Tin 6.91 8.13 10.9 11.6 Magnesium Gold Zinc Aluminum 13.1 26.7 30.8 70.8 Tungsten Silver Copper 72.4 139 185 Titanium Lead Zirconium Tantalum 0.186 1.07 1.11 1.3 Molybdenum Niobium Cadmium Chromium 1.88 2.46 4.67 4.78 Nickel Iron Tin Platinum 7.3 8.58 9.3 10.1 Magnesium Gold Zinc Tungsten 13.6 25.5 26.1 66.4 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1461 14.1 sel Thermal Page 1462 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 14 15 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 10 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Aluminum Silver Copper 71.5 124 176 Titanium Lead Zirconium Tantalum 0.2 0.94 1.13 1.36 Molybdenum Niobium Cadmium Chromium 2.01 2.49 4.01 5.04 Tin Nickel Iron Platinum 7.6 7.64 8.97 9.3 Magnesium Zinc Gold Tungsten 14 22.4 24.1 60.4 Aluminum Silver Copper 71.3 109 166 Titanium Lead Zirconium Tantalum 0.214 0.84 1.13 1.4 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1462 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1463 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 16 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 11 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Molybdenum Niobium Cadmium Chromium 2.15 2.5 3.55 5.27 Tin Nickel Platinum Iron 6.3 7.92 8.4 9.3 Magnesium Zinc Gold Tungsten 14.3 19.4 22.6 54.8 Aluminum Silver Copper 70.2 96 156 Titanium Lead Zirconium Tantalum 0.227 0.77 1.12 1.44 Molybdenum Niobium Cadmium Tin 2.28 2.49 3.16 5.3 Chromium Platinum Nickel Iron 5.48 7.6 8.15 9.56 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1463 14.1 sel Thermal Page 1464 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 18 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 12 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Magnesium Zinc Gold Tungsten 14.4 16.9 20.9 49.3 Aluminum Silver Copper 68.4 85 145 Titanium Lead Zirconium Tantalum 0.254 0.66 1.08 1.47 Niobium Molybdenum Cadmium Tin 2.42 2.53 2.62 4 Chromium Platinum Nickel Iron 5.81 6.1 8.45 9.88 Zinc Magnesium Gold Tungsten 13.3 14.3 17.7 40 Aluminum Silver Copper 63.5 66 124 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1464 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1465 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 20 25 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 13 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Titanium Lead Zirconium Tantalum 0.279 0.59 1.01 1.47 Cadmium Niobium Molybdenum Tin 2.26 2.29 2.77 3.2 Platinum Chromium Nickel Iron 4.9 6.01 8.56 9.97 Zinc Magnesium Gold Tungsten 10.7 13.9 15 32.6 Silver Aluminum Copper 51 56.5 105 Titanium Lead Zirconium Tantalum 0.337 0.507 0.85 1.36 Cadmium Niobium Tin Platinum 1.79 1.87 2.22 3.15 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1465 14.1 sel Thermal Page 1466 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 30 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 14 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Molybdenum Chromium Zinc Nickel 3.25 6.07 6.9 8.15 Iron Gold Magnesium Tungsten 9.36 10.2 12 20.4 Silver Aluminum Copper 29.5 40 68 Titanium Lead Zirconium Tantalum 0.382 0.477 0.74 1.16 Niobium Cadmium Tin Platinum 1.45 1.56 1.76 2.28 Molybdenum Zinc Chromium Nickel 3.55 4.9 5.58 6.95 Gold Iron Magnesium Tungsten 7.6 8.14 9.5 13.1 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1466 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1467 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 35 40 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 15 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Silver Aluminum Copper 19.3 28.5 43 Titanium Lead Zirconium Tantalum 0.411 0.462 0.65 0.99 Niobium Cadmium Tin Platinum 1.16 1.41 1.5 1.8 Molybdenum Zinc Chromium Nickel 3.62 3.72 5.03 5.62 Gold Iron Magnesium Tungsten 6.1 6.81 7.4 8.9 Silver Aluminum Copper 13.7 21 29 Titanium Lead Zirconium Tantalum 0.422 0.451 0.58 0.87 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1467 14.1 sel Thermal Page 1468 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 45 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 16 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Niobium Cadmium Tin Platinum 0.97 1.32 1.35 1.51 Zinc Molybdenum Chromium Nickel 2.97 3.51 4.3 4.63 Gold Iron Magnesium Tungsten 5.2 5.55 5.7 6.5 Silver Aluminum Copper 10.5 16 20.5 Titanium Lead Zirconium Tantalum 0.416 0.442 0.535 0.78 Niobium Tin Cadmium Platinum 0.84 1.23 1.25 1.32 Zinc Molybdenum Chromium Nickel 2.48 3.26 3.67 3.91 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1468 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1469 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 50 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 17 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Iron Magnesium Gold Tungsten 4.5 4.57 4.6 5.07 Silver Aluminum Copper 8.4 12.5 15.3 Titanium Lead Zirconium Tantalum 0.401 0.435 0.497 0.72 Niobium Tin Platinum Cadmium 0.76 1.15 1.18 1.2 Zinc Molybdenum Chromium Nickel 2.13 3 3.17 3.36 Iron Magnesium Tungsten Gold 3.72 3.75 4.17 4.2 Silver Aluminum Copper 7 10 12.2 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1469 14.1 sel Thermal Page 1470 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 60 70 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 18 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Titanium Lead Zirconium Tantalum 0.377 0.424 0.442 0.651 Niobium Platinum Tin Cadmium 0.66 1.01 1.04 1.13 Zinc Chromium Molybdenum Nickel 1.71 2.48 2.6 2.63 Iron Magnesium Tungsten Gold 2.65 2.74 3.18 3.8 Silver Aluminum Copper 5.5 6.7 8.5 Titanium Zirconium Lead Niobium 0.356 0.403 0.415 0.61 Tantalum Platinum Tin Cadmium 0.616 0.9 0.96 1.08 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1470 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1471 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 80 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 19 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Zinc Iron Chromium Nickel 1.48 2.04 2.08 2.21 Magnesium Molybdenum Tungsten Gold 2.23 2.3 2.76 3.58 Silver Aluminum Copper 4.97 5 6.7 Titanium Zirconium Lead Niobium 0.339 0.373 0.407 0.58 Tantalum Platinum Tin Cadmium 0.603 0.84 0.91 1.06 Zinc Iron Chromium Nickel 1.38 1.68 1.82 1.93 Magnesium Molybdenum Tungsten Gold 1.95 2.09 2.56 3.52 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1471 14.1 sel Thermal Page 1472 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 90 100 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 20 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Aluminum Silver Copper 4 4.71 5.7 Titanium Zirconium Lead Niobium 0.324 0.35 0.401 0.563 Tantalum Platinum Tin Cadmium 0.596 0.81 0.88 1.04 Zinc Iron Chromium Nickel 1.34 1.46 1.68 1.72 Magnesium Molybdenum Tungsten Aluminum 1.78 1.92 2.44 3.4 Gold Silver Copper 3.48 4.6 5.14 Titanium Zirconium Lead Niobium 0.312 0.332 0.396 0.552 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1472 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1473 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 200 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 21 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Tantalum Platinum Tin Cadmium 0.592 0.79 0.85 1.03 Zinc Iron Nickel Chromium 1.32 1.32 1.58 1.58 Magnesium Molybdenum Tungsten Aluminum 1.69 1.79 2.35 3 Gold Silver Copper 3.45 4.5 4.83 Titanium Zirconium Lead Niobium 0.245 0.252 0.366 0.526 Tantalum Tin Platinum Iron 0.575 0.733 0.748 0.94 Cadmium Nickel Chromium Zinc 0.993 1.06 1.11 1.26 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1473 14.1 sel Thermal Page 1474 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 273 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 22 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Molybdenum Magnesium Tungsten Aluminum 1.43 1.59 1.97 2.37 Gold Copper Silver 3.27 4.13 4.3 Titanium Zirconium Lead Niobium 0.224 0.232 0.355 0.533 Tantalum Tin Platinum Iron 0.574 0.682 0.734 0.835 Nickel Chromium Cadmium Zinc 0.94 0.948 0.975 1.22 Molybdenum Magnesium Tungsten Aluminum 1.39 1.57 1.82 2.36 Gold Copper Silver 3.18 4.01 4.28 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1474 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1475 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 300 400 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 23 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Titanium Zirconium Lead Niobium 0.219 0.227 0.352 0.537 Tantalum Tin Platinum Iron 0.575 0.666 0.73 0.803 Chromium Nickel Cadmium Zinc 0.903 0.905 0.968 1.21 Molybdenum Magnesium Tungsten Aluminum 1.38 1.56 1.78 2.37 Gold Copper Silver 3.15 3.98 4.27 Titanium Zirconium Lead Niobium 0.204 0.216 0.338 0.552 Tantalum Tin Iron Platinum 0.578 0.622 0.694 0.722 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1475 14.1 sel Thermal Page 1476 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 500 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 24 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Nickel Chromium Cadmium Zinc 0.801 0.873 0.947 1.16 Molybdenum Magnesium Tungsten Aluminum 1.34 1.53 1.62 2.4 Gold Copper Silver 3.12 3.92 4.2 Titanium Zirconium Lead Niobium 0.197 0.21 0.325 0.567 Tantalum Tin Iron Platinum 0.582 0.596 0.613 0.719 Nickel Chromium Cadmium Zinc 0.721 0.848 0.92 1.11 Molybdenum Tungsten Magnesium Aluminum 1.3 1.49 1.51 2.37 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1476 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1477 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 600 700 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 25 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Gold Copper Silver 3.09 3.88 4.13 Titanium Zirconium Lead Iron 0.194 0.207 0.312 0.547 Niobium Tantalum Nickel Platinum 0.582 0.586 0.655 0.72 Chromium Zinc Molybdenum Tungsten 0.805 1.05 1.26 1.39 Magnesium Aluminum Gold 1.49 2.32 3.04 Copper Silver 3.83 4.05 Titanium Zirconium Iron Tantalum 0.194 0.209 0.487 0.59 Niobium Nickel Platinum Chromium 0.598 0.653 0.723 0.757 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1477 14.1 sel Thermal Page 1478 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 800 900 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 26 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Molybdenum Tungsten Magnesium Aluminum 1.22 1.33 1.47 2.26 Gold Copper Silver 2.98 3.77 3.97 Titanium Zirconium Iron Tantalum 0.197 0.216 0.433 0.594 Niobium Nickel Chromium Platinum 0.613 0.674 0.713 0.729 Molybdenum Tungsten Magnesium Aluminum 1.18 1.28 1.46 2.2 Gold Copper Silver 2.92 3.71 3.89 Titanium Zirconium Iron Tantalum 0.202 0.226 0.38 0.598 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1478 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1479 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 1000 1100 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 27 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Niobium Chromium Nickel Platinum 0.629 0.678 0.696 0.737 Molybdenum Tungsten Magnesium Aluminum 1.15 1.24 1.45 2.13 Gold Copper Silver 2.85 3.64 3.82 Titanium Zirconium Iron Tantalum 0.207 0.237 0.326 0.602 Niobium Chromium Nickel Platinum 0.644 0.653 0.718 0.748 Molybdenum Tungsten Gold 1.12 1.21 2.78 Copper Silver 3.57 3.74 Titanium Zirconium Iron Tantalum 0.213 0.248 0.297 0.606 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1479 14.1 sel Thermal Page 1480 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 1200 1400 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 28 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Chromium Niobium Nickel Platinum 0.636 0.659 0.739 0.76 Molybdenum Tungsten Gold 1.08 1.18 2.71 Copper Silver 3.5 3.66 Titanium Zirconium Iron Tantalum 0.22 0.257 0.282 0.61 Chromium Niobium Nickel 0.624 0.675 0.761 Platinum Molybdenum Tungsten 0.775 1.05 1.15 Gold Copper Silver 2.62 3.42 3.58 Titanium Zirconium Iron Chromium 0.236 0.275 0.309 0.611 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC 1480 CRC Handbook of Materials Science & Engineering 14.1 sel Thermal Page 1481 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT Temperature (K) 1600 1800 2000 THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 29 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) Tantalum Niobium Nickel 0.618 0.705 0.804 Platinum Molybdenum Tungsten 0.807 0.996 1.11 Titanium Zirconium Iron Tantalum 0.253 0.29 0.327 0.626 Niobium Platinum Molybdenum Tungsten 0.735 0.842 0.946 1.07 Titanium Zirconium Tantalum Niobium 0.271 0.302 0.634 0.764 Platinum Molybdenum Tungsten 0.877 0.907 1.03 Zirconium Tantalum Niobium 0.313 0.64 0.791 Molybdenum Platinum Tungsten 0.88 0.913 1 Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. ©2001 CRC Press LLC Shackelford & Alexander 1481 14.1 sel Thermal Page 1482 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 355. SELECTING AT THERMAL CONDUCTIVITY OF METALS TEMPERATURE * (SHEET 30 OF 30) Metal Thermal Conductivity (watt • cm-1 • K-1) 2200 Tantalum Niobium Molybdenum Tungsten 0.647 0.815 0.858 0.98 2600 Tantalum Molybdenum Tungsten 0.658 0.825 0.94 3000 Tantalum Tungsten 0.665 0.915 Temperature (K) Source: data from Ho, C. Y., Powell, R. W., and Liley, P. E., Thermal Conductictivity of Selected Materials, NSRDS–NBS–8 and NSRD-NBS-16, Part 2 , National Standard Reference Data System–National Bureau of Standards, Part 1, 1966; Part 2, 1968. * These data apply only to metals of purity of at least 99.9%. The third significant figure may not be accurate. ©2001 CRC Press LLC 1482 CRC Handbook of Materials Science & Engineering 14.2 sel Thermal Page 1483 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 356. SELECTING THERMAL CONDUCTIVITY OF ALLOY CAST IRONS Description Thermal Conductivity W/(m • K) Heat–Resistant High–Nickel Ductile Iron (20 Ni) Corrosion–Resistant High–Nickel Ductile Iron Heat–Resistant Gray High–Chromium Iron 13 13.4 20 Abrasion–Resistant Low–C White Iron Heat–Resistant Gray Nickel–Chromium–Silicon Iron Abrasion–Resistant Martensitic Nickel–Chromium White Iron 22† 30 30† Heat–Resistant Gray Medium–Silicon Iron Heat–Resistant Gray High–Nickel Iron Corrosion–Resistant High–Nickel Gray Iron 37 37 to 40 38 to 40 † Estimated. Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p172, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1483 14.2 sel Thermal Page 1484 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 357. SELECTING THERMAL CONDUCTIVITY OF CERAMICS (SHEET 1 OF 12) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Zirconium Oxide (ZrO2) (plasma sprayed) Zirconium Oxide (ZrO2) (plasma sprayed) Silicon Dioxide (SiO2) Cerium Dioxide (CeO2) 0.0019-0.0022 at 800oC 0.0019-0.0031 at room temp. Silicon Dioxide (SiO2) Sillimanite (Al2O3 SiO2) (0% porosity) 0.003 at 400oC Silicon Carbide (SiC) (cubic, CVD) Zirconium Oxide (ZrO2) (plasma sprayed and coated with Cr2O3) Zirconium Oxide (ZrO2) (plasma sprayed and coated with Cr2O3) 0.0025 at 200oC 0.00287 at 1400K 0.003 at 1500oC 0.0032 at 1530oC 0.0033 at 800oC 0.0033 at room temp. Sillimanite (Al2O3 SiO2) (0% porosity) Sillimanite (Al2O3 SiO2) (0% porosity) 0.0035 at 800oC 0.0035 at 1200oC Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) Zirconium Oxide (ZrO2) (stabilized) 0.0038 at 800oC Sillimanite (Al2O3 SiO2) (0% porosity) Silicon Dioxide (SiO2) 0.004 at 400oC 0.004 at 800oC Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) 0.0040 at 500oC Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) 0.0041 at 300oC 0.004 at 100oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1484 CRC Handbook of Materials Science & Engineering 14.2 sel Thermal Page 1485 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 357. SELECTING THERMAL CONDUCTIVITY OF CERAMICS (SHEET 2 OF 12) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Sillimanite (Al2O3 SiO2) (0% porosity) 0.0042 at 100oC Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) Zirconium Oxide (ZrO2) (stabilized) 0.0043 at 20oC Zirconium Oxide (ZrO2) (5-10% CaO stabilized) 0.0044 at 500oC 0.0045 at 400oC Zirconium Oxide (ZrO2) (stabilized) Zirconium Oxide (ZrO2) (stabilized) Zirconium Oxide (ZrO2) (5-10% CaO stabilized) Zirconium Oxide (ZrO2) (stabilized, 0% porosity) 0.0048-0.0055 at 1000oC 0.0049-0.0050 at 1200oC 0.0049 at 800oC 0.005 at 100oC Zirconium Oxide (ZrO2) (stabilized, 0% porosity) Zirconium Oxide (ZrO2) (stabilized, 0% porosity) Silicon Dioxide (SiO2) Zirconium Oxide (ZrO2) (Y2O3 stabilized) 0.005 at 200oC 0.005 at 400oC 0.005 at 1200oC 0.0053 at 800oC Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) Zirconium Oxide (ZrO2) (stabilized, 0% porosity) 0.0055 at 500oC Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) 0.0055 at 800oC 0.0055 at room temp. Zirconium Oxide (ZrO2) (Y2O3 stabilized) Zirconium Oxide (ZrO2) (MgO stabilized) Zirconium Oxide (ZrO2) (5-10% CaO stabilized) Silicon Carbide (SiC) (cubic, CVD) Thorium Dioxide (ThO2) (0% porosity) 0.0055 at 800oC 0.0057 at 800oC 0.0057 at 1200oC 0.0059 at 1250oC 0.006-0.0076 at 1200oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1485 14.2 sel Thermal Page 1486 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 357. SELECTING THERMAL CONDUCTIVITY OF CERAMICS (SHEET 3 OF 12) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Uranium Dioxide (UO2) Uranium Dioxide (UO2) Zirconium Oxide (ZrO2) (stabilized, 0% porosity) Thorium Dioxide (ThO2) (0% porosity) 0.006 at 1000oC 0.006 at 1200oC 0.006 at 1200oC 0.006 at 1400oC Silicon Dioxide (SiO2) 0.006 at 1600oC Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) Zirconium Oxide (ZrO2) (stabilized, 0% porosity) Thorium Dioxide (ThO2) (0% porosity) 0.0062 at 300oC 0.0065 at 1400oC 0.007-0.0074 at 1000oC Zirconium Oxide (ZrO2) (MgO stabilized) 0.0076 at room temp. 3 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm ) Titanium Oxide (TiO2) (0% porosity) Uranium Dioxide (UO2) Uranium Dioxide (UO2) Thorium Dioxide (ThO2) (0% porosity) Titanium Oxide (TiO2) (0% porosity) Titanium Oxide (TiO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity) Titanium Oxide (TiO2) (0% porosity) Titanium Oxide (TiO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity) 0.0077 at 20oC 0.008 at 600oC 0.008 at 600oC 0.008 at 700oC 0.008 at 800oC 0.008 at 800oC 0.008 at 1000oC 0.008 at 1000oC 0.008 at 1200oC 0.009 at 400oC 0.009 at 800oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1486 CRC Handbook of Materials Science & Engineering 14.2 sel Thermal Page 1487 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 357. SELECTING THERMAL CONDUCTIVITY OF CERAMICS (SHEET 4 OF 12) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Mullite (3Al2O3 2SiO2) (0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) 0.009 at 1000oC 0.009 at 1200oC 0.009 at 1400oC 0.0095 at 800oC Zircon (SiO2 ZrO2) (0% porosity) Zircon (SiO2 ZrO2) (0% porosity) 0.0095 at 1200oC Magnesium Oxide (MgO) Thorium Dioxide (ThO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) Zircon (SiO2 ZrO2) (0% porosity) Magnesium Oxide (MgO) Mullite (3Al2O3 2SiO2) (0% porosity) Nickel monoxide (NiO) (0% porosity) Magnesium Oxide (MgO) Titanium Oxide (TiO2) (0% porosity) Uranium Dioxide (UO2) Zircon (SiO2 ZrO2) (0% porosity) Nickel monoxide (NiO) (0% porosity) Spinel (Al2O3 MgO) (0% porosity) 0.0095 at 1400oC 0.0096-0.0191 at 1800oC 0.010 at 600oC 0.010 at 600oC 0.010 at 600oC 0.010 at 800oC 0.0108-0.016 at 1600oC 0.011 at 400oC 0.011 at 1000oC 0.012-0.014 at 1400oC 0.012 at 200oC 0.012 at 400oC 0.012 at 400oC 0.012 at 800oC 0.013-0.0138 at 1000oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1487 14.2 sel Thermal Page 1488 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 357. SELECTING THERMAL CONDUCTIVITY OF CERAMICS (SHEET 5 OF 12) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Aluminum Oxide (Al2O3) Mullite (3Al2O3 2SiO2) (0% porosity) Spinel (Al2O3 MgO) (0% porosity) Aluminum Oxide (Al2O3) 0.013-0.015 at 1200oC 0.013 at 200oC 0.013 at 1200oC 0.013 at 1400oC Zircon (SiO2 ZrO2) (0% porosity) 0.0135 at 200oC Titanium Monocarbide (TiC) Magnesium Oxide (MgO) Aluminum Oxide (Al2O3) 0.0135 at 1000 oC 0.0139-0.0148 at 1200oC 0.014-0.016 at 1000oC Thorium Dioxide (ThO2) (0% porosity) 0.014 at 400oC 0.014 at 1600oC Aluminum Oxide (Al2O3) Mullite (3Al2O3 2SiO2) (0% porosity) Zircon (SiO2 ZrO2) (0% porosity) 0.0145 at 100oC 0.0145 at 100oC Aluminum Oxide (Al2O3) Uranium Dioxide (UO2) (0% porosity) Spinel (Al2O3 MgO) (0% porosity) 0.015-0.017 at 800oC 0.015 at 400oC 0.015 at 800oC Zirconium Mononitride (TiN) 0.015 at 1100 oC Hafnium Diboride (HfB2) 0.015 at room temp. Magnesium Oxide (MgO) Titanium Oxide (TiO2) (0% porosity) 0.016-0.020 at 1000oC 0.016 at 100oC Zirconium Mononitride (TiN) 0.016 at 875 oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1488 CRC Handbook of Materials Science & Engineering 14.2 sel Thermal Page 1489 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 357. SELECTING THERMAL CONDUCTIVITY OF CERAMICS (SHEET 6 OF 12) Ceramic Nickel monoxide (NiO) (0% porosity) Aluminum Oxide (Al2O3) Uranium Dioxide (UO2) Zirconium Mononitride (TiN) Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 0.017 at 400oC 0.017 at 1800oC 0.018 at 100oC 0.018 at 650 oC Calcium Oxide (CaO) Thorium Dioxide (ThO2) (0% porosity) Spinel (Al2O3 MgO) (0% porosity) 0.0186-0.019 at 1000oC Calcium Oxide (CaO) 0.019 at 800oC Magnesium Oxide (MgO) Aluminum Oxide (Al2O3) Thorium Dioxide (ThO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity) 0.0198-0.026 at 800oC Calcium Oxide (CaO) 0.020 at 600oC 0.020 at 1000 oC 0.021-0.022 at 600oC 0.019 at 200oC 0.019 at 600oC 0.02-0.031 at 400oC 0.020 at 100oC 0.020 at 200oC Titanium Mononitride (TiN) Aluminum Oxide (Al2O3) Trisilicon tetranitride (Si3N4) (pressureless sintered) 0.022-0.072 at 127 oC Calcium Oxide (CaO) Cerium Dioxide (CeO2) Dichromium Trioxide (Cr2O3) 0.022 at 400oC 0.0229 at 400K 0.0239-0.0788 Nickel monoxide (NiO) (0% porosity) 0.024 at 200oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1489 14.2 sel Thermal Page 1490 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 357. SELECTING THERMAL CONDUCTIVITY OF CERAMICS (SHEET 7 OF 12) Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Ceramic 0.024 at 400oC 0.024 at room temp. Spinel (Al2O3 MgO) (0% porosity) Thorium Dioxide (ThO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity) Zirconium Mononitride (TiN) 0.025 at 100oC 0.025 at 425 oC Tantalum Diboride (TaB2) 0.026 at room temp. Calcium Oxide (CaO) Titanium Mononitride (TiN) Hafnium Dioxide (HfO2) 0.027 at 200oC 0.027 at 650 oC 0.0273 at 25-425oC Nickel monoxide (NiO) (0% porosity) Aluminum Oxide (Al2O3) (single crystal) 0.029 at 100oC Boron Nitride (BN) parallel to a axis Aluminum Oxide (Al2O3) 0.0295 at 1000oC 0.03-0.064 at 200oC Spinel (Al2O3 MgO) (0% porosity) 0.031 at 200oC 0.0318 at 700oC 0.029 at 800oC Boron Nitride (BN) parallel to a axis Beryllium Oxide (BeO) Trisilicon tetranitride (Si3N4) (pressureless sintered) Beryllium Oxide (BeO) Tantalum Diboride (TaB2) Beryllium Oxide (BeO) Beryllium Oxide (BeO) 0.032-0.34 at 100oC 0.033-0.034 at 1200 oC 0.033-0.039 at 1600oC 0.033 at 200 oC. 0.033 at 1700oC 0.034 at 1500oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1490 CRC Handbook of Materials Science & Engineering 14.2 sel Thermal Page 1491 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 357. SELECTING THERMAL CONDUCTIVITY OF CERAMICS (SHEET 8 OF 12) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Beryllium Oxide (BeO) 0.035 at 100oC 0.035 at 500oC 0.036-0.042 at 500 oC 0.036 at 1400oC Beryllium Oxide (BeO) 0.036 at 1800oC Beryllium Oxide (BeO) Beryllium Oxide (BeO) 0.036 at 1900oC 0.036 at 2000oC Boron Nitride (BN) parallel to a axis 0.0362 at 300oC Calcium Oxide (CaO) Aluminum Oxide (Al2O3) 0.037 at 100oC Magnesium Oxide (MgO) Beryllium Oxide (BeO) 0.038-0.045 at 400oC 0.038-0.47 at 20oC Trisilicon tetranitride (Si3N4) (pressureless sintered) Beryllium Oxide (BeO) Aluminum Oxide (Al2O3) 0.038 at 1000 oC 0.038 at 1300oC 0.04-0.069 at 100oC Titanium Mononitride (TiN) 0.040 at 200 oC Zirconium Mononitride (TiN) Beryllium Oxide (BeO) Titanium Monocarbide (TiC) Trisilicon tetranitride (Si3N4) (pressureless sintered) 0.040 at 200 oC 0.041-0.054 at 1200oC 0.041-0.074 at room temp. 0.041 at 200-750 oC Spinel (Al2O3 MgO) (0% porosity) Aluminum Oxide (Al2O3) Trisilicon tetranitride (Si3N4) (pressureless sintered) 0.037 at 315oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1491 14.2 sel Thermal Page 1492 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 357. SELECTING THERMAL CONDUCTIVITY OF CERAMICS (SHEET 9 OF 12) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Aluminum Nitride (AlN) 0.041 at 1100oC 0.042 at 800oC Beryllium Oxide (BeO) Molybdenum Disilicide (MoSi2) 0.043 at 1100oC 0.046 at 875oC Aluminum Oxide (Al2O3) (single crystal) 0.047 at 300oC Aluminum Nitride (AlN) Chromium Diboride (CrB2) 0.048 at 600oC 0.049-0.076 at room temp. Silicon Carbide (SiC) (cubic, CVD) 0.049-0.080 at 600oC Zirconium Monocarbide (ZrC) Silicon Carbide (SiC) (cubic, CVD) Aluminum Nitride (AlN) Molybdenum Disilicide (MoSi2) 0.049 at room temp. 0.051 at 1000oC Hafnium Monocarbide (HfC) Tantalum Monocarbide (TaC) Zirconium Diboride (ZrB2) Zirconium Diboride (ZrB2) 0.053 at room temp. 0.053 at room temp. 0.055-0.058 at room temp. Titanium Mononitride (TiN) Molybdenum Disilicide (MoSi2) Titanium Diboride (TiB2) Aluminum Oxide (Al2O3) 0.057 at 127 oC Molybdenum Disilicide (MoSi2) Beryllium Oxide (BeO) Aluminum Nitride (AlN) Zirconium Monocarbide (ZrC) Silicon Carbide (SiC) (cubic, CVD) 0.053 at 400oC 0.053 at 540oC 0.055-0.060 at 200 oC 0.057 at 650oC 0.058-0.062 at room temp. 0.06 at room temp. 0.060-0.093 at 800oC 0.060 at 200oC 0.061 at 288oC 0.061 at 800oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1492 CRC Handbook of Materials Science & Engineering 14.2 sel Thermal Page 1493 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 357. SELECTING THERMAL CONDUCTIVITY OF CERAMICS (SHEET 10 OF 12) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Boron Nitride (BN) parallel to c axis 0.063 at 200 oC 0.0637 at 1000oC Magnesium Oxide (MgO) Boron Nitride (BN) parallel to c axis 0.064-0.065 at 200oC 0.0646 at 700oC Titanium Diboride (TiB2) Boron Carbide (B4C) 0.065-0.069 at room temp. Zirconium Monocarbide (ZrC) Boron Nitride (BN) parallel to c axis 0.065 at 188oC 0.0687 at 300oC Titanium Mononitride (TiN) 0.069 at 25 oC Zirconium Monocarbide (ZrC) Aluminum Nitride (AlN) Trisilicon tetranitride (Si3N4) (pressureless sintered) Molybdenum Disilicide (MoSi2) 0.069 at 150oC Magnesium Oxide (MgO) Zirconium Monocarbide (ZrC) Silicon Carbide (SiC) (cubic, CVD) Zirconium Monocarbide (ZrC) Zirconium Monocarbide (ZrC) Beryllium Oxide (BeO) Zirconium Monocarbide (ZrC) Zirconium Monocarbide (ZrC) 0.072 at 25oC 0.072 at room temp. 0.074 at 425oC 0.078-0.082 at 100oC 0.080 at 600oC 0.0827 at 1327oC 0.083 at 800oC 0.086 at 1000oC 0.089-0.1137 at 600oC 0.089 at 1200oC 0.092 at 1400oC Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1493 14.2 sel Thermal Page 1494 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 357. SELECTING THERMAL CONDUCTIVITY OF CERAMICS (SHEET 11 OF 12) Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Ceramic 0.096 at 1600oC 0.097 at room temp. 0.098-0.10 at 20oC 0.098 at 50oC Zirconium Monocarbide (ZrC) Magnesium Oxide (MgO) Silicon Carbide (SiC) Zirconium Monocarbide (ZrC) Zirconium Monocarbide (ZrC) Aluminum Oxide (Al2O3) (single crystal) 0.099 at 1800oC Zirconium Monocarbide (ZrC) Zirconium Monocarbide (ZrC) 0.103 at 2000oC 0.105 at 2200oC Molybdenum Disilicide (MoSi2) 0.129 at 150oC 0.136 at 2300 oC 0.103 at 20oC Titanium Mononitride (TiN) Beryllium Oxide (BeO) Silicon Carbide (SiC) (with 1 wt% Al additive) 0.14-0.16 at 400oC 0.143 Titanium Mononitride (TiN) Boron Carbide (B4C) 0.162 at 1500 oC 0.198 at 425 oC Tungsten Monocarbide (WC) Tungsten Monocarbide (WC) (6% Co, 1-3µm grain size) 0.201 at 20 oC 0.239 Tungsten Monocarbide (WC) (24% Co, 1-3µm grain size) Tungsten Monocarbide (WC) (12% Co, 1-3µm grain size) Tungsten Monocarbide (WC) (6% Co, 2-4µm grain size) Tungsten Monocarbide (WC) (6% Co, 3-6µm grain size) 0.239 0.251 0.251 0.256 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1494 CRC Handbook of Materials Science & Engineering 14.2 sel Thermal Page 1495 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 357. SELECTING THERMAL CONDUCTIVITY OF CERAMICS (SHEET 12 OF 12) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Silicon Carbide (SiC) (with 2 wt% BN additive) Silicon Carbide (SiC) (cubic, CVD) Silicon Carbide (SiC) (with 1 wt% B additive) Trichromium Dicarbide (Cr3C2) 0.263 0.289 at 127oC 0.406 0.454 Silicon Carbide (SiC) (with 1 wt% Be additive) Silicon Carbide (SiC) (with 1.6 wt% BeO additive) Silicon Carbide (SiC) (with 3.2 wt% BeO additive) 0.621 0.645 at room temp. 0.645 at room temp. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1495 14.3 sel Thermal L Page 1496 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 1 OF 19) Temperature (˚C) 20 20 20 20 20 20 20 20 20 20 20 Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Ceramic Zirconium Oxide (ZrO2) (plasma sprayed) Zirconium Oxide (ZrO2) (plasma sprayed and coated with Cr2O3) Cordierite (2MgO 2Al2O3 5SiO2 ) (ρ=2.1g/cm3) 0.0019-0.0031 0.0033 0.0043 Zirconium Oxide (ZrO2) (Y2O3 stabilized) Zirconium Oxide (ZrO2) (MgO stabilized) 0.0055 0.0076 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) Hafnium Diboride (HfB2) 0.0077 Thorium Dioxide (ThO2) (0% porosity) Tantalum Diboride (TaB2) Beryllium Oxide (BeO) Titanium Monocarbide (TiC) 0.024 0.026 0.038-0.47 0.041-0.074 0.015 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1497 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 2 OF 19) Temperature (˚C) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 20 20 20 20 Zirconium Monocarbide (ZrC) Chromium Diboride (CrB2) Hafnium Monocarbide (HfC) Tantalum Monocarbide (TaC) 0.049 0.049-0.076 0.053 0.053 20 20 Zirconium Diboride (ZrB2) Titanium Diboride (TiB2) Aluminum Oxide (Al2O3) Boron Carbide (B4C) 0.055-0.058 0.058-0.062 0.06 0.065-0.069 20 20 20 20 Trisilicon tetranitride (Si3N4) (pressureless sintered) Magnesium Oxide (MgO) Silicon Carbide (SiC) Aluminum Oxide (Al2O3) (single crystal) 0.072 0.097 0.098-0.10 0.103 20 20 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1498 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 3 OF 19) Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Temperature (˚C) Ceramic 20 20 20 Tungsten Monocarbide (WC) 0.201 Silicon Carbide (SiC) (with 1.6 wt% BeO additive) Silicon Carbide (SiC) (with 3.2 wt% BeO additive) 0.645 0.645 Hafnium Dioxide (HfO2) 0.0273 25-425 25 25 Titanium Mononitride (TiN) 0.069 Aluminum Nitride (AlN) 0.072 50 Zirconium Monocarbide (ZrC) 0.098 100 Zirconium Oxide (ZrO2) (stabilized) Sillimanite (Al2O3 SiO2) (0% porosity) Zirconium Oxide (ZrO2) (stabilized, 0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) 0.004 0.0042 0.005 0.0145 100 100 100 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1499 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 4 OF 19) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 100 Zircon (SiO2 ZrO2) (0% porosity) Titanium Oxide (TiO2) (0% porosity) Uranium Dioxide (UO2) Thorium Dioxide (ThO2) (0% porosity) 0.0145 0.016 0.018 0.020 100 100 100 100 Uranium Dioxide (UO2) (0% porosity) Nickel monoxide (NiO) (0% porosity) Beryllium Oxide (BeO) Spinel (Al2O3 MgO) (0% porosity) 0.025 0.029 0.032-0.34 0.035 100 100 100 Calcium Oxide (CaO) Aluminum Oxide (Al2O3) Magnesium Oxide (MgO) 0.037 0.04-0.069 0.078-0.082 Temperature (˚C) 100 100 100 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1500 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 5 OF 19) Temperature (˚C) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 127 127 127 Trisilicon tetranitride (Si3N4) (pressureless sintered) Titanium Mononitride (TiN) 0.022-0.072 Silicon Carbide (SiC) (cubic, CVD) 0.289 150 150 Zirconium Monocarbide (ZrC) Molybdenum Disilicide (MoSi2) 0.069 0.129 188 Zirconium Monocarbide (ZrC) 0.065 200 Silicon Dioxide (SiO2) Zirconium Oxide (ZrO2) (stabilized, 0% porosity) Titanium Oxide (TiO2) (0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) 0.0025 0.005 0.012 0.013 200 200 200 0.057 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1501 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 6 OF 19) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Zircon (SiO2 ZrO2) (0% porosity) Thorium Dioxide (ThO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity) Nickel monoxide (NiO) (0% porosity) 0.0135 0.019 0.020 0.024 200. Calcium Oxide (CaO) Aluminum Oxide (Al2O3) Spinel (Al2O3 MgO) (0% porosity) Tantalum Diboride (TaB2) 0.027 0.03-0.064 0.031 0.033 200 200 200-750 Titanium Mononitride (TiN) Zirconium Mononitride (TiN) Trisilicon tetranitride (Si3N4) (pressureless sintered) 0.040 0.040 200 Zirconium Diboride (ZrB2) Temperature (˚C) 200 200 200 200 200 200 200 0.041 0.055-0.060 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1502 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 7 OF 19) Temperature (˚C) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 200 200 200 Aluminum Nitride (AlN) Titanium Diboride (TiB2) Magnesium Oxide (MgO) 0.060 0.063 0.064-0.065 288 Zirconium Monocarbide (ZrC) 0.061 300 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) 0.0041 300 ) (ρ=2.3g/cm3) 0.0062 0.0362 0.047 0.0687 300 300 300 315 Cordierite (2MgO 2Al2O3 5SiO2 Boron Nitride (BN) parallel to a axis Aluminum Oxide (Al2O3) (single crystal) Boron Nitride (BN) parallel to c axis Aluminum Oxide (Al2O3) 0.037 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1503 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 8 OF 19) Temperature (˚C) 400 400 400 400 400 400 400 400 400 400 400 Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Silicon Dioxide (SiO2) Sillimanite (Al2O3 SiO2) (0% porosity) Zirconium Oxide (ZrO2) (5-10% CaO stabilized) Zirconium Oxide (ZrO2) (stabilized, 0% porosity) 0.003 0.004 0.0045 0.005 Titanium Oxide (TiO2) (0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) Uranium Dioxide (UO2) Zircon (SiO2 ZrO2) (0% porosity) 0.009 0.011 0.012 0.012 Thorium Dioxide (ThO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity) Nickel monoxide (NiO) (0% porosity) 0.014 0.015 0.017 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1504 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 9 OF 19) Temperature (˚C) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 400 400 400 Aluminum Oxide (Al2O3) Calcium Oxide (CaO) Spinel (Al2O3 MgO) (0% porosity) 0.02-0.031 0.022 0.024 400 400 400 Magnesium Oxide (MgO) Aluminum Nitride (AlN) Beryllium Oxide (BeO) 0.038-0.045 0.053 0.14-0.16 425 425 Zirconium Mononitride (TiN) Boron Carbide (B4C) 425 Molybdenum Disilicide (MoSi2) 0.198 0.074 500 500 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) Zirconium Oxide (ZrO2) (stabilized) 0.0040 0.0044 500 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) 0.0055 0.025 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1505 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 10 OF 19) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 500 Aluminum Oxide (Al2O3) Trisilicon tetranitride (Si3N4) (pressureless sintered) 0.035 0.036-0.042 540 Molybdenum Disilicide (MoSi2) 0.053 600 Titanium Oxide (TiO2) (0% porosity) Uranium Dioxide (UO2) Thorium Dioxide (ThO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity) 0.008 0.008 0.010 0.010 Mullite (3Al2O3 2SiO2) (0% porosity) Spinel (Al2O3 MgO) (0% porosity) Calcium Oxide (CaO) Aluminum Oxide (Al2O3) 0.010 0.019 0.020 0.021-0.022 Temperature (˚C) 500 600 600 600 600 600 600 600 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1506 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 11 OF 19) Temperature (˚C) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 600 600 600 600 Aluminum Nitride (AlN) Silicon Carbide (SiC) (cubic, CVD) Zirconium Monocarbide (ZrC) Beryllium Oxide (BeO) 0.048 0.049-0.080 0.080 0.089-0.1137 650 650 650 Zirconium Mononitride (TiN) Titanium Mononitride (TiN) 0.018 0.027 Molybdenum Disilicide (MoSi2) 0.057 700 700 700 Uranium Dioxide (UO2) Boron Nitride (BN) parallel to a axis Boron Nitride (BN) parallel to c axis 0.008 0.0318 0.0646 800 Zirconium Oxide (ZrO2) (plasma sprayed) Oxide (ZrO2) (plasma sprayed and coated with Cr2O3) Sillimanite (Al2O3 SiO2) (0% porosity) 0.0019-0.0022 0.0033 0.0035 800 800 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1507 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 12 OF 19) Temperature (˚C) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 0.0038 800 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) Silicon Dioxide (SiO2) Zirconium Oxide (ZrO2) (5-10% CaO stabilized) Zirconium Oxide (ZrO2) (Y2O3 stabilized) 800 Zirconium Oxide (ZrO2) (stabilized, 0% porosity) 0.0055 800 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) Zirconium Oxide (ZrO2) (MgO stabilized) Thorium Dioxide (ThO2) (0% porosity) 0.0055 0.0057 0.008 Titanium Oxide (TiO2) (0% porosity) Uranium Dioxide (UO2) (0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) Zircon (SiO2 ZrO2) (0% porosity) 0.008 0.009 0.0095 0.010 800 800 800 800 800 800 800 800 800 0.004 0.0049 0.0053 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1508 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 13 OF 19) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 800 800 Nickel monoxide (NiO) (0% porosity) Spinel (Al2O3 MgO) (0% porosity) Aluminum Oxide (Al2O3) Calcium Oxide (CaO) 0.012 0.015 0.015-0.017 0.019 800 800 800 Magnesium Oxide (MgO) Aluminum Oxide (Al2O3) (single crystal) Aluminum Nitride (AlN) 0.0198-0.026 0.029 0.042 800 800 800 Beryllium Oxide (BeO) Silicon Carbide (SiC) (cubic, CVD) Zirconium Monocarbide (ZrC) 0.060-0.093 0.061 0.083 875 875 Zirconium Mononitride (TiN) 0.016 Molybdenum Disilicide (MoSi2) 0.046 Temperature (˚C) 800 800 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1509 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 14 OF 19) Temperature (˚C) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Zirconium Oxide (ZrO2) (stabilized) Uranium Dioxide (UO2) Thorium Dioxide (ThO2) (0% porosity) Titanium Oxide (TiO2) (0% porosity) 0.0048-0.0055 0.006 0.007-0.0074 0.008 Uranium Dioxide (UO2) (0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) Nickel monoxide (NiO) (0% porosity) Spinel (Al2O3 MgO) (0% porosity) 0.008 0.009 0.011 0.013-0.0138 Titanium Monocarbide (TiC) 0.0135 Aluminum Oxide (Al2O3) Magnesium Oxide (MgO) Calcium Oxide (CaO) 0.014-0.016 0.016-0.020 0.0186-0.019 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1510 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 15 OF 19) Thermal Conductivity (cal • cm-1 • sec-1 • K-1) Temperature (˚C) Ceramic 1000 1000 1000 Titanium Mononitride (TiN) 0.020 Boron Nitride (BN) parallel to a axis Trisilicon tetranitride (Si3N4) (pressureless sintered) 0.0295 0.038 1000 1000 1000 Silicon Carbide (SiC) (cubic, CVD) Boron Nitride (BN) parallel to c axis Zirconium Monocarbide (ZrC) 0.051 0.0637 0.086 1100 1100 1100 Zirconium Mononitride (TiN) 0.015 Molybdenum Disilicide (MoSi2) Beryllium Oxide (BeO) 0.041 0.043 1200 Sillimanite (Al2O3 SiO2) (0% porosity) 1200 Zirconium Oxide (ZrO2) (stabilized) 1200 Silicon Dioxide (SiO2) 1200 Zirconium Oxide (ZrO2) (5-10% CaO stabilized) 0.0035 0.0049-0.0050 0.005 0.0057 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1511 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 16 OF 19) Temperature (˚C) Ceramic 1200 Uranium Dioxide (UO2) 1200 Zirconium Oxide (ZrO2) (stabilized, 0% porosity) 1200 Thorium Dioxide (ThO2) (0% porosity) 1200 Titanium Oxide (TiO2) (0% porosity) 1200 Mullite (3Al2O3 2SiO2) (0% porosity) 1200 Zircon (SiO2 ZrO2) (0% porosity) 1200 Spinel (Al2O3 MgO) (0% porosity) 1200 Aluminum Oxide (Al2O3) 1200 1200 1200 1200 Magnesium Oxide (MgO) Trisilicon tetranitride (Si3N4) (pressureless sintered) Beryllium Oxide (BeO) Zirconium Monocarbide (ZrC) Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 0.006 0.006 0.006-0.0076 0.008 0.009 0.0095 0.013 0.013-0.015 0.0139-0.0148 0.033-0.034 0.041-0.054 0.089 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1512 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 17 OF 19) Temperature (˚C) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 1250 Silicon Carbide (SiC) (cubic, CVD) 0.0059 1300 Beryllium Oxide (BeO) 0.038 1327 Silicon Carbide (SiC) (cubic, CVD) 0.0827 1400 1400 Thorium Dioxide (ThO2) (0% porosity) Zirconium Oxide (ZrO2) (stabilized, 0% porosity) Mullite (3Al2O3 2SiO2) (0% porosity) Zircon (SiO2 ZrO2) (0% porosity) 0.006 0.0065 0.009 0.0095 1400 1400 1400 1400 Magnesium Oxide (MgO) Aluminum Oxide (Al2O3) Beryllium Oxide (BeO) Zirconium Monocarbide (ZrC) 0.012-0.014 0.013 0.036 0.092 1400 1400 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1513 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 18 OF 19) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 1500 1500 1500 Sillimanite (Al2O3 SiO2) (0% porosity) Beryllium Oxide (BeO) 0.003 0.034 Titanium Mononitride (TiN) 0.162 1530 Silicon Carbide (SiC) (cubic, CVD) 0.0032 1600 1600 1600 Silicon Dioxide (SiO2) Magnesium Oxide (MgO) Aluminum Oxide (Al2O3) 0.006 0.0108-0.016 0.014 1600 1600 Beryllium Oxide (BeO) Zirconium Monocarbide (ZrC) 0.033-0.039 0.096 1700 Beryllium Oxide (BeO) 0.033 Temperature (˚C) Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.3 sel Thermal L Page 1514 Wednesday, December 31, 1969 17:00 Table 358. SELECTING THERMAL CONDUCTIVITY OF CERAMICS AT TEMPERATURE (SHEET 19 OF 19) Temperature (˚C) Ceramic Thermal Conductivity (cal • cm-1 • sec-1 • K-1) 1800 1800 1800 1800 Magnesium Oxide (MgO) Aluminum Oxide (Al2O3) Beryllium Oxide (BeO) Zirconium Monocarbide (ZrC) 0.0096-0.0191 0.017 0.036 0.099 1900 Beryllium Oxide (BeO) 0.036 2000 2000 Beryllium Oxide (BeO) Zirconium Monocarbide (ZrC) 0.036 0.103 2200 Zirconium Monocarbide (ZrC) 0.105 2300 Titanium Mononitride (TiN) 0.136 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 14.4 sel Thermal Page 1515 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 359. SELECTING THERMAL CONDUCTIVITY OF POLYMERS (SHEET 1 OF 4) Polymer Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F) ABS Resins; Molded, Extruded: Very high impact Polystyrene: Medium impact Polystyrene: High impact Rubber Phenolic: Asbestos Filled 0.01—0.14 0.024—0.090 0.024—0.090 0.04 Rubber Phenolic: Chopped Fabric Filled Vinylidene Chloride Polystyrene: General purpose Polyvinyl Chloride & Copolymers: Nonrigid—General 0.05 0.053 0.058—0.090 0.07—0.10 Polyvinyl Chloride & Copolymers: Nonrigid—Electrical Polyvinyl Chloride & Copolymers: Rigid—Normal Impact Silicone: Woven Glass Fabric/ Silicone Laminate ABS Resins; Molded, Extruded: Low temperature impact 0.07—0.10 0.07—0.10 0.075—0.125 0.08—0.14 ABS Resins; Molded, Extruded: Medium impact Phenolics; High Shock: Chopped Fabric or Cord Filled Phenolics; Molded: General: Woodflour and Flock Filled Polyester, Thermoset: Cast Rigid 0.08—0.18 0.097—0.170 0.097—0.3 0.10—0.12 Cellulose Acetate, ASTM Grade: H6—1 Cellulose Acetate, ASTM Grade: H4—1 Cellulose Acetate, ASTM Grade: H2—1 Cellulose Acetate, ASTM Grade: MH—1, MH—2 0.10—0.19 0.10—0.19 0.10—0.19 0.10—0.19 Cellulose Acetate, ASTM Grade: MS—1, MS—2 Cellulose Acetate, ASTM Grade: S2—1 Cellulose Acetate Butyrate; ASTM Grade: H4 Cellulose Acetate Butyrate; ASTM Grade: MH 0.10—0.19 0.10—0.19 0.10—0.19 0.10—0.19 Cellulose Acetate Butyrate; ASTM Grade: S2 Cellulose Acetate Propionate, ASTM Grade: 1 Cellulose Acetate Propionate, ASTM Grade: 3 Cellulose Acetate Propionate, ASTM Grade: 6 0.10—0.19 0.10—0.19 0.10—0.19 0.10—0.19 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1515 14.4 sel Thermal Page 1516 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 359. SELECTING THERMAL CONDUCTIVITY OF POLYMERS (SHEET 2 OF 4) Polymer Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F) Phenolics; Molded: Shock: Paper, Flock, or Pulp Filled Epoxy, Standard: Cast rigid Epoxy, Standard: Molded Polycarbonate 0.1—0.16 0.1—0.3 0.1—0.5 0.11 Polystyrene: Glass fiber -30% reinforced Acrylic Cast Resin Sheets, Rods: General purpose, type I Acrylic Cast Resin Sheets, Rods: General purpose, type II Acrylic Moldings: Grades 5, 6, 8 0.117 0.12 0.12 0.12 Acrylic Moldings: High impact grade Fluorinated ethylene propylene(FEP) Rubber Phenolic: Woodflour or Flock Filled ABS Resins; Molded, Extruded: High impact 0.12 0.12 0.12 0.12—0.16 ABS Resins; Molded, Extruded: Heat resistant Polycarbonate (40% glass fiber reinforced) Polyacetal Homopolymer: Standard Polytetrafluoroethylene (PTFE) 0.12—0.20 0.13 0.13 0.14 Polyvinylidene— fluoride (PVDF) Polytrifluoro chloroethylene (PTFCE) Polyacetal Copolymer: Standard Melamine; Molded: Cellulose Electrical 0.14 0.145 0.16 0.17—0.20 Urea; Molded: Alpha—Cellulose Filled (ASTM Type l) Silicone: Fibrous (Glass) Reinforced Polyethylene; Molded, Extruded; Type I: Melt Index 0.3—3.6 Polyethylene; Molded, Extruded; Type I: Melt Index 6—26 0.17—0.244 0.18 0.19 0.19 Polyethylene; Molded, Extruded; Type I: Melt Index 200 Polyethylene; Molded, Extruded; Type II: Melt Index 20 Polyethylene; Molded, Extruded; Type II: Melt Index L.0—1.9 Polyethylene; Molded, Extruded; Type III: Melt Index 0.2—0.9 0.19 0.19 0.19 0.19 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1516 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1517 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 359. SELECTING THERMAL CONDUCTIVITY OF POLYMERS (SHEET 3 OF 4) Polymer Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F) Polyethylene; Type III: Melt Melt Index 0.1—12.0 Polyethylene; Molded, Extruded; Type III: Melt Index 1.5—15 Polyethylene; Molded, Extruded; Type III: High Molecular Weight Phenolics; Molded: Very High Shock: Glass Fiber Filled 0.19 0.19 0.19 0.2 Alkyds; Molded: Glass reinforced (heavy duty parts) Phenolics; Molded: Arc Resistant—Mineral Silicone: Granular (Silica) Reinforced Melamine; Molded: Glass Fiber Filled 0.20—0.30 0.24—0.34 0.25—0.5 0.28 Alkyds; Molded: Putty (encapsulating) Alkyds; Molded: Rope (general purpose) Alkyds; Molded: Granular (high speed molding) Polyester Injection Moldings: General purpose grade 0.35—0.60 0.35—0.60 0.35—0.60 0.36—0.55 Chlorinated polyether Chlorinated polyvinyl chloride PVC–Acrylic Injection Molded PVC–Acrylic Sheet 0.91 0.95 0.98 1.01 Phenylene Oxide: SE—100 Polyarylsulfone Phenylene Oxide: Glass fiber reinforced Nylon; Molded, Extruded Type 6: General purpose 1.1 1.1 1.1–1.15 1.2—1.69 Nylon; Type 6: Cast Polypropylene: General Purpose Polyester, Thermoset: High strength (glass fiber filled) Thermoset Allyl diglycol Carbonate 1.2—1.7 1.21—1.36 1.32—1.68 1.45 Nylon: Type 11 6/10 Nylon: General purpose Phenylene Oxide: SE—1 6/6 Nylon: Glass fiber reinforced 1.5 1.5 1.5 1.5— 3.3 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1517 14.4 sel Thermal Page 1518 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 359. SELECTING THERMAL CONDUCTIVITY OF POLYMERS (SHEET 4 OF 4) Polymer Thermal Conductivity (ASTM C177) Btu / (hr • ft • ˚F) Polyacetal Copolymer: High flow 6/6 Nylon: General purpose molding Nylon; Molded, Extruded Type 6: Glass fiber (30%) reinforced Nylon: Type 12 1.6 1.69—1.7 1.69—3.27 1.7 6/6 Nylon: General purpose extrusion Polypropylene: High Impact Phenylene oxides (Noryl): Standard Polyphenylene Sulfide: Standard 1.7 1.72 1.8 2 Polyphenylene Sulfide: 40% Glass Reinforced Epoxy, Standard: High strength laminate ABS–Polycarbonate Alloy 2 2.35 2.46 6/10 Nylon: Glass fiber (30%) reinforced Polymide: Glass Reinforced Polymide: Unreinforced 3.5 3.59 3.8–6.78 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1518 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1519 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 360. SELECTING THERMAL EXPANSION OF TOOL STEELS (SHEET 1 OF 2) Type Temperature Change from 20 •C to Thermal Expansion mm/(m•K) M2 T1 T15 M2 260˚C 200 ˚C 200 ˚C 100 ˚C 9.4 9.7 9.9 10.1 H13 W1 A2 A2 100 ˚C 100 ˚C 260˚C 100 ˚C 10.4 10.4 10.6 10.7 W1 T15 M2 T1 200 ˚C 425˚C 425˚C 425˚C 11 11 11.2 11.2 L6 H13 T15 T1 100 ˚C 200 ˚C 540˚C 540˚C 11.3 11.5 11.5 11.7 H11 M2 T1 H13 100 ˚C 540˚C 600˚C 425˚C 11.9 11.9 11.9 12.2 M2 H21 S1 H11 600˚C 100 ˚C 100 ˚C 200 ˚C 12.2 12.4 12.4 12.4 H13 H26 H21 L6 540˚C 540˚C 200 ˚C 200 ˚C 12.4 12.4 12.6 12.6 S1 S7 200 ˚C 200 ˚C 12.6 12.6 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p242, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1519 14.4 sel Thermal Page 1520 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 360. SELECTING THERMAL EXPANSION OF TOOL STEELS (SHEET 2 OF 2) Type Temperature Change from 20 •C to Thermal Expansion mm/(m•K) L6 S5 425˚C 425˚C 12.6 12.6 H11 A2 H21 H11 425˚C 425˚C 425˚C 540˚C 12.8 12.9 12.9 12.9 W1 H13 S7 S5 425˚C 600˚C 425˚C 540˚C 13.1 13.1 13.3 13.3 H11 S7 S1 H21 600˚C 600˚C 425˚C 540˚C 13.3 13.3 13.5 13.5 L6 S7 L6 S5 540˚C 500˚C 600˚C 600˚C 13.5 13.7 13.7 13.7 W1 S1 H21 A2 500˚C 540˚C 600˚C 540˚C 13.8 13.9 13.9 14 A2 S1 W1 600˚C 600˚C 600˚C 14.2 14.2 14.2 L2 L2 L2 425˚C 540˚C 600˚C 14.4 14.6 14.8 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p242, (1984). ©2001 CRC Press LLC 1520 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1521 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 361. SELECTING AT Temperature Change from 20 •C to THERMAL EXPANSION OF TOOL STEELS TEMPERATURE (SHEET 1 OF 2) Type Thermal Expansion mm/(m•K) M2 H13 W1 A2 10.1 10.4 10.4 10.7 L6 H11 H21 S1 11.3 11.9 12.4 12.4 T1 T15 W1 9.7 9.9 11 H13 H11 H21 11.5 12.4 12.6 L6 S1 S7 12.6 12.6 12.6 260˚C M2 A2 9.4 10.6 425˚C T15 M2 T1 H13 11 11.2 11.2 12.2 L6 S5 H11 A2 12.6 12.6 12.8 12.9 H21 W1 12.9 13.1 100 ˚C 200 ˚C Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p242, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1521 14.4 sel Thermal Page 1522 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 361. SELECTING AT Temperature Change from 20 •C to THERMAL EXPANSION OF TOOL STEELS TEMPERATURE (SHEET 2 OF 2) Type Thermal Expansion mm/(m•K) S7 S1 L2 13.3 13.5 14.4 500˚C S7 W1 13.7 13.8 540˚C T15 T1 M2 H13 11.5 11.7 11.9 12.4 H26 H11 S5 H21 12.4 12.9 13.3 13.5 L6 S1 A2 L2 13.5 13.9 14 14.6 T1 M2 H13 H11 11.9 12.2 13.1 13.3 S7 L6 S5 H21 13.3 13.7 13.7 13.9 A2 S1 W1 L2 14.2 14.2 14.2 14.8 600˚C Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p242, (1984). ©2001 CRC Press LLC 1522 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1523 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 362. SELECTING THERMAL EXPANSION OF ALLOY CAST IRONS Description Thermal Expansion Coefficient mm/(m • ˚C) Abrasion–Resistant White Martensitic Nickel–Chromium Iron Corrosion–Resistant High–Nickel Gray Iron Heat–Resistant Gray High–Nickel Iron 8 to 9 8.1 to 19.3 8.1 to 19.3 Heat–Resistant Gray High–Chromium Iron Corrosion–Resistant High–Chromium Iron Heat–Resistant Gray Medium–Silicon Iron 9.3 to 9.9 9.4 to 9.9 10.8 Heat–Resistant Medium–Silicon Ductile Iron Abrasion–Resistant Low–C White Irons Corrosion–Resistant High– Silicon Iron 10.8 to 13.5 12 12.4 to 13.1 Heat–Resistant Gray Nickel–Chromium–Silicon Iron Corrosion–Resistant High–Nickel Ductile Iron Heat–Resistant Gray High–Aluminum Iron 12.6 to 16.2 12.6 to 18.7 15.3 Heat–Resistant High–Nickel Ductile (23 Ni) Heat–Resistant High–Nickel Ductile (20 Ni) 18.4 18.7 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p172, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1523 14.4 sel Thermal Page 1524 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 363. SELECTING THERMAL EXPANSION OF CERAMICS (SHEET 1 OF 16) Ceramic Thermal Expansion (˚C–1) Hafnium Dioxide (HfO2) monoclinic, parallel to b axis 0 for 28–262˚C Silicon Dioxide (SiO2) Vitreous 0.5 x 10–6 for 20–1250˚C Silicon Dioxide (SiO2) Vitreous Silicon Dioxide (SiO2) Vitreous 0.527 x 10–6 for 25–500˚C 0.564 x 10–6 for 25–1000˚C Boron Nitride (BN) parallel to a axis 0.59 x 10–6 for 25 to 350˚C Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3) 0.6 x 10–6 for 25 to 400˚C Boron Nitride (BN) parallel to a axis Boron Nitride (BN) parallel to a axis Hafnium Dioxide (HfO2) monoclinic, parallel to a axis 0.77 x 10–6 for 25 to 1000˚C 0.89 x 10–6 for 25 to 700˚C 0.9x10–6 for 28–494˚C Zirconium Oxide (ZrO2) tetragonal, parallel to b axis 1.1 x 10–6 for 27 to 759˚C Hafnium Dioxide (HfO2) monoclinic, parallel to a axis Hafnium Dioxide (HfO2) — tetragonal polycrystalline Hafnium Dioxide (HfO2) monoclinic, parallel to a axis 1.3x10–6 for 28–697˚C 1.31 x 10–6 for 25–1700˚C 1.4x10–6 for 28–903˚C Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3) 1.5 x 10–6 for 25 to 700˚C Zirconium Oxide (ZrO2) tetragonal, parallel to b axis Aluminum Oxide (Al2O3) perpendicular to c axis 1.5 x 10–6 for 27 to 964˚C 1.65 x 10–6 for 0 to –273˚C Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3) 1.7 x 10–6 for 25 to 900˚C Aluminum Oxide (Al2O3) — polycrystalline 1.89 x 10–6 for 0 to –273˚C Zirconium Oxide (ZrO2) tetragonal, parallel to b axis Aluminum Oxide (Al2O3) parallel to c axis Zirconium Oxide (ZrO2) tetragonal, parallel to b axis 1.9 x 10–6 for 27 to 1110˚C 1.95 x 10–6 for 0 to –273˚C 2 x 10–6 for 27 to 504˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1524 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1525 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 363. SELECTING THERMAL EXPANSION OF CERAMICS (SHEET 2 OF 16) Ceramic Thermal Expansion (˚C–1) Hafnium Dioxide (HfO2) monoclinic, parallel to a axis 2.1x10–6 for 28–1098˚C Trisilicon Tetranitride (Si3N4) 2.11 x 10–6 for 25 to 500˚C 3 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm ) 2.2 x 10–6 for 25 to 400˚C Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) 2.3 x 10–6 for 25 to 400˚C Beryllium Oxide (BeO) — polycrystalline Aluminum Oxide (Al2O3) perpendicular to c axis 2.4 x 10–6 for 25–200˚C 2.55 x 10–6 for 0 to –173˚C Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.51g/cm3) Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) 2.7 x 10–6 for 25 to 1100˚C Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) Trisilicon Tetranitride (Si3N4) Trisilicon Tetranitride (Si3N4) (reaction sintered) 2.8 x 10–6 for 25 to 900˚C Aluminum Oxide (Al2O3) — polycrystalline 2.91 x 10–6 for 0 to –173˚C Zirconium Oxide (ZrO2) tetragonal, parallel to b axis 3 x 10–6 for 27 to 264˚C Trisilicon Tetranitride (Si3N4) (hot pressed) 3–3.9 x 10–6 for 20 to 1000˚C Aluminum Oxide (Al2O3) parallel to c axis 3.01 x 10–6 for 0 to –173˚C Hafnium Dioxide (HfO2) — tetragonal polycrystalline 3.03 x 10–6 for 25–2000˚C Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) Trisilicon Tetranitride (Si3N4) (sintered) 3.3 x 10–6 for 25 to 700˚C Trisilicon Tetranitride (Si3N4) 3.66 x 10–6 for 25 to 1500˚C Thorium Dioxide (ThO2) 3.67 x 10–6 for 0 to –273˚C 2.8 x 10–6 for 25 to 700˚C 2.87 x 10–6 for 25 to 1000˚C 2.9 x 10–6 for 20 to 1000˚C 3.5 x 10–6 for 20 to 1000˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1525 14.4 sel Thermal Page 1526 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 363. SELECTING THERMAL EXPANSION OF CERAMICS (SHEET 3 OF 16) Ceramic Thermal Expansion (˚C–1) Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) Trisilicon Tetranitride (Si3N4) (pressureless sintered) Cordierite (2MgO 2Al2O3 5SiO2) (glass) Aluminum Oxide (Al2O3) perpendicular to c axis 3.7 x 10–6 for 40 to 1000˚C 3.7–3.8 x 10–6 for 25 to 900˚C 3.75 x 10–6 for 0 to –73˚C Zircon (SiO2 ZrO2) 3.79 x 10–6 for 25 to 500˚C Zirconium Oxide (ZrO2) — tetragonal 4.0 x 10–6 for 0 to 500˚C Aluminum Nitride (AlN) Aluminum Oxide (Al2O3) — polycrystalline 4.03 x 10–6 for 25 to 200˚C 4.10 x 10–6 for 0 to –73˚C Aluminum Oxide (Al2O3) parallel to c axis 4.39 x 10–6 for 0 to –73˚C Tungsten Monocarbide (WC) Mullite (3Al2O3 2SiO2) Boron Carbide (B4C) 4.42 x 10–6 for 25–500˚C 4.5 x 10–6 for 20 to 1325˚C 4.5 x 10–6 for room temp.–800˚C Chromium Diboride (CrB2) 3.7 x 10–6 for 25 to 900˚C Zircon (SiO2 ZrO2) 4.6–11.1 x 10–6 for 20–1000˚C 4.6–8.1 x 10–6 4.62 x 10–6 for 25 to 1000˚C Mullite (3Al2O3 2SiO2) 4.63 x 10–6 for 25 to 500˚C Silicon Carbide (SiC) 4.63 x 10–6 for 25–500˚C Silicon Carbide (SiC) Silicon Carbide (SiC) Aluminum Oxide (Al2O3) perpendicular to c axis 4.70 x 10–6 for 0–1700˚C 4.70 x 10–6 for 20–1500˚C 4.78 x 10–6 for 0 to 27˚C Titanium Diboride (TiB2) Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1526 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1527 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 363. SELECTING THERMAL EXPANSION OF CERAMICS (SHEET 4 OF 16) Ceramic Thermal Expansion (˚C–1) Aluminum Nitride (AlN) 4.78 x 10–6 for 25–500˚C 4.83 x 10–6 for 25 to 600˚C Aluminum Nitride (AlN) Tungsten Monocarbide (WC) 4.84 x 10–6 for 25 to 500˚C 4.84–4.92 x 10–6 for 25–1000˚C Zirconium Oxide (ZrO2) — tetragonal 5.0 x 10–6 for 0 to 1400˚C Mullite (3Al2O3 2SiO2) Tantalum Diboride (TaB2) 5.0 x 10–6 for 25 to 800˚C 5.1 x 10–6 at room temp. Silicon Carbide (SiC) 5.12 x 10–6 for 25–1000˚C Mullite (3Al2O3 2SiO2) 5.13 x 10–6 for 25 to 1000˚C Aluminum Oxide (Al2O3) parallel to c axis Thorium Dioxide (ThO2) Tungsten Monocarbide (WC) 5.31 x 10–6 for 0 to 27˚C 5.32 x 10–6 for 0 to –173˚C 5.35–5.8 x 10–6 for 25–1500˚C Hafnium Dioxide (HfO2) — monoclinic polycrystalline 5.47 x 10–6 for 25–500˚C Silicon Carbide (SiC) Zircon (SiO2 ZrO2) Hafnium Diboride (HfB2) 5.48 x 10–6 for 25–1500˚C 5.5 x 10–6 for 20 to 1200˚C 5.5 –5.54 x 10–6 for 20 to1000˚C Zirconium Oxide (ZrO2) — tetragonal 5.5–5.58 x 10–6 for 20 to 1200˚C Zirconium Diboride (ZrB2) 5.5–6.57 x 10–6 ˚C for 25–1000˚C Aluminum Oxide (Al2O3) perpendicular to c axis 5.51 x 10–6 for 0 to 127˚C Boron Carbide (B4C) 5.54 x 10–6 for 25–1000˚C Aluminum Nitride (AlN) Aluminum Oxide (Al2O3) — polycrystalline Mullite (3Al2O3 2SiO2) Zircon (SiO2 ZrO2) 5.54–5.64 x 10–6 for 25 to 1000˚C Boron Carbide (B4C) 5.60 x 10–6 for 0 to 27˚C 5.62 x 10–6 for 20 to 1500˚C 5.63 x 10–6 for 20 to 1500˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1527 14.4 sel Thermal Page 1528 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 363. SELECTING THERMAL EXPANSION OF CERAMICS (SHEET 5 OF 16) Thermal Expansion (˚C–1) Ceramic 5.69 x 10–6 for 25–500˚C 5.77 x 10–6 for 25–2000˚C Zirconium Diboride (ZrB2) Silicon Carbide (SiC) Hafnium Dioxide (HfO2) — monoclinic polycrystalline Tungsten Monocarbide (WC) 5.8 x 10–6 for 25–1300˚C 5.82–7.4 x 10–6 for 25–2000˚C Hafnium Dioxide (HfO2) — monoclinic polycrystalline 5.85 x 10–6 for 25–1000˚C Silicon Carbide (SiC) Boron Carbide (B4C) Aluminum Oxide (Al2O3) — polycrystalline 5.94 x 10–6 for 25–2500˚C 6.02 x 10–6 for 25–1500˚C 6.03 x 10–6 for 0 to 127˚C Aluminum Nitride (AlN) Aluminum Oxide (Al2O3) perpendicular to c axis 6.09 x 10–6 for 25 to 1350˚C Zirconium Monocarbide (ZrC) Zirconium Monocarbide (ZrC) 6.10x 10–6 for 25–500˚C 6.10–6.73 x 10–6 for 25–650˚C Zirconium Mononitride (TiN) Hafnium Dioxide (HfO2) monoclinic, parallel to a axis 6.13 x 10–6 for 20–450˚C 6.10 x 10–6 for 0 to 227˚C Hafnium Monocarbide (HfC) Aluminum Oxide (Al2O3) parallel to c axis 6.2x10–6 for 28–494˚C 6.25 x 10–6 for 25–1000˚C 6.26 x 10–6 for 0 to 127˚C Hafnium Monocarbide (HfC) 6.27–6.59 x 10–6 for 25–650˚C Tantalum Monocarbide (TaC) Beryllium Oxide (BeO) parallel to c axis Hafnium Dioxide (HfO2) — monoclinic polycrystalline 6.29–6.32 x 10–6 for 25–500˚C 6.3 x 10–6 for 28 to 252˚C 6.30 x 10–6 for 25–1500˚C Beryllium Oxide (BeO) — polycrystalline 6.3–6.4 x 10–6 for 25–300˚C Zirconium Monocarbide (ZrC) Hafnium Dioxide (HfO2) — monoclinic polycrystalline 6.32x 10–6 for 0–750˚C 6.45 x 10–6 for 20–1700˚C Zirconium Monocarbide (ZrC) 6.46–6.66x 10–6 for 0–1000˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1528 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1529 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 363. SELECTING THERMAL EXPANSION OF CERAMICS (SHEET 6 OF 16) Ceramic Thermal Expansion (˚C–1) Thorium Dioxide (ThO2) 6.47 x 10–6 for 0 to –73˚C Tantalum Monocarbide (TaC) Aluminum Oxide (Al2O3) perpendicular to c axis Titanium Monocarbide (TiC) 6.50 x 10–6 for 0–1000˚C 6.52 x 10–6 for 0 to 327˚C 6.52–7.15 x 10–6 for 25–500˚C Zirconium Oxide (ZrO2) — monoclinic 6.53 x 10–6 for 25 to 500˚C Boron Carbide (B4C) Aluminum Oxide (Al2O3) — polycrystalline 6.53 x 10–6 for 25–2000˚C 6.55 x 10–6 for 0 to 227˚C Zirconium Monocarbide (ZrC) 6.56x 10–6 for 25–1000˚C Sillimanite (Al2O3 SiO2) 6.58 x 10–6 at 20˚C Tantalum Monocarbide (TaC) Zirconium Monocarbide (ZrC) Tantalum Monocarbide (TaC) 6.64 x 10–6 for 0–1200˚C 6.65x 10–6 for 25–800˚C 6.67 x 10–6 for 25–1000˚C Zirconium Monocarbide (ZrC) 6.68x 10–6 for 0–1275˚C Beryllium Oxide (BeO) parallel to c axis Hafnium Dioxide (HfO2) monoclinic, parallel to a axis Zirconium Oxide (ZrO2) tetragonal, parallel to a axis 6.7 x 10–6 for 28 to 474˚C 6.7x10–6 for 28–697˚C 6.8 x 10–6 for 27 to 759˚C Hafnium Dioxide (HfO2) monoclinic, parallel to a axis 6.8x10–6 for 28–262˚C Beryllium Oxide (BeO) average for (2a+c)/3 Zirconium Monocarbide (ZrC) Aluminum Oxide (Al2O3) parallel to c axis 6.83 x 10–6 for 28 to 252˚C 6.83x 10–6 for 0–1525˚C 6.86 x 10–6 for 0 to 227˚C Aluminum Oxide (Al2O3) perpendicular to c axis 6.88 x 10–6 for 0 to 427˚C Aluminum Oxide (Al2O3) — polycrystalline Zirconium Diboride (ZrB2) 6.93 x 10–6 for 0 to 327˚C 6.98 x 10–6 for 20–1500˚C Zirconium Monocarbide (ZrC) 6.98x 10–6 for 0–1775˚C Zirconium Mononitride (TiN) 7.03 x 10–6 for 20–680˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1529 14.4 sel Thermal Page 1530 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 363. SELECTING THERMAL EXPANSION OF CERAMICS (SHEET 7 OF 16) Ceramic Thermal Expansion (˚C–1) Zirconium Monocarbide (ZrC) 7.06x 10–6 for 25–1500˚C Titanium Monocarbide (TiC) Boron Carbide (B4C) 7.08 x 10–6 for 0–750˚C 7.08 x 10–6 for 25–2500˚C 7.1 x 10–6 for 28 to 252˚C Beryllium Oxide (BeO) perpendicular to c axis Tantalum Monocarbide (TaC) Aluminum Oxide (Al2O3) perpendicular to c axis 7.12 x 10–6 for 25–1500˚C Boron Nitride (BN) parallel to c axis 7.15 x 10–6 for 0 to 527˚C 7.15 x 10–6 for 25 to 1000˚C Titanium Monocarbide (TiC) 7.18–7.45 x 10–6 for 25–750˚C Zirconium Oxide (ZrO2) — tetragonal 7.2 x 10–6 for –10 to 1000˚C Aluminum Oxide (Al2O3) — polycrystalline Aluminum Oxide (Al2O3) parallel to c axis Aluminum Oxide (Al2O3) perpendicular to c axis 7.24 x 10–6 for 0 to 427˚C 7.31 x 10–6 for 0 to 327˚C 7.35 x 10–6 for 0 to 627˚C Titanium Monocarbide (TiC) 7.40–8.82 x 10–6 for 25–1000˚C Beryllium Oxide (BeO) average for (2a+c)/3 Zirconium Oxide (ZrO2) tetragonal, parallel to a axis Aluminum Oxide (Al2O3) — polycrystalline 7.43 x 10–6 for 28 to 474˚C 7.5 x 10–6 for 27 to 504˚C 7.50 x 10–6 for 0 to 527˚C Hafnium Dioxide (HfO2) monoclinic, parallel to a axis 7.5x10–6 for 28–903˚C Aluminum Oxide (Al2O3) perpendicular to c axis Zirconium Oxide (ZrO2) — monoclinic Beryllium Oxide (BeO) — polycrystalline 7.53 x 10–6 for 0 to 727˚C 7.59 x 10–6 for 25 to 1000˚C 7.59 x 10–6 for 25–500˚C Tantalum Monocarbide (TaC) 7.64 x 10–6 for 25–2000˚C Zirconium Monocarbide (ZrC) Aluminum Oxide (Al2O3) perpendicular to c axis Aluminum Oxide (Al2O3) parallel to c axis 7.65x 10–6 for 25–650˚C 7.67 x 10–6 for 0 to 827˚C 7.68 x 10–6 for 0 to 427˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1530 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1531 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 363. SELECTING THERMAL EXPANSION OF CERAMICS (SHEET 8 OF 16) Ceramic Thermal Expansion (˚C–1) Aluminum Oxide (Al2O3) — polycrystalline 7.69 x 10–6 for 0 to 627˚C Zirconium Oxide (ZrO2) — monoclinic Spinel (Al2O3 MgO) Molybdenum Disilicide (MoSi2) 7.72 x 10–6 for 25 to 1050˚C 7.79 x 10–6 for 25 to 500˚C 7.79 x 10–6 for 25–500˚C Tungsten Disilicide (WSi2) 7.79 x 10–6 for 25–500˚C Titanium Oxide (TiO2) — polycrystalline Thorium Dioxide (ThO2) Zirconium Oxide (ZrO2) tetragonal, parallel to a axis 7.8 x 10–6 for 20–600˚C 7.8 x 10–6 for 27 to 223˚C 7.8 x 10–6 for 27 to 964˚C Beryllium Oxide (BeO) perpendicular to c axis 7.8 x 10–6 for 28 to 474˚C Beryllium Oxide (BeO) parallel to c axis Aluminum Oxide (Al2O3) perpendicular to c axis Aluminum Oxide (Al2O3) — polycrystalline 7.8 x 10–6 for 28 to 749˚C 7.80 x 10–6 for 0 to 927˚C 7.83 x 10–6 for 0 to 727˚C Titanium Monocarbide (TiC) Aluminum Oxide (Al2O3) perpendicular to c axis Titanium Oxide (TiO2) perpendicular to a axis 7.85–7.86 x 10–6 for 0–1000˚C Titanium Monocarbide (TiC) 7.90 x 10–6 for 0–2500˚C Hafnium Dioxide (HfO2) monoclinic, parallel to a axis 7.9x10–6 for 28–1098˚C Aluminum Oxide (Al2O3) parallel to c axis Aluminum Oxide (Al2O3) perpendicular to c axis Aluminum Oxide (Al2O3) — polycrystalline 7.96 x 10–6 for 0 to 527˚C 7.96 x 10–6 for 0 to 1127˚C 7.97 x 10–6 for 0 to 827˚C Zirconium Oxide (ZrO2) — monoclinic 8.0 x 10–6 for 25 to 1080˚C Trichromium Dicarbide (Cr3C2) 8.00 x 10–6 for 25–500˚C 8.02 x 10–6 for 0–1275˚C 8.05 x 10–6 for 0 to 1227˚C Titanium Monocarbide (TiC) Aluminum Oxide (Al2O3) perpendicular to c axis 7.88 x 10–6 for 0 to 1027˚C 7.9 x 10–6 for 26 to 240˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1531 14.4 sel Thermal Page 1532 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 363. SELECTING THERMAL EXPANSION OF CERAMICS (SHEET 9 OF 16) Ceramic Thermal Expansion (˚C–1) Thorium Dioxide (ThO2) 8.06 x 10–6 for 0 to 127˚C Boron Nitride (BN) parallel to c axis Aluminum Oxide (Al2O3) — polycrystalline Titanium Oxide (TiO2) perpendicular to a axis 8.06 x 10–6 for 25 to 700˚C 8.08 x 10–6 for 0 to 927˚C 8.1 x 10–6 for 26 to 670˚C Thorium Dioxide (ThO2) 8.10 x 10–6 for 0 to 27˚C Aluminum Oxide (Al2O3) perpendicular to c axis Titanium Monocarbide (TiC) Aluminum Oxide (Al2O3) perpendicular to c axis 8.12 x 10–6 for 0 to 1327˚C 8.15–9.45 x 10–6 for 25–1500˚C 8.16 x 10–6 for 0 to 1427˚C Aluminum Oxide (Al2O3) — polycrystalline 8.18 x 10–6 for 0 to 1027˚C Aluminum Oxide (Al2O3) parallel to c axis Titanium Oxide (TiO2) perpendicular to a axis Titanium Oxide (TiO2) perpendicular to a axis 8.19 x 10–6 for 0 to 627˚C 8.2 x 10–6 for 26 to 455˚C 8.2 x 10–6 for 26 to 940˚C Beryllium Oxide (BeO) parallel to c axis Aluminum Oxide (Al2O3) perpendicular to c axis Tungsten Disilicide (WSi2) Cerium Dioxide (CeO2) 8.2 x 10–6 for 28 to 872˚C Titanium Oxide (TiO2) — polycrystalline 8.22 x 10–6 for 25–500˚C Aluminum Oxide (Al2O3) — polycrystalline Aluminum Oxide (Al2O3) perpendicular to c axis Titanium Monocarbide (TiC) 8.25 x 10–6 for 0 to 1127˚C 8.26 x 10–6 for 0 to 1627˚C 8.26 x 10–6 for 0–1525˚C Beryllium Oxide (BeO) average for (2a+c)/3 8.27 x 10–6 for 28 to 749˚C Titanium Monocarbide (TiC) Titanium Oxide (TiO2) perpendicular to a axis Aluminum Oxide (Al2O3) perpendicular to c axis 8.29 x 10–6 for 0–1400˚C 8.3 x 10–6 for 26 to 1110˚C 8.30 x 10–6 for 0 to 1727˚C 8.20 x 10–6 for 0 to 1527˚C 8.21 x 10–6 for 0–1000˚C 8.22 x 10–6 for 25–500˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1532 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1533 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 363. SELECTING THERMAL EXPANSION OF CERAMICS (SHEET 10 OF 16) Ceramic Thermal Expansion (˚C–1) Thorium Dioxide (ThO2) 8.31 x 10–6 for 0 to 227˚C Tungsten Disilicide (WSi2) Aluminum Oxide (Al2O3) — polycrystalline Aluminum Oxide (Al2O3) parallel to c axis 8.31 x 10–6 for 25–1000˚C 8.32 x 10–6 for 0 to 1227˚C 8.38 x 10–6 for 0 to 727˚C Aluminum Oxide (Al2O3) — polycrystalline 8.39 x 10–6 for 0 to 1327˚C Zirconium Oxide (ZrO2) tetragonal, parallel to a axis Titanium Monocarbide (TiC) 8.4 x 10–6 for 27 to 264˚C 8.40 x 10–6 for 0–1775˚C Tantalum Monocarbide (TaC) 8.40 x 10–6 for 25–2500˚C Beryllium Oxide (BeO) — polycrystalline Molybdenum Disilicide (MoSi2) Spinel (Al2O3 MgO) Dichromium Trioxide (Cr2O3) 8.4–8.5 x 10–6 for 25–800˚C Aluminum Oxide (Al2O3) — polycrystalline 8.45 x 10–6 for 0 to 1427˚C Aluminum Oxide (Al2O3) — polycrystalline Beryllium Oxide (BeO) perpendicular to c axis Molybdenum Disilicide (MoSi2) 8.49 x 10–6 for 0 to 1527˚C 8.5 x 10–6 for 28 to 749˚C 8.51 x 10–6 for 25–1000˚C Aluminum Oxide (Al2O3) parallel to c axis 8.52 x 10–6 for 0 to 827˚C Thorium Dioxide (ThO2) Aluminum Oxide (Al2O3) — polycrystalline Titanium Oxide (TiO2) average for (2a+c)/3 8.53 x 10–6 for 0 to 327˚C 8.53 x 10–6 for 0 to 1627˚C 8.53 x 10–6 for 26 to 240˚C Molybdenum Disilicide (MoSi2) 8.56 x 10–6 for 0–1400˚C Aluminum Oxide (Al2O3) — polycrystalline Dichromium Trioxide (Cr2O3) Thorium Dioxide (ThO2) 8.58 x 10–6 for 0 to 1727˚C 8.62 x 10–6 for 25–1000˚C 8.63 x 10–6 for 25 to 500˚C 8.41 x 10–6 for 0–1000˚C 8.41 x 10–6 for 25 to 1000˚C 8.43 x 10–6 for 25–500˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1533 14.4 sel Thermal Page 1534 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 363. SELECTING THERMAL EXPANSION OF CERAMICS (SHEET 11 OF 16) Ceramic Thermal Expansion (˚C–1) Zirconium Oxide (ZrO2) — tetragonal 8.64 x 10–6 for –20 to 600˚C Aluminum Oxide (Al2O3) parallel to c axis Thorium Dioxide (ThO2) Zirconium Oxide (ZrO2) tetragonal, parallel to a axis 8.65 x 10–6 for 0 to 927˚C 8.7 x 10–6 for 27 to 498˚C 8.7 x 10–6 for 27 to 1110˚C Thorium Dioxide (ThO2) 8.71 x 10–6 for 0 to 427˚C Aluminum Oxide (Al2O3) parallel to c axis Trichromium Dicarbide (Cr3C2) Tungsten Disilicide (WSi2) 8.75 x 10–6 for 0 to 1027˚C 8.8 x 10–6 for 25–120˚C 8.81 x 10–6 for 0–1400˚C Titanium Monocarbide (TiC) Dichromium Trioxide (Cr2O3) Titanium Oxide (TiO2) — polycrystalline Aluminum Oxide (Al2O3) parallel to c axis 8.81 x 10–6 for 25–2000˚C Thorium Dioxide (ThO2) 8.87 x 10–6 for 0 to 527˚C Beryllium Oxide (BeO) average for (2a+c)/3 Thorium Dioxide (ThO2) 8.87 x 10–6 for 28 to 872˚C 8.9 x 10–6 for 27 to 755˚C Beryllium Oxide (BeO) parallel to c axis 8.9 x 10–6 for 28 to 1132˚C Aluminum Oxide (Al2O3) parallel to c axis 8.92 x 10–6 for 0 to 1227˚C Cerium Dioxide (CeO2) Titanium Oxide (TiO2) average for (2a+c)/3 Thorium Dioxide (ThO2) 8.92 x 10–6 for 25–1000˚C 8.93 x 10–6 for 26 to 670˚C 8.96 x 10–6 for 0 to 1000˚C Titanium Oxide (TiO2) average for (2a+c)/3 8.97 x 10–6 for 26 to 455˚C Titanium Oxide (TiO2) average for (2a+c)/3 Aluminum Oxide (Al2O3) parallel to c axis Titanium Oxide (TiO2) — polycrystalline 8.97 x 10–6 for 26 to 940˚C 8.98 x 10–6 for 0 to 1327˚C 8.98 x 10–6 for 0–1000˚C 8.82 x 10–6 for 25–1500˚C 8.83 x 10–6 for 25–1000˚C 8.84 x 10–6 for 0 to 1127˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1534 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1535 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 363. SELECTING THERMAL EXPANSION OF CERAMICS (SHEET 12 OF 16) Ceramic Thermal Expansion (˚C–1) Spinel (Al2O3 MgO) 9.0 x 10–6 for 20 to 1250˚C Thorium Dioxide (ThO2) Zirconium Monocarbide (ZrC) 9.00 x 10–6 for 0 to 627˚C 9.00–9.18 x 10–6 for 25–1500˚C 9.0x 10–6 for 1000–2000˚C Aluminum Oxide (Al2O3) parallel to c axis 9.02 x 10–6 for 0 to 1427˚C Beryllium Oxide (BeO) — polycrystalline Uranium Dioxide (UO2) (heating) Aluminum Oxide (Al2O3) parallel to c axis 9.03 x 10–6 for 25–1000˚C 9.07 x 10–6 for 27 to 400˚C 9.08 x 10–6 for 0 to 1527˚C Thorium Dioxide (ThO2) 9.1 x 10–6 for 27 to 1087˚C Aluminum Oxide (Al2O3) parallel to c axis Titanium Oxide (TiO2) average for (2a+c)/3 Thorium Dioxide (ThO2) 9.13 x 10–6 for 0 to 1627˚C 9.13 x 10–6 for 26 to 1110˚C 9.14 x 10–6 for 0 to 727˚C Spinel (Al2O3 MgO) 9.17 x 10–6 for 25 to 1500˚C Aluminum Oxide (Al2O3) parallel to c axis Beryllium Oxide (BeO) — polycrystalline Uranium Dioxide (UO2) 9.18 x 10–6 for 0 to 1727˚C 9.18 x 10–6 for 25–1250˚C 9.18 x 10–6 for 27 to 400˚C Thorium Dioxide (ThO2) 9.2 x 10–6 for 27 to 994˚C Beryllium Oxide (BeO) perpendicular to c axis Thorium Dioxide (ThO2) Uranium Dioxide (UO2) (cooling) 9.2 x 10–6 for 28 to 872˚C 9.24 x 10–6 for 0 to 827˚C 9.28 x 10–6 for 27 to 400˚C Titanium Monocarbide (TiC) Thorium Dioxide (ThO2) 9.32 x 10–6 for 25–1250˚C Molybdenum Disilicide (MoSi2) Titanium Mononitride (TiN) Thorium Dioxide (ThO2) 9.34 x 10–6 for 0 to 927˚C 9.35 x 10–6 9.35 x 10–6 for 0 to 1200˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1535 14.4 sel Thermal Page 1536 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 363. SELECTING THERMAL EXPANSION OF CERAMICS (SHEET 13 OF 16) Ceramic Thermal Expansion (˚C–1) Beryllium Oxide (BeO) — polycrystalline Thorium Dioxide (ThO2) Thorium Dioxide (ThO2) Uranium Dioxide (UO2) 9.40 x 10–6 for 500–1200˚C Titanium Oxide (TiO2) — polycrystalline 9.50 x 10–6 for 25–1500˚C Thorium Dioxide (ThO2) Thorium Dioxide (ThO2) Thorium Dioxide (ThO2) 9.53 x 10–6 for 0 to 1127˚C 9.55 x 10–6 for 20 to 800˚C 9.55 x 10–6 for 20 to 1400˚C Dichromium Trioxide (Cr2O3) 9.55 x 10–6 for 20–1400˚C Beryllium Oxide (BeO) average for (2a+c)/3 Thorium Dioxide (ThO2) Thorium Dioxide (ThO2) 9.57 x 10–6 for 28 to 1132˚C 9.60 x 10–6 for 0 to 1227˚C 9.68 x 10–6 for 0 to 1327˚C Thorium Dioxide (ThO2) 9.76 x 10–6 for 0 to 1427˚C Titanium Oxide (TiO2) parallel to c axis Thorium Dioxide (ThO2) Thorium Dioxide (ThO2) 9.8 x 10–6 for 26 to 240˚C 9.83 x 10–6 for 0 to 1527˚C 9.84 x 10–6 for 0 to 1400˚C Beryllium Oxide (BeO) perpendicular to c axis Thorium Dioxide (ThO2) Trichromium Dicarbide (Cr3C2) Thorium Dioxide (ThO2) 9.9 x 10–6 for 28 to 1132˚C Boron Nitride (BN) parallel to c axis Thorium Dioxide (ThO2) 10.15 x 10–6 for 25 to 350˚C Beryllium Oxide (BeO) — polycrystalline Thorium Dioxide (ThO2) 9.42 x 10–6 for 0 to 1027˚C 9.44 x 10–6 for 25 to 1000˚C 9.47 x 10–6 for 25 to 500˚C 9.91 x 10–6 for 0 to 1627˚C 9.95 x 10–6 for 25–500˚C 9.97 x 10–6 for 0 to 1727˚C 10.17 x 10–6 for 25 to 1500˚C 10.3 x 10–6 for 25–1500˚C 10.43 x 10–6 for 25 to 1700˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1536 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1537 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 363. SELECTING THERMAL EXPANSION OF CERAMICS (SHEET 14 OF 16) Ceramic Thermal Expansion (˚C–1) Silicon Dioxide (SiO2) β2 tridymite 10.45 x 10–6 for 25–1000˚C Zirconium Oxide (ZrO2) — tetragonal 10.5 x 10–6 for 0 to 1000˚C Titanium Oxide (TiO2) parallel to c axis 10.5 x 10–6 for 26 to 455˚C Titanium Oxide (TiO2) parallel to c axis 10.5 x 10–6 for 26 to 940˚C Zirconium Oxide (ZrO2) — tetragonal Titanium Oxide (TiO2) parallel to c axis 10.52 x 10–6 for 0 to 1000˚C (MgO) 10.6 x 10–6 for 0 to 1200˚C (CaO) 10.6 x 10–6 for 26 to 670˚C Titanium Oxide (TiO2) parallel to c axis 10.8 x 10–6 for 26 to 1110˚C Uranium Dioxide (UO2) (cooling) 10.8 x 10–6 for 400 to 800˚C Uranium Dioxide (UO2) (cooling) Hafnium Dioxide (HfO2) monoclinic, parallel to c axis Trichromium Dicarbide (Cr3C2) 10.8 x 10–6 for 400 to 800˚C 10.8x10–6 for 28–697˚C Zirconium Oxide (ZrO2) — tetragonal 11.0 x 10–6 for 0 to 1500˚C Hafnium Dioxide (HfO2) monoclinic, parallel to c axis Beryllium Oxide (BeO) — polycrystalline Uranium Dioxide (UO2) (heating) 11x10–6 for 28–262˚C 11.1 x 10–6 for 25–2000˚C 11.1 x 10–6 for 400 to 800˚C Uranium Dioxide (UO2) 11.15 x 10–6 for 25 to 1750˚C Uranium Dioxide (UO2) Hafnium Dioxide (HfO2) monoclinic, parallel to c axis Zirconium Oxide (ZrO2) tetragonal, parallel to c axis 11.19 x 10–6 for 25 to 1000˚C 11.4x10–6 for 28–494˚C 11.9 x 10–6 for 27 to 759˚C Hafnium Dioxide (HfO2) monoclinic, parallel to c axis 11.9x10–6 for 28–903˚C Hafnium Dioxide (HfO2) monoclinic, parallel to c axis Uranium Dioxide (UO2) 12.1x10–6 for 28–1098˚C 12.19 x 10–6 for 25 to 1200˚C Boron Nitride (BN) 12.2 x 10–6 for 25 to 500˚C Zirconium Oxide (ZrO2) — tetragonal 10.9 x 10–6 for 150–980˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1537 14.4 sel Thermal Page 1538 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 363. SELECTING THERMAL EXPANSION OF CERAMICS (SHEET 15 OF 16) Ceramic Thermal Expansion (˚C–1) Uranium Dioxide (UO2) (cooling) 12.6 x 10–6 for 800 to 1250˚C Zirconium Oxide (ZrO2) tetragonal, parallel to c axis 12.8 x 10–6 for 27 to 964˚C Magnesium Oxide (MgO) Uranium Dioxide (UO2) (cooling) 12.83 x 10–6 for 25–500˚C 12.9 x 10–6 for 800 to 1200˚C Zirconium Oxide (ZrO2) tetragonal, parallel to c axis 13 x 10–6 for 27 to 504˚C Uranium Dioxide (UO2) (heating) Magnesium Oxide (MgO) 13.0 x 10–6 for 800 to 1200˚C 13.3 x 10–6 for 20–1700˚C Boron Nitride (BN) 13.3 x 10–6 for 25 to 1000˚C Zirconium Oxide (ZrO2) tetragonal, parallel to c axis 13.6 x 10–6 for 27 to 1110˚C Magnesium Oxide (MgO) Magnesium Oxide (MgO) Zirconium Oxide (ZrO2) tetragonal, parallel to c axis 13.63 x 10–6 for 25–1000˚C 13.90 x 10–6 for 0–1000˚C 14 x 10–6 for 27 to 264˚C Magnesium Oxide (MgO) 14.0 x 10–6 for 20–1400˚C Magnesium Oxide (MgO) Magnesium Oxide (MgO) Silicon Dioxide (SiO2) β quartz 14.2–14.9 x 10–6 for 20–1700˚C 14.46 x 10–6 for 0–1200˚C 14.58 x 10–6 for 25–1000˚C Magnesium Oxide (MgO) 15.06 x 10–6 for 0–1400˚C Magnesium Oxide (MgO) Magnesium Oxide (MgO) Silicon Dioxide (SiO2) α tridymite 15.11 x 10–6 for 25–1500˚C 15.89 x 10–6 for 25–1800˚C 18.5 x 10–6 for 25–117˚C Silicon Dioxide (SiO2) α quartz 19.35 x 10–6 for 25–500˚C Silicon Dioxide (SiO2) β2 tridymite Silicon Dioxide (SiO2) α quartz Silicon Dioxide (SiO2) β1 tridymite 19.35 x 10–6 for 25–500˚C 22.2 x 10–6 for 25–575˚C 25.0 x 10–6 for 25–117˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1538 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1539 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 363. SELECTING THERMAL EXPANSION OF CERAMICS (SHEET 16 OF 16) Ceramic Thermal Expansion (˚C–1) Silicon Dioxide (SiO2) β1 tridymite 27.5 x 10–6 for 25–163˚C Silicon Dioxide (SiO2) β quartz Silicon Dioxide (SiO2) β2 tridymite 27.8 x 10–6 for 25–575˚C 31.9 x 10–6 for 25–163˚C Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1539 14.4 sel Thermal Page 1540 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 364. SELECTING THERMAL EXPANSION OF GLASSES (SHEET 1 OF 11) Glass Temperature Range of Validity Thermal Expansion (K–1) SiO2 glass SiO2 glass SiO2 glass SiO2 glass –60—20˚C –40—20˚C –20—20˚C 0–20˚C 3.50x10–7 3.80x10–7 4.00x10–7 4.30x10–7 SiO2 glass 20–100˚C 20–150˚C 20–200˚C 20–350˚C 5.35x10–7 5.75x10–7 5.85x10–7 5.90x10–7 20–250˚C 20–300˚C 5.92x10–7 5.94x10–7 20–980˚C 6.2x10–7 20–980˚C 6.2x10–7 20–800˚C 8.8x10–7 20–350˚C 12.2x10–7 20–950˚C 14.5x10–7 20–600˚C 17.2x10–7 20–700˚C 20.7x10–7 SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2–Al2O3 glass (3.1% mol Al2O3, 1000˚C for 115 hr) SiO2–Al2O3 glass (3.1% mol Al2O3, water quenching) SiO2–Al2O3 glass (8.2% mol Al2O3, water quenching) SiO2–Al2O3 glass (5.4% mol Al2O3, 1130˚C for 20 hr) SiO2–Al2O3 glass (8.2% mol Al2O3, 1000˚C for 115 hr) SiO2–Al2O3 glass (13.9% mol Al2O3, water quenching) SiO2–Al2O3 glass (17.4% mol Al2O3, water quenching) Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1540 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1541 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 364. SELECTING THERMAL EXPANSION OF GLASSES (SHEET 2 OF 11) Temperature Range of Validity Thermal Expansion (K–1) (13.9% mol Al2O3, 1000˚C for 115 hr) SiO2–Al2O3 glass (17.4% mol Al2O3, 1000˚C for 115 hr) 20–900˚C 22.7x10–7 20–800˚C 28.3x10–7 SiO2–B2O3 glass (39.2% mol B2O3 ) 100–200˚C 0–100˚C 0–100˚C 100–200˚C 44.9x10–7 47.5x10–7 49.8x10–7 50.8x10–7 20–170˚C 100–200˚C room temp. to 100˚C room temp. to 100˚C 51.45–52.23x10–7 54.8x10–7 54.9–56.4x10–7 57.3–58.2x10–7 0–100˚C 20–170˚C room temp. to 100˚C 100–200˚C 57.6x10–7 57.68–59.08x10–7 60.1–66.2x10–7 60.2–60.8x10–7 20–170˚C 20–170˚C room temp. to 100˚C 100–200˚C 60.62–62.31x10–7 61.58–63.33x10–7 63.1–64.0x10–7 63.5–65.1x10–7 200–300˚C 20–170˚C –196—25˚C –196—25˚C 63.9–65.4x10–7 63.99–66.17x10–7 65.9x10–7 67.4x10–7 Glass SiO2–Al2O3 glass SiO2–B2O3 glass (39.2% mol B2O3 ) SiO2–B2O3 glass (44.2% mol B2O3 ) SiO2–B2O3 glass (44.2% mol B2O3 ) SiO2–PbO glass (25.7% mol PbO) SiO2–B2O3 glass (50.8% mol B2O3 ) B2O3–CaO glass (29.3% mol CaO) B2O3–CaO glass (31.4% mol CaO) SiO2–B2O3 glass (50.8% mol B2O3 ) SiO2–PbO glass (30.0% mol PbO) B2O3–CaO glass (34.9% mol CaO) B2O3–CaO glass (29.3% mol CaO) SiO2–PbO glass (32.5% mol PbO) SiO2–PbO glass (33.2% mol PbO) B2O3–CaO glass (37.1% mol CaO) B2O3–CaO glass (31.4% mol CaO) B2O3–CaO glass (29.3% mol CaO) SiO2–PbO glass (35.0% mol PbO) B2O3–Na2O glass (16.2% mol Na2O) B2O3–Na2O glass (15.8% mol Na2O) Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1541 14.4 sel Thermal Page 1542 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 364. SELECTING THERMAL EXPANSION OF GLASSES (SHEET 3 OF 11) Glass B2O3–CaO glass (31.4% mol CaO) B2O3–CaO glass (34.9% mol CaO) B2O3–CaO glass (37.1% mol CaO) SiO2–PbO glass (37.5% mol PbO) B2O3–Na2O glass (15% mol Na2O, Tg = 407˚C) B2O3–Na2O glass (18.4% mol Na2O) B2O3–Na2O glass (13.7% mol Na2O) SiO2–B2O3 glass (58.4% mol B2O3 ) B2O3–CaO glass (29.3% mol CaO) B2O3–Na2O glass (11.5% mol Na2O) SiO2–B2O3 glass (58.4% mol B2O3 ) B2O3–Na2O glass (22.5% mol Na2O) B2O3–CaO glass (37.1% mol CaO) B2O3–CaO glass (34.9% mol CaO) SiO2–PbO glass (42.6% mol PbO) B2O3–CaO glass (31.4% mol CaO) B2O3–CaO glass (29.3% mol CaO) B2O3–Na2O glass (10% mol Na2O, Tg = 354˚C) B2O3–CaO glass (34.9% mol CaO) SiO2–PbO glass (45.8% mol PbO) B2O3–CaO glass (31.4% mol CaO) B2O3–Na2O glass (15.8% mol Na2O) Temperature Range of Validity Thermal Expansion (K–1) 200–300˚C 100–200˚C 100–200˚C 20–170˚C 67.4–68.1x10–7 67.5–67.6x10–7 68.4–70.4x10–7 68.75–71.44x10–7 below Tg –196—25˚C –196—25˚C 69x10–7 69.1x10–7 69.3x10–7 100–200˚C 300–400˚C –196—25˚C 0–100˚C 70.1x10–7 71.3–71.6x10–7 71.5x10–7 71.9x10–7 –196—25˚C 200–300˚C 200–300˚C 20–170˚C 71.9x10–7 74.6–75.8x10–7 74.7–75.2x10–7 75.16–78.58x10–7 300–400˚C 400–500˚C 76.5–76.7x10–7 76.9–77.1x10–7 below Tg 77x10–7 300–400˚C 20–170˚C 400–500˚C 20–50˚C 77.8–78.5x10–7 78.85–82.60x10–7 79.2–81.0x10–7 80.7x10–7 Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1542 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1543 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 364. SELECTING THERMAL EXPANSION OF GLASSES (SHEET 4 OF 11) Temperature Range of Validity Thermal Expansion (K–1) 500–600˚C –196—25˚C 300–400˚C 20–170˚C 80.9–86.8x10–7 81.4x10–7 81.6–82.2x10–7 83.03–87.03x10–7 500–600˚C 400–500˚C 20–170˚C 20–50˚C 83.1–88.5x10–7 83.8–95.0x10–7 85.57–89.82x10–7 85.6x10–7 (20% mol Na2O, Tg = 456˚C) B2O3–Na2O glass (16.2% mol Na2O) B2O3–Na2O glass (18.4% mol Na2O) below Tg 20–50˚C 20–50˚C 86x10–7 86.0x10–7 86.2x10–7 B2O3–Na2O glass (19.6% mol Na2O) 20–50˚C 400–500˚C 0–100˚C 20–50˚C 86.8x10–7 86.9–87.6x10–7 87.0x10–7 87.5x10–7 20–50˚C 20–150˚C 20–150˚C 20–50˚C 87.6x10–7 87.7x10–7 87.8x10–7 88.7x10–7 20–150˚C 20–150˚C 100–200˚C 20–50˚C 89.1x10–7 89.2x10–7 89.7x10–7 90.4x10–7 Glass B2O3–CaO glass (29.3% mol CaO) B2O3–Na2O glass (28.9% mol Na2O) B2O3–CaO glass (37.1% mol CaO) SiO2–PbO glass (47.8% mol PbO) B2O3–CaO glass (31.4% mol CaO) B2O3–CaO glass (34.9% mol CaO) SiO2–PbO glass (49.8% mol PbO) B2O3–Na2O glass (17.4% mol Na2O) B2O3–Na2O glass B2O3–CaO glass (37.1% mol CaO) SiO2–B2O3 glass (72.7% mol B2O3 ) B2O3–Na2O glass (13.7% mol Na2O) B2O3–Na2O glass (20.0% mol Na2O) B2O3–Na2O glass (16.2% mol Na2O) B2O3–Na2O glass (15.8% mol Na2O) B2O3–Na2O glass (11.5% mol Na2O) B2O3–Na2O glass (17.4% mol Na2O) B2O3–Na2O glass (18.4% mol Na2O) SiO2–B2O3 glass (72.7% mol B2O3 ) B2O3–Na2O glass (22.5% mol Na2O) Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1543 14.4 sel Thermal Page 1544 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 364. SELECTING THERMAL EXPANSION OF GLASSES (SHEET 5 OF 11) Glass B2O3–Na2O glass (23.6% mol Na2O) SiO2–PbO glass (53.8% mol PbO) B2O3–Na2O glass (13.7% mol Na2O) B2O3–Na2O glass (16.2% mol Na2O) B2O3–Na2O glass (19.6% mol Na2O) B2O3–Na2O glass (20.0% mol Na2O) B2O3–CaO glass (34.9% mol CaO) B2O3–Na2O glass (13.7% mol Na2O) B2O3–Na2O glass (17.4% mol Na2O) B2O3–Na2O glass (15.8% mol Na2O) B2O3–CaO glass (37.1% mol CaO) B2O3–Na2O glass (18.4% mol Na2O) B2O3–Na2O glass (4.4% mol Na2O) B2O3–Na2O glass (22.5% mol Na2O) B2O3–Na2O glass (11.5% mol Na2O) Temperature Range of Validity Thermal Expansion (K–1) 20–50˚C 20–170˚C 20–250˚C 20–250˚C 90.4x10–7 90.62–95.25x10–7 90.9x10–7 90.9x10–7 20–150˚C 20–150˚C 500–600˚C 20–150˚C 91.2x10–7 91.6x10–7 91.8–92.1x10–7 92.3x10–7 20–250˚C 20–250˚C 500–600˚C 20–250˚C 92.4x10–7 93.3x10–7 93.5–95.5x10–7 94.1x10–7 –196—25˚C 20–150˚C 20–150˚C 94.6x10–7 94.7x10–7 94.9x10–7 below Tg 20–250˚C 20–170˚C 95x10–7 95.3x10–7 95.64–100.45x10–7 20–350˚C 20–350˚C 20–150˚C 20–350˚C 96.2x10–7 96.3x10–7 96.7x10–7 96.9x10–7 B2O3–Na2O glass (25% mol Na2O, Tg = 466˚C) B2O3–Na2O glass (19.6% mol Na2O) SiO2–PbO glass (57.5% mol PbO) B2O3–Na2O glass (18.4% mol Na2O) B2O3–Na2O glass (17.4% mol Na2O) B2O3–Na2O glass (23.6% mol Na2O) B2O3–Na2O glass (16.2% mol Na2O) Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1544 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1545 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 364. SELECTING THERMAL EXPANSION OF GLASSES (SHEET 6 OF 11) Glass SiO2–PbO glass (59.0% mol PbO) SiO2–Na2O glass (20.3% mol Na2O) B2O3–Na2O glass (20.0% mol Na2O) B2O3–Na2O glass (11.5% mol Na2O) B2O3–Na2O glass (15.8% mol Na2O) B2O3–Na2O glass (22.5% mol Na2O) B2O3–Na2O glass (8.7% mol Na2O) SiO2–Na2O glass (20.3% mol Na2O) B2O3–Na2O glass (19.6% mol Na2O) B2O3–Na2O glass (8.7% mol Na2O) SiO2–Na2O glass (20.3% mol Na2O) SiO2–PbO glass (61.0% mol PbO) B2O3–Na2O glass (23.6% mol Na2O) B2O3–Na2O glass (20.0% mol Na2O) SiO2–PbO glass (61.75% mol PbO) B2O3–Na2O glass (28.9% mol Na2O) B2O3–Na2O glass (4.4% mol Na2O) B2O3–Na2O glass (22.5% mol Na2O) B2O3–Na2O glass (8.7% mol Na2O) B2O3–Na2O glass (23.6% mol Na2O) SiO2–Na2O glass (20.3% mol Na2O) B2O3–Na2O glass (28.9% mol Na2O) SiO2–Na2O glass (24.0% mol Na2O) B2O3–Na2O glass (4.4% mol Na2O) Temperature Range of Validity Thermal Expansion (K–1) 20–170˚C room temp–100˚C 20–250˚C 20–250˚C 97.00–101.90x10–7 97.5x10–7 97.6x10–7 97.9x10–7 20–350˚C 20–250˚C 20–50˚C 100–200˚C 97.9x10–7 98.7x10–7 98.8x10–7 99.3x10–7 20–350˚C 20–150˚C 200–300˚C 20–170˚C 99.6x10–7 100.5x10–7 100.6x10–7 100.66–105.58x10–7 20–250˚C 20–350˚C 20–170˚C 20–50˚C 101.2x10–7 101.3x10–7 101.36–106.30x10–7 102.1x10–7 20–50˚C 20–350˚C 20–250˚C 20–350˚C 103.0x10–7 104.0x10–7 105.3x10–7 106.5x10–7 300–400˚C 20–150˚C room temp–100˚C 20–150˚C 106.9x10–7 107.4x10–7 109.7x10–7 109.9x10–7 Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1545 14.4 sel Thermal Page 1546 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 364. SELECTING THERMAL EXPANSION OF GLASSES (SHEET 7 OF 11) Glass SiO2–PbO glass (67.7% mol PbO) SiO2–B2O3 glass (83.2% mol B2O3 ) B2O3–Na2O glass (28.9% mol Na2O) SiO2–Na2O glass (24.0% mol Na2O) B2O3–Na2O glass (5% mol Na2O, Tg = 318˚C) B2O3–Na2O glass (4.4% mol Na2O) SiO2–B2O3 glass (83.2% mol B2O3 ) SiO2–Na2O glass (24.0% mol Na2O) B2O3–Na2O glass (28.9% mol Na2O) SiO2–B2O3 glass (88.6% mol B2O3 ) SiO2–Na2O glass (20% mol Na2O, Tg = 478˚C) SiO2–Na2O glass (24.0% mol Na2O) SiO2–B2O3 glass (88.6% mol B2O3 ) B2O3–Na2O glass (30% mol Na2O, Tg = 468˚C) SiO2–B2O3 glass (94.0% mol B2O3 ) SiO2–Na2O glass (31.1% mol Na2O) B2O3–Na2O glass (0.01% mol Na2O) SiO2–B2O3 glass (94.0% mol B2O3 ) SiO2–Na2O glass (31.1% mol Na2O) SiO2–Na2O glass (33.8% mol Na2O) Temperature Range of Validity Thermal Expansion (K–1) 20–170˚C 0–100˚C 20–250˚C 100–200˚C 110.38–115.48x10–7 111.4x10–7 112.8x10–7 114.3x10–7 below Tg 20–250˚C 100–200˚C 115x10–7 116.0x10–7 116.6x10–7 200–300˚C 20–350˚C 0–100˚C 116.6x10–7 117.1x10–7 118.1x10–7 below Tg 120x10–7 121.7x10–7 126.0x10–7 300–400˚C 100–200˚C 0–100˚C room temp–100˚C 128x10–7 131.7x10–7 136.0x10–7 –196—25˚C 100–200˚C 100–200˚C room temp–100˚C 140x10–7 141.9x10–7 142.5x10–7 143.9x10–7 below Tg Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1546 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1547 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 364. SELECTING THERMAL EXPANSION OF GLASSES (SHEET 8 OF 11) Temperature Range of Validity Thermal Expansion (K–1) 200–300˚C 20–150˚C 20–50˚C 20–200˚C 148.3x10–7 149.0x10–7 149.3x10–7 150±3–158±3x10–7 below Tg room temp–100˚C 100–200˚C 152x10–7 152.1x10–7 153.6x10–7 SiO2–Na2O glass (31.1% mol Na2O) 100–200˚C 0–100˚C 200–300˚C 300–400˚C 154.5–169x10–7 154.5–183x10–7 159.1x10–7 160.0x10–7 SiO2–Na2O glass (37.2% mol Na2O) 100–200˚C 160.9x10–7 SiO2–Na2O glass (33% mol Na2O, Tg = 445˚C) SiO2–Na2O glass (37.2% mol Na2O) below Tg 200–300˚C 165x10–7 171.6x10–7 SiO2–Na2O glass (33.8% mol Na2O) 300–400˚C 173.6x10–7 below Tg 179x10–7 187.7x10–7 Glass SiO2–Na2O glass (31.1% mol Na2O) B2O3–Na2O glass (0.01% mol Na2O) B2O3–Na2O glass (0.01% mol Na2O) B2O3 glass SiO2–Na2O glass (30% mol Na2O, Tg = 455˚C) SiO2–Na2O glass (37.2% mol Na2O) SiO2–Na2O glass (33.8% mol Na2O) B2O3 glass B2O3 glass SiO2–Na2O glass (33.8% mol Na2O) SiO2–Na2O glass (40% mol Na2O, Tg = 421˚C) SiO2–Na2O glass (37.2% mol Na2O) SiO2–Na2O glass (45% mol Na2O, Tg = 417˚C) SiO2–B2O3 glass (39.2% mol B2O3 ) 300–400˚C below Tg 390–410˚C 219x10–7 301x10–7 Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1547 14.4 sel Thermal Page 1548 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 364. SELECTING THERMAL EXPANSION OF GLASSES (SHEET 9 OF 11) Glass Temperature Range of Validity Thermal Expansion (K–1) above Tg 315x10–7 above Tg 402x10–7 380–400˚C 450x10–7 above Tg 465x10–7 above Tg 500x10–7 53±5x10–6 SiO2–Na2O glass (20% mol Na2O, Tg = 478˚C) SiO2–Na2O glass (30% mol Na2O, Tg = 455˚C) SiO2–B2O3 glass (44.2% mol B2O3 ) SiO2–Na2O glass (33% mol Na2O, Tg = 445˚C) SiO2–Na2O glass (40% mol Na2O, Tg = 421˚C) SiO2–CaO glass (35% mol CaO) 1700˚C SiO2–Na2O glass (45% mol Na2O, Tg = 417˚C) SiO2–B2O3 glass (50.8% mol B2O3 ) B2O3–Na2O glass (20% mol Na2O, Tg = 456˚C) SiO2–CaO glass (40% mol CaO) SiO2–CaO glass (30% mol CaO) SiO2–Na2O glass (20% mol Na2O) SiO2–B2O3 glass (58.4% mol B2O3 ) SiO2–PbO glass (50% mol PbO) SiO2–CaO glass (42.5% mol CaO) above Tg 350–370˚C 574x10–7 579x10–7 1700˚C 1700˚C 586x10–7 64±4x10–6 66±5x10–6 liquidus temp. to 1400˚C 320–340˚C 1100˚C 1700˚C 6.7x10–5 694x10–7 723x10–7 76±4x10–6 above Tg Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1548 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1549 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 364. SELECTING THERMAL EXPANSION OF GLASSES (SHEET 10 OF 11) Temperature Range of Validity Thermal Expansion (K–1) 1700˚C 1700˚C 76±4x10–6 76–107±4x10–6 above Tg 761x10–7 (25% mol Na2O, Tg = 466˚C) SiO2–CaO glass (50% mol CaO) SiO2–CaO glass (45% mol CaO) above Tg 1700˚C 1700˚C 834x10–7 84–85±4x10–6 85–100±4x10–6 SiO2–PbO glass (66.7% mol PbO) 1100˚C 300–320˚C 1700˚C 1700˚C 867x10–7 899x10–7 94–95±4x10–6 95±4x10–6 280–300˚C 280–300˚C 1700˚C 970x10–7 1023x10–7 103±4x10–6 above Tg 270–290˚C 1150x10–7 1200x10–7 above Tg 1230x10–7 above Tg 1400x10–7 Glass SiO2–CaO glass (47.5% mol CaO) SiO2–CaO glass (52.5% mol CaO) B2O3–Na2O glass (15% mol Na2O, Tg = 407˚C) B2O3–Na2O glass SiO2–B2O3 glass (72.7% mol B2O3 ) SiO2–CaO glass (55% mol CaO) SiO2–CaO glass (57.5% mol CaO) SiO2–B2O3 glass (83.2% mol B2O3 ) SiO2–B2O3 glass (88.6% mol B2O3 ) SiO2–CaO glass (60% mol CaO) B2O3–Na2O glass (30% mol Na2O, Tg = 468˚C) SiO2–B2O3 glass (94.0% mol B2O3 ) B2O3–Na2O glass (10% mol Na2O, Tg = 354˚C) B2O3–Na2O glass (5% mol Na2O, Tg = 318˚C) Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1549 14.4 sel Thermal Page 1550 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 364. SELECTING THERMAL EXPANSION OF GLASSES (SHEET 11 OF 11) Glass SiO2–Na2O glass (33.3% mol Na2O) SiO2–Na2O glass (40% mol Na2O) SiO2–Na2O glass (50% mol Na2O) Temperature Range of Validity Thermal Expansion (K–1) liquidus temp.to 1400˚C liquidus temp. to 1400˚C liquidus temp. to 1400˚C 17.2x10–5 20.0x10–5 23.7x10–5 Source: data compiled by Jun S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1550 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1551 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 365. SELECTING THERMAL EXPANSION OF POLYMERS (SHEET 1 OF 5) Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) Polymides: Glass Reinforced 0.8 x 10–6 Polycarbonate (40% Glass Fiber Reinforced) Epoxy Novolacs: Cast, Rigid Epoxies: High Performance Resins: Molded 1.0—1.1 x 10–6 1.6—3.0 x 10–6 1.7—2.2 x 10–6 Polymides: Unreinforced 2.5—4.5 x 10–6 ABS Resin; Molded, Extruded: Heat Resistant 3.0—4.0 x 10–6 3—4 x 10–6 3.2—4.8 x 10–6 Acrylic Moldings: Grades 5, 6, 8 ABS Resin; Molded, Extruded: Medium Impact Standard Epoxies: General Purpose Glass Cloth Laminate Standard Epoxies: High Strength Laminate Polycarbonate Acrylic Moldings: High Impact Grade 3.3—4.8 x 10–6 3.3—4.8 x 10–6 3.75 x 10–6 4—6 x 10–6 Chlorinated Polyvinyl Chloride 4.4 x 10–6 Acrylics; Cast Resin Sheets, Rods: General Purpose, Type I Acrylics; Cast Resin Sheets, Rods: General Purpose, Type II ABS Resin; Molded, Extruded: Very High Impact 4.5 x 10–6 4.5 x 10–6 5.0—6.0 x 10–6 ABS Resin; Molded, Extruded: Low Temperature Impact 5.0—6.0 x 10–6 ABS Resin; Molded, Extruded: High Impact Chlorinated Polyether 5.5—6.0 x 10–6 6.6 x 10–6 Melamines; Molded: Glass Fiber Filled 0.82 x 10–5 Rubber Phenolic—Woodflour or Flock 0.83—2.20 x 10–5 Phenolics, Molded; General: Very High Shock: Glass Fiber Filled 0.88 x 10–5 Standard Epoxies: Molded 1—2 x 10–5 Melamines; Molded: Cellulose Filled Electrical 1.11—2.78 x 10–5 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1551 14.4 sel Thermal Page 1552 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 365. SELECTING THERMAL EXPANSION OF POLYMERS (SHEET 2 OF 5) Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) Nylon; Molded, Extruded; Type 6: Glass Fiber (30%) Reinforced 1.2 x 10–5 Phenylene Oxides (Noryl): Glass Fiber Reinforced 1.2–1.6 x 10–5 Ureas; Molded: Alpha—Cellulose Filled (ASTM Type l) 1.22—1 .50 x 10–5 Alkyds; Molded: Putty (encapsulating) 1.3 x 10–5 Alkyds; Molded: Rope (general purpose) 1.3 x 10–5 Alkyds; Molded: Granular (high speed molding) 1.3 x 10–5 Alkyds; Molded: Glass reinforced (heavy duty parts) 1.3 x 10–5 Reinforced Polyester Moldings: High Strength (Glass Fibers) 13—19 x 10–6 Phenylene Oxides: Glass Fiber Reinforced 1.4–2.0 x 10–5 6/10 Nylon: General purpose 1.5 x 10–5 6/6 Nylon; General Purpose Molding: Glass Fiber Reinforced 1.5—3.3 x 10–5 Glass Fiber (30%) Reinforced SAN 1.6 x 10–5 Phenolics, General: High Shock: Chopped Fabric or Cord Filled 1.60—2.22 x 10–5 Phenolics, Molded; General: Shock: Paper, Flock, or Pulp 1.6—2.3 x 10–5 Polypropylene: Glass Reinforced 1.6—2.4 x 10–5 Phenolics, Molded; General: Woodflour And Flock Filled 1.66—2.50 x 10–5 6/6 Nylon; General Purpose Molding 1.69—1.7 x 10–5 6/6 Nylon; General Purpose Extrusion 1.7 x 10–5 Rubber Phenolic—Chopped Fabric 1.7 x 10–5 Polytetrafluoroethylene (PTFE), Ceramic Reinforced 1.7—2.0 x 10–5 Polystyrenes; Molded: Glass Fiber -30% Reinforced 1.8 x 10–5 Polymide Homopolymer: 20% Glass Reinforced 2.0—4.5 x 10–5 Polypropylene: Asbestos Filled 2—3 x 10–5 Standard Epoxies: Filament Wound Composite 2—6 x 10–5 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1552 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1553 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 365. SELECTING THERMAL EXPANSION OF POLYMERS (SHEET 3 OF 5) Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) Diallyl Phthalates; Molded: Glass Fiber Filled 2.2.—2.6 x 10–5 Rubber Phenolic—Asbestos 2.2 x 10–5 Polymide Copolymer: 25% Glass Reinforced 2.2—4.7 x 10–5 Polystyrenes; Molded: High Impact 2.2—5.6 x 10–5 Silicones; Molded, Laminated: Granular (Silica) Reinforced 2.5—5.0 x 10–5 Polyarylsulfone 2.6 x 10–5 Polyester; Injection Moldings: Glass Reinforced Grades 2.7—3.3 x 10–5 Polyvinyl Chloride; Molded, Extruded: Rigid—normal impact 2.8—3 .3 x 10–5 Polyphenylene Sulfide: Standard 3.0—4.9 x 10–5 Standard Epoxies: Cast Flexible 3—5 x 10–5 Phenylene Oxides (Noryl): Standard 3.1 x 10–5 Silicones; Molded, Laminated: Fibrous (Glass) Reinforced 3.17—3.23 x 10–5 Standard Epoxies: Cast rigid 3.3 x 10–5 Phenylene Oxides: SE—1 3.3 x 10–5 Polystyrenes; Molded: Medium Impact 3.3—4.7 x 10–5 Polystyrenes; Molded: General Purpose 3.3—4.8 x 10–5 6/10 Nylon: Glass fiber (30%) reinforced 3.5 x 10–5 PVC–Acrylic Alloy Sheet 3.5 x 10–5 Polyester; Injection Moldings: Glass Reinforced Self Extinguishing 3.5 x 10–5 Styrene Acrylonitrile (SAN) 3.6—3.7 x 10–5 Phenylene Oxides: SE—100 3.8 x 10–5 Polypropylene: General Purpose 3.8—5.8 x 10–5 Polytrifluoro chloroethylene (PTFCE) 3.88 x 10–5 Thermoset Cast Polyyester: Rigid 3.9—5.6 x 10–5 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1553 14.4 sel Thermal Page 1554 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 365. SELECTING THERMAL EXPANSION OF POLYMERS (SHEET 4 OF 5) Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) Polyphenylene Sulfide: 40% Glass Reinforced 4 x 10–5 Diallyl Phthalates; Molded: Asbestos Filled 4.0 x 10–5 Polypropylene: High Impact 4.0—5.9 x 10–5 Nylon; Type 6: Cast 4.4 x 10–5 Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1 4.4—9.0 x 10–5 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 4.4—9.0 x 10–5 Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 4.4—9.0 x 10–5 Cellulose Acetate; ASTM Grade: MH—1, MH—2 4.4—9.0 x 10–5 Cellulose Acetate; ASTM Grade: MS—1, MS—2 4.4—9.0 x 10–5 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 4.4—9.0 x 10–5 Polymide Homopolymer: Standard 4.5 x 10–5 Polymide Homopolymer: 22% TFE Reinforced 4.5 x 10–5 Polymide Copolymer: Standard 4.7 x 10–5 Polymide Copolymer: High Flow 4.7 x 10–5 Nylon; Molded, Extruded; Type 6: General Purpose 4.8 x 10–5 Polyester; Injection Moldings: General Purpose Grade 4.9—13.0 x 10–5 Diallyl Phthalates; Molded: Orlon Filled 5.0 x 10–5 Diallyl Phthalates; Molded: Dacron Filled 5.2 x 10–5 Polyester; Thermoplastic Injection Moldings: General Purpose Grade 5.3 x 10–5 Nylon; Type 11 5.5 x 10–5 Thermoset Carbonate: Allyl diglycol carbonate 6 x 10–5 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 6—9 x 10–5 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH 6—9 x 10–5 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2 6—9 x 10–5 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1554 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1555 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 365. SELECTING THERMAL EXPANSION OF POLYMERS (SHEET 5 OF 5) Polymer Thermal Expansion Coefficient ASTM D696 (•F–1) Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1 6—9 x 10–5 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3 6—9 x 10–5 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 6—9 x 10–5 ABS–Polycarbonate Alloy 6.12 x 10–5 Nylon; Type 12 7.2 x 10–5 Fluorinated Ethylene Propylene(FEP) 8.3—10.5 x 10–5 Polyethylene; Molded, Extruded; Type II: Melt Index 20 8.3—16.7 x 10–5 Polyethylene; Molded, Extruded; Type II: Melt index l.0—1.9 8.3—16.7 x 10–5 Polyethylene; Molded, Extruded; Type III: Melt Index 0.2—0.9 8.3—16.7 x 10–5 Polyethylene; Type III: Melt Melt Index 0.l—12.0 8.3—16.7 x 10–5 Polyethylene; Molded, Extruded; Type III: Melt Index 1.5—15 8.3—16.7 x 10–5 Polyvinylidene— Fluoride (PVDF) 8.5 x 10–5 Vinylidene chloride 8.78 x 10–5 Polyethylene; Molded, Extruded; Type I: Melt Index 0.3—3.6 8.9—11.0 x 10–5 Polyethylene; Molded, Extruded; Type I: Melt Index 6—26 8.9—11.0 x 10–5 Polyethylene; Molded, Extruded; Type I: Melt Index 200 11 x 10–5 Polytetrafluoroethylene (PTFE) 55 x 10–5 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1555 14.4 sel Thermal Page 1556 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 366. SELECTING THERMAL EXPANSION COEFFICIENTS FOR MATERIALS USED IN INTEGRATED CIRCUITS (SHEET 1 OF 6) Material Temperature Range (K) Linear Thermal Expansion Coefficient (K–1) Vitreous silica 300 0.42 x 10–6 Vitreous silica 700 0.54 x 10–6 Vitreous silica 800 0.54 x 10–6 Vitreous silica 600 0.55 x 10–6 Vitreous silica 400 0.56 x 10–6 Vitreous silica 500 0.56 x 10–6 Vitreous silica 500 0.56 x 10–6 Silicon nitride (β) 25–1,000 2.25 x 10–6 Pyroceram cement (Devitrified) 25–300 2.4 x 10–6 Silicon 300 2.5 x 10–6 Silicon nitride (α) 25–1,000 2.9 x 10–6 Silicon 400 3.1 x 10–6 Pyrex glass 25–300 3.2 x 10–6 Silicon 500 3.5 x 10–6 Silicon 500 3.5 x 10–6 Silicon 600 3.8 x 10–6 Pyroceram cement (Vitreous #45) 0–300 4 x 10–6 Silicon 700 4.1 x 10–6 Silicon 800 4.3 x 10–6 Tungsten 300 4.5 x 10–6 Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 1556 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1557 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 366. SELECTING THERMAL EXPANSION COEFFICIENTS FOR MATERIALS USED IN INTEGRATED CIRCUITS (SHEET 2 OF 6) Material Temperature Range (K) Linear Thermal Expansion Coefficient (K–1) Tungsten 400 4.6 x 10–6 Tungsten 500 4.6 x 10–6 Tungsten 500 4.6 x 10–6 Beryllium oxide 300 4.7 x 10–6 Tungsten 600 4.7 x 10–6 Tungsten 700 4.7 x 10–6 Tungsten 800 4.8 x 10–6 Silicon carbide 0–1,000 4.8 x 10–6 Molybdenum 300 5 x 10–6 Kovar 25–300 5.0 x 10–6 Molybdenum 400 5.2 x 10–6 Molybdenum 500 5.3 x 10–6 Molybdenum 500 5.3 x 10–6 Molybdenum 600 5.4 x 10–6 Molybdenum 700 5.5 x 10–6 Germanium 300 5.7 x 10–6 Molybdenum 800 5.7 x 10–6 Beryllium oxide 500 6 x 10–6 Beryllium oxide 500 6 x 10–6 Aluminum oxide ceramic 25–300 6.0–7.0 x 10–6 Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC Shackelford & Alexander 1557 14.4 sel Thermal Page 1558 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 366. SELECTING THERMAL EXPANSION COEFFICIENTS FOR MATERIALS USED IN INTEGRATED CIRCUITS (SHEET 3 OF 6) Material Temperature Range (K) Linear Thermal Expansion Coefficient (K–1) Germanium 400 6.2 x 10–6 Tantalum 300 6.5 x 10–6 Germanium 500 6.5 x 10–6 Germanium 500 6.5 x 10–6 Tantalum 400 6.6 x 10–6 Germanium 600 6.7 x 10–6 Tantalum 500 6.8 x 10–6 Tantalum 500 6.8 x 10–6 Tantalum 600 6.9 x 10–6 Germanium 700 6.9 x 10–6 Beryllium oxide 700 7 x 10–6 Tantalum 700 7 x 10–6 Tantalum 800 7.1 x 10–6 Germanium 800 7.2 x 10–6 Pyroceram cement (#89, #95) — 8–10 x 10–6 Platinum 300 8.9 x 10–6 Platinum 400 9.2 x 10–6 Platinum 500 9.5 x 10–6 Platinum 500 9.5 x 10–6 Platinum 600 9.7 x 10–6 Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 1558 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1559 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 366. SELECTING THERMAL EXPANSION COEFFICIENTS FOR MATERIALS USED IN INTEGRATED CIRCUITS (SHEET 4 OF 6) Material Temperature Range (K) Linear Thermal Expansion Coefficient (K–1) Platinum 700 10 x 10–6 Platinum 800 10.2 x 10–6 Nickel 300 12.7 x 10–6 Nickel 400 13.8 x 10–6 Kanthal A 20–900 13.9–15.1 x 10–6 Gold 300 14.1 x 10–6 Gold 400 14.5 x 10–6 Gold 500 15 x 10–6 Gold 500 15 x 10–6 Nickel 500 15.2 x 10–6 Nickel 500 15.2 x 10–6 Gold 600 15.4 x 10–6 Gold 700 15.9 x 10–6 Nickel 700 16.4 x 10–6 Gold 800 16.5 x 10–6 Copper 300 16.8 x 10–6 Nickel 800 16.8 x 10–6 Nickel 600 17.2 x 10–6 Copper 400 17.7 x 10–6 Brass 25–300 17.7–21.2 x 10–6 Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC Shackelford & Alexander 1559 14.4 sel Thermal Page 1560 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 366. SELECTING THERMAL EXPANSION COEFFICIENTS FOR MATERIALS USED IN INTEGRATED CIRCUITS (SHEET 5 OF 6) Material Temperature Range (K) Linear Thermal Expansion Coefficient (K–1) Copper 500 18.3 x 10–6 Copper 500 18.3 x 10–6 Copper 600 18.9 x 10–6 Silver 300 19.2 x 10–6 Copper 700 19.4 x 10–6 Silver 400 20 x 10–6 Copper 800 20 x 10–6 Silver 500 20.6 x 10–6 Silver 500 20.6 x 10–6 Tin 300 21.2 x 10–6 Silver 600 21.4 x 10–6 Silver 700 22.3 x 10–6 Aluminum 300 23.2 x 10–6 Silver 800 23.4 x 10–6 Tin 400 24.2 x 10–6 Aluminum 400 24.9 x 10–6 Aluminum 500 26.4 x 10–6 Aluminum 500 26.4 x 10–6 Tin 500 27.5 x 10–6 Tin 500 27.5 x 10–6 Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 1560 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1561 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 366. SELECTING THERMAL EXPANSION COEFFICIENTS FOR MATERIALS USED IN INTEGRATED CIRCUITS (SHEET 6 OF 6) Material Temperature Range (K) Linear Thermal Expansion Coefficient (K–1) Aluminum 600 28.3 x 10–6 Lead 300 28.9 x 10–6 Lead 400 29.8 x 10–6 Aluminum 700 30.7 x 10–6 Indium 300 31.9 x 10–6 Lead 500 32.1 x 10–6 Lead 500 32.1 x 10–6 Aluminum 800 33.8 x 10–6 Indium 400 38.5 x 10–6 Pyroceram (#9608) 25–300 420 x 10–6 Solder glass (Kimble CV-101) 0–300 809 x 10–6 Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC Shackelford & Alexander 1561 14.4 sel Thermal Page 1562 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 367. SELECTING THERMAL EXPANSION COEFFICIENTS FOR MATERIALS USED IN INTEGRATED CIRCUITS AT TEMPERATURE (SHEET 1 OF 5) Temperature Range (K) Material Linear Thermal Expansion Coefficient (K–1) 25–300 Pyroceram cement (Devitrified) 2.4 x 10–6 25–300 Pyrex glass 3.2 x 10–6 0–300 Pyroceram cement (Vitreous #45) 4 x 10–6 25–300 Kovar 5.0 x 10–6 25–300 Aluminum oxide ceramic 6.0–7.0 x 10–6 25–300 Brass 17.7–21.2 x 10–6 25–300 Pyroceram (#9608) 420 x 10–6 0–300 Solder glass (Kimble CV-101) 809 x 10–6 300 Vitreous silica 0.42 x 10–6 300 Silicon 2.5 x 10–6 300 Tungsten 4.5 x 10–6 300 Beryllium oxide 4.7 x 10–6 300 Molybdenum 5 x 10–6 300 Germanium 5.7 x 10–6 300 Tantalum 6.5 x 10–6 300 Platinum 8.9 x 10–6 300 Nickel 12.7 x 10–6 300 Gold 14.1 x 10–6 300 Copper 16.8 x 10–6 300 Silver 19.2 x 10–6 Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 1562 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1563 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 367. SELECTING THERMAL EXPANSION COEFFICIENTS FOR MATERIALS USED IN INTEGRATED CIRCUITS AT TEMPERATURE (SHEET 2 OF 5) Temperature Range (K) Material Linear Thermal Expansion Coefficient (K–1) 300 Tin 21.2 x 10–6 300 Aluminum 23.2 x 10–6 300 Lead 28.9 x 10–6 300 Indium 31.9 x 10–6 400 Vitreous silica 0.56 x 10–6 400 Silicon 3.1 x 10–6 400 Tungsten 4.6 x 10–6 400 Molybdenum 5.2 x 10–6 400 Germanium 6.2 x 10–6 400 Tantalum 6.6 x 10–6 400 Platinum 9.2 x 10–6 400 Nickel 13.8 x 10–6 400 Gold 14.5 x 10–6 400 Copper 17.7 x 10–6 400 Silver 20 x 10–6 400 Tin 24.2 x 10–6 400 Aluminum 24.9 x 10–6 400 Lead 29.8 x 10–6 400 Indium 38.5 x 10–6 Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC Shackelford & Alexander 1563 14.4 sel Thermal Page 1564 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 367. SELECTING THERMAL EXPANSION COEFFICIENTS FOR MATERIALS USED IN INTEGRATED CIRCUITS AT TEMPERATURE (SHEET 3 OF 5) Temperature Range (K) Material Linear Thermal Expansion Coefficient (K–1) 500 Vitreous silica 0.56 x 10–6 500 Silicon 3.5 x 10–6 500 Tungsten 4.6 x 10–6 500 Molybdenum 5.3 x 10–6 500 Beryllium oxide 6 x 10–6 500 Germanium 6.5 x 10–6 500 Tantalum 6.8 x 10–6 500 Platinum 9.5 x 10–6 500 Gold 15 x 10–6 500 Nickel 15.2 x 10–6 500 Copper 18.3 x 10–6 500 Silver 20.6 x 10–6 500 Aluminum 26.4 x 10–6 500 Tin 27.5 x 10–6 500 Lead 32.1 x 10–6 600 Vitreous silica 0.55 x 10–6 600 Silicon 3.8 x 10–6 600 Tungsten 4.7 x 10–6 600 Molybdenum 5.4 x 10–6 Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 1564 CRC Handbook of Materials Science & Engineering 14.4 sel Thermal Page 1565 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 367. SELECTING THERMAL EXPANSION COEFFICIENTS FOR MATERIALS USED IN INTEGRATED CIRCUITS AT TEMPERATURE (SHEET 4 OF 5) Temperature Range (K) Material Linear Thermal Expansion Coefficient (K–1) 600 Germanium 6.7 x 10–6 600 Tantalum 6.9 x 10–6 600 Platinum 9.7 x 10–6 600 Gold 15.4 x 10–6 600 Nickel 17.2 x 10–6 600 Copper 18.9 x 10–6 600 Silver 21.4 x 10–6 600 Aluminum 28.3 x 10–6 700 Vitreous silica 0.54 x 10–6 700 Silicon 4.1 x 10–6 700 Tungsten 4.7 x 10–6 700 Molybdenum 5.5 x 10–6 700 Germanium 6.9 x 10–6 700 Beryllium oxide 7 x 10–6 700 Tantalum 7 x 10–6 700 Platinum 10 x 10–6 700 Gold 15.9 x 10–6 700 Nickel 16.4 x 10–6 700 Copper 19.4 x 10–6 700 Silver 22.3 x 10–6 700 Aluminum 30.7 x 10–6 Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC Shackelford & Alexander 1565 14.4 sel Thermal Page 1566 Wednesday, December 31, 1969 17:00 Selecting Thermal Properties Table 367. SELECTING THERMAL EXPANSION COEFFICIENTS FOR MATERIALS USED IN INTEGRATED CIRCUITS AT TEMPERATURE (SHEET 5 OF 5) Temperature Range (K) Material Linear Thermal Expansion Coefficient (K–1) 800 Vitreous silica 0.54 x 10–6 800 Silicon 4.3 x 10–6 800 Tungsten 4.8 x 10–6 800 Molybdenum 5.7 x 10–6 800 Tantalum 7.1 x 10–6 800 Germanium 7.2 x 10–6 800 Platinum 10.2 x 10–6 800 Gold 16.5 x 10–6 800 Nickel 16.8 x 10–6 800 Copper 20 x 10–6 800 Silver 23.4 x 10–6 800 Aluminum 33.8 x 10–6 0–1,000 Silicon carbide 4.8 x 10–6 25–1,000 Silicon nitride (α) 25–1,000 Silicon nitride (β) 2.9 x 10–6 2.25 x 10–6 Source: from Beadles, R. L., Interconnections and Encapsulation, Integrated Silicon Device Technology, Vol. 14, Research Triangle Institute, Research Triangle Park, N. C., 1967. in CRC Handbook of Materials Science, Charles T. Lynch, Ed., CRC Press, Cleveland, (1974). ©2001 CRC Press LLC 1566 CRC Handbook of Materials Science & Engineering Shackelford, James F. & Alexander, W. “Selecting Mechanical Properties” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001 15.0 sel Mechanical Page 1567 Wednesday, December 31, 1969 17:00 CHAPTER 13 List of Tables Selecting Mechanical Properties Tensile Strength Selecting Tensile Strength of Tool Steels Selecting Tensile Strength of Gray Cast Irons Selecting Tensile Strength of Ductile Irons Selecting Tensile Strengths of Malleable Iron Castings Selecting Tensile Strengths of Aluminum Casting Alloys Selecting Tensile Strengths of Wrought Aluminum Alloys Selecting Tensile Strengths of Ceramics Selecting Tensile Strengths of Glass Selecting Tensile Strengths of Polymers Compressive Strength Selecting Compressive Strengths of Gray Cast Iron Bars Selecting Compressive Strengths of Ceramics Selecting Compressive Strengths of Polymers Yield Strength Selecting Yield Strengths of Tool Steels Selecting Yield Strengths of Ductile Irons Selecting Yield Strengths of Malleable Iron Castings Selecting Yield Strengths of Cast Aluminum Alloys Selecting Yield Strengths of Wrought Aluminum Alloys Selecting Yield Strengths of Polymers Selecting Compressive Yield Strengths of Polymers ©2001 CRC Press LLC 1567 15.0 sel Mechanical Page 1568 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties List of Tables (Continued) Flexural Strength Selecting Flexural Strengths of Polymers Shear Selecting Shear Strengths of Wrought Aluminum Alloys Selecting Torsional Shear Strengths of Gray Cast Iron Bars Hardness and Microhardness Selecting Hardness of Tool Steels Selecting Hardness of Gray Cast Irons Selecting Hardness of Gray Cast Iron Bars Selecting Hardness of Ductile Irons Selecting Hardness of Malleable Iron Castings Selecting Hardness of Wrought Aluminum Alloys Selecting Hardness of Ceramics Selecting Microhardness of Glass Selecting Hardness of Polymers Friction Selecting Coefficients of Static Friction for Polymers Abrasion Resistance Selecting Abrasion Resistance of Polymers Fatigue Selecting Fatigue Strengths of Wrought Aluminum Alloys Selecting Reversed Bending Fatigue Limits of Gray Cast Iron Bars Impact Energy and Impact Strength Selecting Impact Energy of Tool Steels Selecting Impact Strengths of Polymers ©2001 CRC Press LLC 1568 CRC Handbook of Materials Science & Engineering 15.0 sel Mechanical Page 1569 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties List of Tables Moduli (Continued) Selecting Tensile Moduli of Gray Cast Irons Selecting Tensile Moduli of Treated Ductile Irons Selecting Young’s Moduli of Ceramics Selecting Young’s Moduli of Glass Selecting Moduli of Elasticity in Tension for Polymers Selecting Compression Moduli of Treated Ductile Irons Selecting Modulus of Elasticity in Compression for Polymers Selecting Bulk Moduli of Glass Selecting Moduli of Elasticity in Flexure of Polymers Selecting Shear Moduli of Glass Selecting Torsional Moduli of Gray Cast Irons Selecting Torsional Moduli of Treated Ductile Irons Selecting Moduli of Rupture for Ceramics Poisson’s Ratio Selecting Poisson’s Ratios for Ceramics Selecting Poisson’s Ratios of Glass Selecting Compression Poisson’s Ratios of Treated Ductile Irons Selecting Torsion Poisson’s Ratios of Treated Ductile Irons Elongation Selecting Elongation of Tool Steels Selecting Elongation of Ductile Irons Selecting Elongation of Malleable Iron Castings Selecting Total Elongation of Cast Aluminum Alloys Selecting Total Elongation of Polymers Selecting Elongation at Yield of Polymers Area Reduction Selecting Area Reduction of Tool Steel ©2001 CRC Press LLC Shackelford & Alexander 1569 15.1 sel Mechanical Page 1570 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 368. SELECTING TENSILE STRENGTH OF TOOL STEELS Type Condition Tensile Strength (MPa) S7 L6 S1 Annealed Annealed Annealed 640 655 690 L2 S5 Annealed Annealed 710 725 L2 L6 S5 Oil quenched from 855 •C and single tempered at: 650 •C Oil quenched from 845 •C and single tempered at: 650 •C Oil quenched from 870 •C and single tempered at: 650 •C 930 965 1035 S7 L2 L6 S1 Fan cooled from 940 •C and single tempered at: 650 •C Oil quenched from 855 •C and single tempered at: 540 •C Oil quenched from 845 •C and single tempered at: 540 •C Oil quenched from 845 •C and single tempered at: 650 •C 1240 1275 1345 1345 S5 L2 L6 S1 Oil quenched from 870 •C and single tempered at: 540 •C Oil quenched from 855 •C and single tempered at: 425 •C Oil quenched from 845 •C and single tempered at: 425 •C Oil quenched from 845 •C and single tempered at: 540 •C 1520 1550 1585 1680 L2 S1 S7 S5 Oil quenched from 855 •C and single tempered at: 315 •C Oil quenched from 845 •C and single tempered at: 425 •C Fan cooled from 940 •C and single tempered at: 540 •C Oil quenched from 870 •C and single tempered at: 425 •C 1790 1790 1820 1895 S7 S7 L2 L6 Fan cooled from 940 •C and single tempered at: 425 •C Fan cooled from 940 •C and single tempered at: 315 •C Oil quenched from 855 •C and single tempered at: 205 •C Oil quenched from 845 •C and single tempered at: 315 •C 1895 1965 2000 2000 S1 S1 S7 S5 Oil quenched from 845 •C and single tempered at: 315 •C Oil quenched from 845 •C and single tempered at: 205 •C Fan cooled from 940 •C and single tempered at: 205 •C Oil quenched from 870 •C and single tempered at: 315 •C 2030 2070 2170 2240 S5 Oil quenched from 870 •C and single tempered at: 205 •C 2345 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984). ©2001 CRC Press LLC 1570 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1571 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 369. SELECTING TENSILE STRENGTH OF GRAY CAST IRONS SAE grade Maximum Tensile Strength (MPa) G1800 G2500 G2500a 118 173 173 G3000 C3500 G4000 207 241 276 G3500b G3500c G4000d 1241 1241 1276 Grey Cast Iron Bars ASTM Class Tensile Strength (MPa) 20 25 30 152 179 214 35 40 50 60 252 293 362 431 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1571 15.1 sel Mechanical Page 1572 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 370. SELECTING TENSILE STRENGTH OF DUCTILE IRONS Specification Number Grade or Class Tensile Strength (MPa) MlL-I-24137(Ships) MlL-I-24137(Ships) ASTM A395-76; ASME SA395 Class C Class B 60-40-18 345 379 414 ASTM A536-72; MIL-1-11466B(MR) SAE J434c MlL-I-24137(Ships) 60-40-18 D4018 Class A 414 414 414 ASTM A536-72; MIL-1-11466B(MR) SAE J434c ASTM A476-70(d); SAE AMS5316 65-45-12 D4512 80-60-03 448 448 552 ASTM A536-72; MIL-1-11466B(MR) SAE J434c ASTM A536-72; MIL-1-11466B(MR) 80-55-06 D5506 100-70-03 552 552 689 SAE J434c ASTM A536-72; MIL-1-11466B(MR) D7003 120-90-02 689 827 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984). ©2001 CRC Press LLC 1572 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1573 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 371. SELECTING TENSILE STRENGTHS OF MALLEABLE IRON CASTINGS a Specification Number grade or class Tensile Strength (MPa) ASTM A197 ASTM A47, A338; ANSI G48.1; FED QQ–I–666c ASTM A602; SAE J158 ASTM A47, A338; ANSI G48.1; FED QQ–I–666c 32510 M3210 35018 276 345 345 365 ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 40010 45008 45006 M4504(a) 414 448 448 448 ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL–I–11444B 50005 M5003(a) M5503(b) 60004 483 517 517 552 ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A220; ANSI C48.2; MIL–I–11444B 70003 M7002(b) 80002 90001 586 621 655 724 ASTM A602; SAE J158 M8501(b) 724 Air quenched and tempered b Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1573 15.1 sel Mechanical Page 1574 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 372. SELECTING TENSILE STRENGTHS OF ALUMINUM CASTING ALLOYS (SHEET 1 OF 3) Alloy AA No. Temper Tensile Strength (MPa ) 443.0 208.0 B443.0 850.0 F F F T5 130 145 159 160 514.0 355.0 356.0 A390.0 F T71 T51 F,T5 170 175 175 180 242.0 319.0 308.0 355.0 T21 F F T51 185 185 195 195 356.0 A390.0 242.0 355.0 T71 F,T5 T77 T51 195 200 205 210 713.0 242.0 295.0 356.0 T5 T571 T4 T7 210 220 220 220 713.0 C443.0 356.0 319.0 T5 F T6 F 220 228 230 235 356.0 355.0 712.0 295.0 T7 T6 F T6 235 240 240 250 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 1574 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1575 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 372. SELECTING TENSILE STRENGTHS OF ALUMINUM CASTING ALLOYS (SHEET 2 OF 3) Alloy AA No. Temper Tensile Strength (MPa ) 319.0 336.0 355.0 A390.0 T6 T551 T71 T7 250 250 250 250 296.0 A390.0 355.0 356.0 T4 T7 T7 T6 255 260 265 265 296.0 355.0 242.0 296.0 T7 T61 T571 T6 270 270 275 275 535.0 319.0 355.0 390.0 F T6 T7 F 275 280 280 280 A390.0 295.0 355.0 A413.0 T6 T62 T6 F 280 285 290 290 390.0 413.0 355.0 383.0 T5 F T62 F 300 300 310 310 A390.0 518.0 A360.0 242.0 T6 F F T61 310 310 320 325 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1575 15.1 sel Mechanical Page 1576 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 372. SELECTING TENSILE STRENGTHS OF ALUMINUM CASTING ALLOYS (SHEET 3 OF 3) Alloy AA No. Temper Tensile Strength (MPa ) 336.0 360.0 359.0 380.0 T65 F T61 F 325 325 330 330 384.0, A384.0 520.0 359.0 771.0 F T4 T62 T6 330 330 345 345 357.0, A357.0 201.0 354.0 206.0, A206.0 T62 T4 T61 T7 360 365 380 435 201.0 201.0 T7 T6 460 485 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 1576 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1577 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 373. SELECTING TENSILE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 7) Alloy Temper Tensile Strength (MPa) 1060 1050 1060 1350 0 0 H12 0 69 76 83 83 1100 6063 1060 1350 0 0 H14 H12 90 90 97 97 6101 1050 1060 1100 H111 H14 H16 H12 97 110 110 110 1350 3003 3105 Alclad 6061 H14 0 0 0 110 110 115 115 1100 1350 5005 6061 H14 H16 0 0 125 125 125 125 1050 1060 Alclad 5457 H16 H18 H12 0 130 130 130 130 5005 5005 1100 4043 H12 H32 H16 0 140 140 145 145 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1577 15.1 sel Mechanical Page 1578 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 373. SELECTING TENSILE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 7) Alloy Temper Tensile Strength (MPa) 5050 6070 3003 3105 0 0 H14 H12 145 145 150 150 6063 6066 6463 1050 TI 0 Tl H18 150 150 150 160 5005 5005 5657 1100 H14 H34 H25 H18 160 160 160 165 Alclad 2014 2219 3105 5050 0 0 H14 H32 170 170 170 170 6005 6063 Alclad 2024 3003 T1 T4 0 H16 170 170 180 180 3004 3105 5005 5005 0 H25 H16 H36 180 180 180 180 5457 1350 2014 2024 H25 H19 0 0 180 185 185 185 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984). ©2001 CRC Press LLC 1578 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1579 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 373. SELECTING TENSILE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 7) Alloy Temper Tensile Strength (MPa) 6063 6463 7005 3105 T5 T5 0 H16 185 185 193 195 5050 5052 5652 5657 H34 0 0 H28, H38 195 195 195 195 3003 5005 5005 5050 H18 H18 H38 H36 200 200 200 205 5457 6063 Alclad 3105 H28, H38 T831 H32 H18 205 205 215 215 5050 6151 Alclad 7075 5052 H38 T6 0 H32 220 220 220 230 5652 Alclad 6061 7075 5252 H32 T4, T451 0 H25 230 230 230 235 6009 3004 5154 5154 T4 H34 0 H112 235 240 240 240 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1579 15.1 sel Mechanical Page 1580 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 373. SELECTING TENSILE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 7) Alloy Temper Tensile Strength (MPa) 5254 5254 6061 6063 0 H112 T4, T451 T6 240 240 240 240 6463 5454 5454 6351 T6 0 H112 T4 240 250 250 250 6010 6063 3004 5052 T4 T83 H36 H34 255 255 260 260 5086 5454 5454 5652 0 H111 H311 H34 260 260 260 260 6005 6205 5086 5154 T5 Tl H112 H32 260 260 270 270 5254 5052 5182 5454 H32 H36 0 H32 270 275 275 275 5652 3004 4043 5252 H36 H38 H18 H28, H38 275 285 285 285 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984). ©2001 CRC Press LLC 1580 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1581 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 373. SELECTING TENSILE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 5 OF 7) Alloy Temper Tensile Strength (MPa) 5052 5056 5083 5086 H38 0 0 H32, H116, H117 290 290 290 290 5154 5254 5652 Alclad 6061 H34 H34 H38 T6, T651 290 290 290 290 6063 5083 5454 5154 T832 H112 H34 H36 290 305 305 310 5254 5456 5456 6061 H36 0 H112 T6, T651 310 310 310 310 6205 6351 5083 5083 T5 T6 H113 H321 310 310 315 315 5182 6070 5083 5086 H32 T4 H323, H32 H34 315 315 325 325 5456 2218 5154 5254 H111 T72 H38 H38 325 330 330 330 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1581 15.1 sel Mechanical Page 1582 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 373. SELECTING TENSILE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 6 OF 7) Alloy Temper Tensile Strength (MPa) 6201 6201 2036 5182 T6 T81 T4 H34 330 330 340 340 5454 2218 5083 6009 H36 T71 H343, H34 T6 340 345 345 345 5456 2219 2219 6066 H321, H116 T42 T31, T351 T4, T451 350 360 360 360 5454 7005 2011 4032 H38 T6,T63,T6351 T3 T6 370 372 380 380 6070 7005 2219 6066 T6 T53 T37 T6, T651 380 393 395 395 6262 2011 2218 2219 T9 T8 T61 T62 400 405 405 415 5056 Alclad 2014 5182 2014 H38 T4 H19(n) T4 415 420 420 425 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984). ©2001 CRC Press LLC 1582 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1583 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 373. SELECTING TENSILE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 7 OF 7) Alloy Temper Tensile Strength (MPa) Alclad 2014 5056 Alclad 2024 2618 T3 H18 T4, T351 All 435 435 440 440 Alclad 2024 Alclad 2024 2048 2219 T T81, T851 T81, T851 450 450 455 455 Alclad 2024 Alclad 2014 2024 2219 T361 T6 T4, T351 T87 460 470 470 475 2014 2024 Alclad 2024 2124 T6 T3 T861 T851 485 485 485 490 2024 7075 7050 Alclad 7075 T361 T73 T736 T6,T651 495 505 515 525 7175 7475 7075 7175 T736 T61 T6,T651 T66 525 525 570 595 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299—302, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1583 15.1 sel Mechanical Page 1584 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 374. SELECTING TENSILE STRENGTHS OF CERAMICS (SHEET 1 OF 4) Ceramic Temperature Tensile Strength (psi) Boron Nitride (BN) 1000˚C 0.35 x103 Boron Nitride (BN) 1500˚C 0.35 x103 Beryllium Oxide (BeO) 1300˚C 0.6 x103 Spinel (Al2O3 MgO) 1300˚C 1.1 x103 Boron Nitride (BN) 1800˚C 1.15 x103 Aluminum Oxide (Al2O3) 1460˚C 1.5 x103 2-42 x103 Tantalum Monocarbide (TaC) Beryllium Oxide (BeO) 1140˚C 2.0 x103 Boron Nitride (BN) 2000˚C 2.25 x103 Cordierite (2MgO 2Al2O3 5SiO2)(ρ=1.8g/cm3) 1200˚C 2.5 x103 Cordierite (2MgO 2Al2O3 5SiO2)(ρ=2.1g/cm3) 800˚C 3.5 x103 Zircon (SiO2 ZrO2) 1200˚C 3.6 x103 Aluminum Oxide (Al2O3) 1400˚C 4.3 x103 Silicon Carbide (SiC) 25˚C 5-20 x103 Beryllium Oxide (BeO) 1000˚C 5.0 x103 Silicon Carbide (SiC) (hot pressed) 1400˚C 5.75-21.75 x103 Magnesium Oxide (MgO) 1300˚C 6 x103 Spinel (Al2O3 MgO) 1150˚C 1300˚C 1000˚C 6.1 x103 6.4 x103 6.75-17.0 x103 Aluminum Oxide (Al2O3) Zirconium Oxide (ZrO2) To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 1584 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1585 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 374. SELECTING TENSILE STRENGTHS OF CERAMICS (SHEET 2 OF 4) Ceramic Temperature Tensile Strength (psi) Boron Nitride (BN) 2400˚C 6.80 x103 Beryllium Oxide (BeO) 900˚C 7.0 x103 Cordierite (2MgO 2Al2O3 5SiO2)(ρ=2.51g/cm3) 25˚C 7.8 x103 Magnesium Oxide (MgO) 1200˚C 8 x103 Zircon (SiO2 ZrO2) 1050˚C 8.7 x103 Magnesium Oxide (MgO) 1100˚C 10 x103 Zirconium Oxide (ZrO2) 1300˚C 10.2 x103 10.6 x104 Beryllium Oxide (BeO) 500˚C 11.1 x103 Silicon Carbide (SiC) (reaction bonded) 20˚C 11.17 x103 Magnesium Oxide (MgO) 1000˚C 11.5 x103 Zirconium Monocarbide (ZrC) 980˚C 11.7-14.45 x103 Zirconium Oxide (ZrO2) Zircon (SiO2 ZrO2) 1200˚C room temp. 12.1 x103 12.7 x103 Zirconium Monocarbide (ZrC) 1250˚C 12.95-15.85 x103 Zirconium Oxide (ZrO2) 1100˚C 13.0-13.5 x103 Beryllium Oxide (BeO) room temp. 13.5-20 x103 Spinel (Al2O3 MgO) 550˚C 13.7 x103 Magnesium Oxide (MgO) room temp. 14 x103 Magnesium Oxide (MgO) 200˚C 14 x103 Chromium Diboride (CrB2) To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 1585 15.1 sel Mechanical Page 1586 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 374. SELECTING TENSILE STRENGTHS OF CERAMICS (SHEET 3 OF 4) Ceramic Temperature Tensile Strength (psi) Thorium Dioxide (ThO2) room temp. 14 x103 Magnesium Oxide (MgO) 400˚C 15.2 x103 Magnesium Oxide (MgO) 800˚C 16 x103 Zirconium Monocarbide (ZrC) room temp. 16.0 x103 Zirconium Oxide (ZrO2) Zirconium Oxide (ZrO2) 800˚C 25˚C 200˚C 16.0 x103 16 x103 16.8 x103 Titanium Monocarbide (TiC) 1000˚C 17.2 x103 Zirconium Oxide (ZrO2) 400˚C 600˚C room temp. 17.5 x103 17.6 x103 17.9-20 x103 18.4 x103 1200˚C room temp. 500˚C 1400˚C 18.5-20 x103 19.2 x103 20.0 x103 20.3 x103 1400˚C 980˚C 20˚C 21.8 x103 22.5 x103 24.7 x103 Mullite (3Al2O3 2SiO2) Zirconium Oxide (ZrO2) Zirconium Oxide (ZrO2) Titanium Diboride (TiB2) Aluminum Oxide (Al2O3) Spinel (Al2O3 MgO) Zirconium Oxide (ZrO2) Trisilicon tetranitride (Si3N4) (reaction bonded) Trisilicon tetranitride (Si3N4) (hot pressed) Boron Carbide (B4C) Trisilicon tetranitride (Si3N4) (reaction bonded) To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 1586 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1587 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 374. SELECTING TENSILE STRENGTHS OF CERAMICS (SHEET 4 OF 4) Ceramic Temperature Tensile Strength (psi) 28.7 x103 Zirconium Diboride (ZrB2) Silicon Carbide (SiC) (hot pressed) 20˚C 29 x103 Aluminum Oxide (Al2O3) 1140˚C 300˚C 31.4 x103 33.6 x103 1050˚C 800˚C 1000˚C room temp. 33.9 x103 34.6 x103 35 x103 37-37.8 x103 Molybdenum Disilicide (MoSi2) 500˚C 980˚C 1300˚C 1090˚C 40 x103 40 x103 41.07 x103 42.16 x103 Molybdenum Disilicide (MoSi2) 1200˚C 42.8 x103 Aluminum Oxide (Al2O3) Aluminum Oxide (Al2O3) Aluminum Oxide (Al2O3) Aluminum Oxide (Al2O3) Aluminum Oxide (Al2O3) Aluminum Oxide (Al2O3) Molybdenum Disilicide (MoSi2) Molybdenum Disilicide (MoSi2) 50 x103 Tungsten Monocarbide (WC) Trisilicon tetranitride (Si3N4) (hot pressed) Spinel (Al2O3 MgO) 20˚C 900˚C 54.4 x103 110.8 x103 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 1587 15.1 sel Mechanical Page 1588 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 375. SELECTING TENSILE STRENGTHS OF GLASS (SHEET 1 OF 2) Tensile Strength (Kg • mm–2) Glass (Corning 7940 silica glass @ 100˚C) 5.6 SiO2 glass (1.5 mm diameter rod, 0.5 g/mm2•s stress rate) (Corning 7940 silica glass @ 300˚C) (Corning 7940 silica glass @ 500˚C) 5.84–7.08 (Corning 7940 silica glass @ 700˚C) (Corning 7940 silica glass @ 900˚C) 7.1 7.6 SiO2 glass (1.5 mm diameter rod, 54 g/mm2•s stress rate) 8.52±2.52 SiO2 glass (1.5 mm diameter rod, 50 g/mm2•s stress rate) 9.73±2.13 SiO2–Na2O glass (5 mm diameter rod, 20% mol Na2O) 15 28.3 28.8 35.8 SiO2 glass (112 µm diameter fiber) SiO2 glass (108 µm diameter fiber) SiO2 glass (78 µm diameter fiber) SiO2 glass (74 µm diameter fiber) SiO2 glass (65 µm diameter fiber) SiO2 glass (60 µm diameter fiber) SiO2–PbO glass (17.2 µm diameter fiber, 50% mol PbO) SiO2 glass (56 µm diameter fiber) SiO2 glass (48 µm diameter fiber) SiO2–PbO glass (11.4 µm diameter fiber, 50% mol PbO) B2O3 glass (10–30 µm diameter fiber) SiO2–PbO glass (7.1 µm diameter fiber, 50% mol PbO) SiO2–PbO glass (4.3 µm diameter fiber, 50% mol PbO) SiO2–PbO glass (8.0 µm diameter fiber, 50% mol PbO) SiO2–PbO glass (5.7 µm diameter fiber, 50% mol PbO) 6.2 6.6 36.5 39.7 42.3 43–51.6 44.3 49.6 51.9–56 60 62–71.3 64 64.5 66–67.2 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1588 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1589 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 375. SELECTING TENSILE STRENGTHS OF GLASS (SHEET 2 OF 2) Glass Tensile Strength (Kg • mm–2) SiO2-PbO glass (3.0 mm diameter fiber, 50% mol PbO) SiO2-Na2O glass (11.4mm diameter fiber, 36.3% mol Na2O) SiO2-Na2O glass (25.7mm diameter fiber, 19.5% mol Na2O) SiO2-Na2O glass (8.6mm diameter fiber, 36.3% mol Na2O) 70.8 91.2±1.480 92.5±10.08 98.0±0.344 B2O3-Na2O glass (10-30 mm diameter fiber, 10% mol Na2O) SiO2-Na2O glass (12.8mm diameter fiber, 25.5% mol Na2O) SiO2-Na2O glass (5.4mm diameter fiber, 36.3% mol Na2O) SiO2-Na2O glass (6.3mm diameter fiber, 25.5% mol Na2O) 102 103±1.020 107.6±0.308 127±0.259 SiO2-Na2O glass (8.6mm diameter fiber, 19.5% mol Na2O) B2O3-Na2O glass (10-30 mm diameter fiber, 20% mol Na2O) SiO2-Na2O glass (3.6mm diameter fiber, 25.5% mol Na2O) B2O3-Na2O glass (10-30 mm diameter fiber, 30% mol Na2O) 134±1.34 137 142±0.189 152 SiO2-Na2O glass (6.0mm diameter fiber, 19.5% mol Na2O) 173±1.36 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1589 15.1 sel Mechanical Page 1590 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 376. SELECTING TENSILE STRENGTHS OF POLYMERS (SHEET 1 OF 5) Polymer Tensile Strength (ASTM D638) (103 psi) Olefin Copolymer: EEA (ethylene ethyl acrylate) Olefin Copolymer: Ethylene butene Olefin Copolymer: EVA (ethylene vinyl acetate) Propylene–ethylene 0.2 0.35 0.36 0.4 Ethylene Ionomer Fluorocarbons: Ceramic reinforced (PTFE) Polyethylene, Type I, low density: Melt index 200 Polyvinyl Chloride & Copolymer: Nonrigid—general 0.4 0.75—2.5 0.9—1.1 (ASTM D412) 1—3.5 (ASTM D412) Polyesters, cast thermoset: Flexible 6/6 Nylon: General purpose extrusion Polyethylene, Type I, low density: Melt index 6—26 Polyethylene, Type I, low density: Melt index 0.3—3.6 1—8 1.26, 8.6 1.4—2.0 (ASTM D412) 1.4—2.5 (ASTM D412) Standard Epoxy: Cast flexible Polyethylene, Type II, medium density: Melt index 20 Polyvinyl Chloride & Copolymer: Nonrigid—electrical Polyethylene, Type II, medium density: Melt index l.0—1.9 1.4—7.6 2 2—3.2 (ASTM D412) 2.3—2.4 Fluorocarbons: Fluorinated ethylene propylene(FEP) Fluorocarbons: Polytetrafluoroethylene (PTFE) Polyethylene, Type III, higher density: Melt Melt index 0.l— 12.0 Cellulose Acetate Butyrate, ASTM Grade: S2 2.5—4.0 2.5—6.5 3.0—4.0 at Fracture Cellulose Acetate; ASTM Grade: S2—1 Alkyd; Molded: Granular (high speed molding) Ethylene Polyallomer Phenolics: Rubber phenolic—chopped fabric 3.0—4.4 at Fracture 3—4 3—4.3 3—5 (ASTM D651) 2.9—4.0 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1590 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1591 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 376. SELECTING TENSILE STRENGTHS OF POLYMERS (SHEET 2 OF 5) Polymer Tensile Strength (ASTM D638) (103 psi) Polystyrene: High impact Cellulose Acetate; ASTM Grade: MS—1, MS—2 Cellulose Acetate Propionate, ASTM Grade: 6 Phenolics: Rubber phenolic—asbestos 3.3—5.1 3.9—5.3 at Fracture 4 4 (ASTM D651) Polystyrene: Medium impact Alkyd; Molded: Putty (encapsulating) ABS Resin; Molded, Extruded: Low temperature impact Reinforced polyester moldings: Heat & chemical resistant (asbestos) 4.0—6.0 4—5 4—6 Silicone: Granular (silica) reinforced Diallyl Phthalates, Molded: Asbestos filled Polyvinyl Chloride & Copolymer: Vinylidene chloride Polyethylene, Type III, higher density: Melt index 0.2—0.9 4—6 (ASTM D651) 4—6.5 4—8,15—40 (ASTM D412) 4.4 Polyethylene, Type III, higher density: Melt index 1.5—15 Diallyl Phthalates, Molded: Orlon filled ABS Resin; Molded, Extruded: Very high impact Polypropylene: general purpose 4.4 4.5—6 4.5—6.0 4.5—6.0 Phenolics: Rubber phenolic—woodflour or flock Fluorocarbons: Polytrifluoro chloroethylene (PTFCE) Diallyl Phthalates, Molded: Dacron filled Cellulose Acetate; ASTM Grade: MH—1, MH—2 4.5—9 (ASTM D651) 4.6—5.7 4.6—6.2 4.8—6.3 at Fracture Polystyrene: General purpose ABS Resin; Molded, Extruded: High impact Cellulose Acetate Butyrate, ASTM Grade: MH Phenolics, General: woodflour and flock filler 5.0—10 5.0—6.0 5.0—6.0 at Fracture 5.0—8.5 (ASTM D651) 4—6 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1591 15.1 sel Mechanical Page 1592 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 376. SELECTING TENSILE STRENGTHS OF POLYMERS (SHEET 3 OF 5) Polymer Tensile Strength (ASTM D638) (103 psi) Phenolics, Shock: paper, flock, or pulp filler Reinforced polyester moldings: High strength (glass fibers) Urea: Alpha, cellulose filled (ASTM Type l) Phenolics, Very high shock: glass fiber filler 5.0—8.5 (ASTM D651) 5—10 5—10 5—10 (ASTM D651) Polyesters, cast thermoset: Rigid Allyl diglycol carbonate (thermoset) Melamine, molded: Alpha cellulose and mineral filler Alkyd; Molded: Glass reinforced (heavy duty parts) 5—15 5—6 5—8 5—9 Melamine, molded: Cellulose electrical filler Phenolics, High shock: chopped fabric or cord filler Cellulose Acetate Propionate, ASTM Grade: 3 Epoxiy, (cycloaliphatic diepoxides): Molded 5—9 5—9 (ASTM D651) 5.1—5.9 5.2—5.3 Fluorocarbons: Polyvinylidene— fluoride (PVDF) Polyethylene, Type III, higher density, high molecular weight Diallyl Phthalates, Molded: Glass fiber filled Polyvinyl Chloride & Copolymer: Rigid—normal impact 5.2—8.6 5.4 5.5—11 5.5—8 (ASTM D412) Acrylic Moldings: High impact grade Cellulose Acetate; ASTM Grade: H2—1 Cellulose Acetate Propionate, ASTM Grade: 1 Chlorinated polyether 5.5—8.0 5.8—7.2 at Fracture 5.9—6.5 6 Phenolics: Arc resistant—mineral Acrylic Cast Resin Sheets, Rods: General purpose, type I Melamine, molded: Glass fiber filler ABS Resin; Molded, Extruded: Medium impact 6 (ASTM D651) 6—9 6—9 6.3—8.0 Silicone: Fibrous (glass) reinforced Polyacetal homopolymer: 22% TFE reinforced Cellulose Acetate Butyrate, ASTM Grade: H4 ABS Resin; Molded, Extruded: Heat resistant 6.5 (ASTM D651) 6.9 6.9 at Fracture 7.0—8.0 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1592 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1593 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 376. SELECTING TENSILE STRENGTHS OF POLYMERS (SHEET 4 OF 5) Polymer Tensile Strength (ASTM D638) (103 psi) Alkyd; Molded: Rope (general purpose) Cellulose Acetate; ASTM Grade: H4—1 Nylon, Type 12 6/10 Nylon: General purpose 7—8 7—8 at Fracture 7.1—8.5 7.1—8.5 Chlorinated polyvinyl chloride Nylon, Type 6: Flexible copolymers Acrylic Cast Resin Sheets, Rods: General purpose, type II Standard Epoxy: Molded 7.3 7.5—10.0 8—10 8—11 Epoxiy, (cycloaliphatic diepoxides): Cast, rigid ABS–Polycarbonate Alloy Polystyrene: Styrene acrylonitrile (SAN) Polyacetal homopolymer: 20% glass reinforced 8—12 8.2 8.3—12.0 8.5 Polyacetal copolymer: Standard Polyacetal copolymer: High flow Acrylic Moldings: Grades 5, 6, 8 Polycarbonate 8.8 8.8 8.8—10.5 9.5 Standard Epoxy: Cast rigid Nylon, Type 6: General purpose Epoxy novolacs: Cast, rigid Polyacetal homopolymer: Standard 9.5-11.5 9.5—12.5 9.6—12.0 10 6/6 Nylon: General purpose molding Nylon, Type 6: Cast Polyarylsulfone Polystyrene: Glass fiber -30% reinforced 11.2—11.8 12.8 13 14 Reinforced polyester: Sheet molding, general purpose Polycarbonate (40% glass fiber reinforced) Polystyrene: Glass fiber (30%) reinforced SAN Polyacetal copolymer: 25% glass reinforced 15—17 18 18 18.5 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1593 15.1 sel Mechanical Page 1594 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 376. SELECTING TENSILE STRENGTHS OF POLYMERS (SHEET 5 OF 5) Polymer Tensile Strength (ASTM D638) (103 psi) 6/10 Nylon: Glass fiber (30%) reinforced 6/6 Nylon: Glass fiber Molybdenum disulfide filled Nylon, Type 6: Glass fiber (30%) reinforced 6/6 Nylon: Glass fiber reinforced 19 19—22 21—24 25—30 Silicone: Woven glass fabric / silicone laminate Epoxy: Glass cloth laminate Epoxiy, (cycloaliphatic diepoxides): Glass cloth laminate Epoxy novolacs: Glass cloth laminate 30—35 (ASTM D651) 50-58 50—52 59.2 Epoxy: Glass cloth: High strength laminate Epoxy: Glass cloth laminate: Filament wound composite 160 230-240 (hoop) To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1594 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1595 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 377. SELECTING COMPRESSIVE STRENGTHS OF GRAY CAST IRON BARS ASTM Class Compressive Strength (MPa) 20 25 30 572 669 752 35 40 50 60 855 965 1130 1293 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1595 15.1 sel Mechanical Page 1596 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 378. SELECTING COMPRESSIVE STRENGTHS OF CERAMICS (SHEET 1 OF 3) Temperature (˚C) Compressive Strength (psi) Aluminum Oxide (Al2O3) 1500 1500 1400 1600 1.5 x103 2.8 x103 5.7 x103 7 x103 Beryllium Oxide (BeO) 1600 7 x103 Spinel (Al2O3 MgO) Trisilicon tetranitride (Si3N4) 1600 25 1000 8.5 x103 10-100 x103 10-30 x103 Aluminum Oxide (Al2O3) 1500 14 x103 Beryllium Oxide (BeO) 1500 17 x103 Zirconium Oxide (ZrO2) 1400 18.5 x103 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3) 1200 18.5 x103 Spinel (Al2O3 MgO) 1400 21.4 x103 Beryllium Oxide (BeO) 1400 24 x103 Beryllium Oxide (BeO) 1145 28.5 x103 Thorium Dioxide (ThO2) 1200 28.5 x103 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) 800 30 x103 Ceramic Thorium Dioxide (ThO2) Zirconium Oxide (ZrO2) Thorium Dioxide (ThO2) Trisilicon tetranitride (Si3N4) 34.0 x103 Boron Nitride (BN), parallel to c axis Beryllium Oxide (BeO) 1000 35.5-40 x103 Aluminum Oxide (Al2O3) 1400 35.6 x103 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 1596 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1597 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 378. SELECTING COMPRESSIVE STRENGTHS OF CERAMICS (SHEET 2 OF 3) Ceramic Temperature (˚C) Compressive Strength (psi) Boron Nitride (BN), parallel to a axis 45 x103 Titanium Diboride (TiB2) 47-97 x103 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.51g/cm3) 25 50 x103 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) 400 50 x103 Thorium Dioxide (ThO2) 1000 51 x103 Beryllium Oxide (BeO) 800 64 x103 Aluminum Oxide (Al2O3) 1200 71 x103 Beryllium Oxide (BeO) 500 71 x103 Thorium Dioxide (ThO2) Mullite (3Al2O3 2SiO2) 800 1200 25 71 x103 71 x103 80-190 x103 Silicon Carbide (SiC) 25 82-200 x103 Aluminum Oxide (Al2O3) Spinel (Al2O3 MgO) 1100 600 1100 85 x103 85 x103 85.5 x103 Magnesium Oxide (MgO) room temp. 112 x103 Beryllium Oxide (BeO) room temp. 114-310 x103 Zirconium Oxide (ZrO2) 1200 1000 114 x103 128 x103 Spinel (Al2O3 MgO) Thorium Dioxide (ThO2) Aluminum Oxide (Al2O3) Titanium mononitride (TiN) 141 x103 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 1597 15.1 sel Mechanical Page 1598 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 378. SELECTING COMPRESSIVE STRENGTHS OF CERAMICS (SHEET 3 OF 3) Temperature (˚C) Compressive Strength (psi) room temp. 400 1000 800 146-214 x103 156 x103 171 x103 171 x103 800 600 500 room temp. 183 x103 199 x103 199 x103 205-300 x103 Zirconium Oxide (ZrO2) 400 500 214 x103 228 x103 Zirconium Monocarbide (ZrC) room temp. 238 x103 Spinel (Al2O3 MgO) room temp. 270 x103 Aluminum Oxide (Al2O3) room temp. 427 x103 Titanium Monocarbide (TiC) Boron Carbide (B4C) room temp. 10.9-19 x104 room temp. 41.4 x104 60 x104 Ceramic Thorium Dioxide (ThO2) Thorium Dioxide (ThO2) Zirconium Oxide (ZrO2) Spinel (Al2O3 MgO) Aluminum Oxide (Al2O3) Aluminum Oxide (Al2O3) Spinel (Al2O3 MgO) Zirconium Oxide (ZrO2) Aluminum Oxide (Al2O3) Trichromium Dicarbide (Cr3C2) To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 1598 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1599 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 379. SELECTING OF COMPRESSIVE STRENGTHS POLYMERS (SHEET 1 OF 3) Polymer Compressive Strength (1000 psi) ABS Resins; Molded, Extruded: Medium impact Polyester, Cast Thermoset: Flexible Styrene acrylonitrile (SAN), Glass fiber (30%) reinforced Polystyrene, Molded: Medium impact 0.5—11.0 1—17 2.3 4—9 Polystyrene, Molded: High impact PVC–acrylic injection molded ABS Resins; Molded, Extruded: High impact PVC–acrylic sheet 4—9 6.2 7.0—9.0 8.4 Chlorinated polyether ABS Resins; Molded, Extruded: Heat resistant Silicone, Molded: Fibrous (glass) reinforced silicones Rubber phenolic, Molded: , chopped fabric filled 9 9.3—11.0 10—12.5 10—15 Rubber phenolic, Molded: , asbestos filled Silicone, Molded: Granular (silica) reinforced silicones Polyvinyl Chloride: Rigid—normal impact ABS–Polycarbonate Alloy 10—20 10.6—17 11—12 11.1—11.8 Polystyrene, Molded: General purpose Phenylene Oxide: SE—100 Rubber phenolic, Molded: woodflour or flock filled Polyester, Cast Thermoset: Rigid 11.5—16.0 12 12—20 12—37 Polycarbonate Polyester; Thermoplastic Moldings: General purpose grade Phenylene oxide (Noryl): Standard Silicone, Laminated with woven glass fabric 12.5 13 13.9—14 15—24 Phenolic; Molded: High shock, chopped fabric or cord filled Polyester; Thermoplastic Moldings: Glass reinforced grades Alkyds; Molded: Granular (high speed molding) Phenylene Oxide: SE—1 15—30 16—18 16—20 16.4 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1599 15.1 sel Mechanical Page 1600 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 379. SELECTING OF COMPRESSIVE STRENGTHS POLYMERS (SHEET 2 OF 3) Polymer Compressive Strength (1000 psi) Epoxy, Standard : Cast rigid Epoxy, High performance resins: Cast, rigid Phenolic; Molded: Very high shock, glass fiber filled Phenylene Oxide: Glass fiber reinforced 16.5—24 17—19 17—30 17.6—17.9 Polyarylsulfone Polyester; Thermoplastic: Glass reinforced, self extinguishing Diallyl Phthalate; Molded: Asbestos filled Polymide: Unreinforced 17.8 18 18—25 18.4, 27.4 Polycarbonate (40% glass fiber reinforced) Polystyrene, Molded: Glass fiber -30% reinforced Alkyds; Molded: Putty (encapsulating) Diallyl Phthalate; Molded: Orlon filled 18.5 19 20—25 20—25 Polyester: Heat and chemical resistsnt (asbestos reinforced) Polyester: High strength, (glass fibers reinforced) Diallyl Phthalate; Molded: Dacron filled Phenolic, Molded: Arc resistant, mineral filled 20—25 20—26 20—30 20—30 Melamine; Molded: Glass fiber filled Epoxy, High performance resins: Molded Phenolic; Molded: General, woodflour and flock filled Polyester: Sheet molding compounds, general purpose 20—42 22—26 22—36 22—36 Thermoset Carbonate: Allyl diglycol carbonate Alkyds; Molded: Glass reinforced (heavy duty parts) Phenolic; Molded: Shock, paper, flock, or pulp filled Diallyl Phthalate; Molded: Glass fiber filled 22.5 24—30 24—35 25 Melamine; Molded: Cellulose electrical filled Urea, Molded: Woodflour filled Urea, Molded: Alpha—cellulose filled (ASTM Type l) Melamine; Molded: Mineral filled 25—35 25—35 25—38 26—30 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1600 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1601 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 379. SELECTING OF COMPRESSIVE STRENGTHS POLYMERS (SHEET 3 OF 3) Polymer Compressive Strength (1000 psi) Alkyds; Molded: Rope (general purpose) Epoxy novolac: Cast, rigid Epoxy, Standard : Molded Melamine; Molded: Unfilled 28 30—50 34-38 40—45 Melamine; Molded: Alpha cellulose filled Polymide: Glass reinforced Epoxy novolac: Glass cloth laminate Epoxy, Standard : General purpose glass cloth laminate 40—45 42 48—57 50-60 Epoxy, High performance resins: Glass cloth laminate Epoxy, Standard : High strength laminate 67—71 80-90 (edgewise) To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1601 15.1 sel Mechanical Page 1602 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 380. SELECTING YIELD STRENGTHS OF TOOL STEELS Type Condition 0.2% Yield Strength (MPa) L6 S7 S1 Annealed Annealed Annealed 380 380 415 S5 L2 Annealed Annealed 440 510 L2 L6 S7 L6 Oil quenched from 855 •C and single tempered at 650 •C Oil quenched from 845 •C and single tempered at 650 •C Fan cooled from 940 •C and single tempered a 650 •C Oil quenched from 845 •C and single tempered at 540 •C 760 830 1035 1100 L2 S5 S1 L2 Oil quenched from 855 •C and single tempered at 540 •C Oil quenched from 870 •C and single tempered a 650 •C Oil quenched from 930 •C and single tempered at 650 •C Oil quenched from 855 •C and single tempered at 425 •C 1170 1170 1240 1380 L6 S5 S7 Oil quenched from 845 •C and single tempered at 425 •C Oil quenched from 870 •C and single tempered a 540 •C Fan cooled from 940 •C and single tempered a 540 •C 1380 1380 1380 S7 S7 S1 S7 Fan cooled from 940 •C and single tempered a 425 •C Fan cooled from 940 •C and single tempered a 205 •C Oil quenched from 930 •C and single tempered at 540 •C Fan cooled from 940 •C and single tempered a 315 •C 1410 1450 1525 1585 L2 S1 S5 L2 Oil quenched from 855 •C and single tempered at 315 •C Oil quenched from 930 •C and single tempered at 425 •C Oil quenched from 870 •C and single tempered a 425 •C Oil quenched from 855 •C and single tempered at 205 •C 1655 1690 1690 1790 L6 S1 S5 S1 Oil quenched from 845 •C and single tempered at 315 •C Oil quenched from 930 •C and single tempered at 315 •C Oil quenched from 870 •C and single tempered a 315 •C Oil quenched from 930 •C and single tempered at 205 •C 1790 1860 1860 1895 S5 Oil quenched from 870 •C and single tempered a 205 •C 1930 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984). ©2001 CRC Press LLC 1602 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1603 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 381. SELECTING YIELD STRENGTHS OF DUCTILE IRONS Specification Number Grade or Class Yield Strength (MPa) MlL-I-24137(Ships) MlL-I-24137(Ships) ASTM A395-76; ASME SA395 ASTM A536-72, MIL-1-11466B(MR) Class C Class B 60-40-18 60-40-18 172 207 276 276 SAE J434c ASTM A536-72, MIL-1-11466B(MR) SAE J434c MlL-I-24137(Ships) D4018 65-45-12 D4512 Class A 276 310 310 310 ASTM A536-72, MIL-1-11466B(MR) SAE J434c ASTM A476-70(d); SAE AMS5316 ASTM A536-72, MIL-1-11466B(MR) 80-55-06 D5506 80-60-03 100-70-03 379 379 414 483 SAE J434c ASTM A536-72, MIL-1-11466B(MR) D7003 120-90-02 483 621 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1603 15.1 sel Mechanical Page 1604 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 382. SELECTING YIELD STRENGTHS OF MALLEABLE IRON CASTINGS Specification Number Grade or Class Yield Strength (MPa) ASTM A197 ASTM A47, A338; ANSI G48.1; FED QQ–I–666c ASTM A602; SAE J158 ASTM A47, A338; ANSI G48.1; FED QQ–I–666c 32510 M3210 35018 207 224 224 241 ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 40010 45008 45006 M4504(a) 276 310 310 310 ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL–I–11444B 50005 M5003(a) M5503(b) 60004 345 345 379 414 ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 70003 M7002(b) 80002 M8501(b) 483 483 552 586 ASTM A220; ANSI C48.2; MIL–I–11444B 90001 621 (a) Air quenched and tempered (b) Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984). ©2001 CRC Press LLC 1604 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1605 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 383. SELECTING YIELD STRENGTHS OF CAST ALUMINUM ALLOYS (SHEET 1 OF 3) Alloy AA No. Temper Yield Strength (MPa) 443.0 B443.0 850.0 514.0 F F T5 F 55 62 75 85 208.0 295.0 308.0 C443.0 F T4 F F 97 110 110 110 242.0 319.0 296.0 319.0 T21 F T4 F 125 125 130 130 A413.0 296.0 356.0 413.0 F T7 T51 F 130 140 140 140 535.0 356.0 383.0 713.0 F T71 F T5 140 145 150 150 713.0 242.0 355.0 295.0 T5 T77 T51 T6 150 160 160 165 319.0 355.0 356.0 356.0 T6 T51 T6 T7 165 165 165 165 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1605 15.1 sel Mechanical Page 1606 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 383. SELECTING YIELD STRENGTHS OF CAST ALUMINUM ALLOYS (SHEET 2 OF 3) Alloy AA No. Temper Yield Strength (MPa) A360.0 380.0 384.0, A384.0 360.0 F F F F 165 165 165 170 712.0 355.0 296.0 A390.0 F T6 T6 F,T5 170 175 180 180 520.0 319.0 356.0 355.0 T4 T6 T6 T6 180 185 185 190 518.0 336.0 355.0 A390.0 F T551 T71 F,T5 190 195 200 200 242.0 355.0 356.0 201.0 T571 T7 T7 T4 205 210 210 215 355.0 295.0 242.0 355.0 T71 T62 T571 T61 215 220 235 240 390.0 355.0 A390.0 359.0 F T7 T7 T61 240 250 250 255 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 1606 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1607 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 383. SELECTING YIELD STRENGTHS OF CAST ALUMINUM ALLOYS (SHEET 3 OF 3) Alloy AA No. Temper Yield Strength (MPa) 390.0 A390.0 771.0 355.0 T5 T7 T6 T62 260 260 275 280 A390.0 354.0 242.0 357.0, A357.0 T6 T61 T61 T62 280 285 290 290 359.0 336.0 A390.0 206.0, A206.0 T62 T65 T6 T7 290 295 310 345 201.0 201.0 T7 T6 415 435 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1607 15.1 sel Mechanical Page 1608 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 384. SELECTING YIELD STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 7) Alloy Yield Strength Temper (MPa) 1050 1060 1350 1100 0 0 0 0 28 28 28 34 5005 3003 5457 Alclad 6061 0 0 0 0 41 42 48 48 6063 3105 5050 6061 0 0 0 0 48 55 55 55 Alclad 2014 3004 4043 6070 0 0 0 0 69 69 69 69 1060 2024 Alclad 2024 2219 H12 0 0 0 76 76 76 76 6101 1350 6066 7005 Hlll H12 0 0 76 83 83 83 1060 5052 5652 6063 H14 0 0 T1 90 90 90 90 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984). ©2001 CRC Press LLC 1608 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1609 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 384. SELECTING YIELD STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 7) Alloy Yield Strength Temper (MPa) 6063 6463 Alclad 7075 1350 T4 Tl 0 H14 90 90 95 97 2014 1050 1060 1100 0 H14 H16 H12 97 105 105 105 6005 7075 1350 1100 T1 0 H16 H14 105 105 110 115 5005 5086 5154 5154 H32 0 0 H112 115 115 115 115 5254 5254 5454 1050 0 H112 0 H16 115 115 115 125 1060 Alclad 5454 3105 H18 H12 H112 H12 125 125 125 130 5005 5086 6009 Alclad 6061 H12 H112 T4 T4, T451 130 130 130 130 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1609 15.1 sel Mechanical Page 1610 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 384. SELECTING YIELD STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 7) Alloy Yield Strength Temper (MPa) 1100 5005 5182 5657 H16 H34 0 H25 140 140 140 140 6205 1050 3003 5050 Tl H18 H14 H32 140 145 145 145 5083 6061 6063 6463 0 T4, T451 T5 T5 145 145 145 145 1100 3105 5005 5056 H18 H14 H14 0 150 150 150 150 6351 3105 5456 5457 T4 H25 0 H25 150 160 160 160 1350 5005 5050 5456 H19 H36 H34 H112 165 165 165 165 5657 3003 Alclad 3105 H28, H38 H16 H32 H16 165 170 170 170 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984). ©2001 CRC Press LLC 1610 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1611 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 384. SELECTING YIELD STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 7) Alloy Yield Strength Temper (MPa) 5005 5252 6010 6070 H16 H25 T4 T4 170 170 170 170 5050 5454 5454 2219 H36 H111 H311 T42 180 180 180 185 3003 5005 5457 6063 H18 H38 H28, H38 T831 185 185 185 185 2036 3105 5005 5052 T4 H18 H18 H32 195 195 195 195 5083 5652 6151 3004 H112 H32 T6 H34 195 195 195 200 5050 5086 5154 5254 H38 H32, H116, H117 H32 H32 200 205 205 205 5454 6066 5052 5652 H32 T4, T451 H34 H34 205 205 215 215 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1611 15.1 sel Mechanical Page 1612 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 384. SELECTING YIELD STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 5 OF 7) Alloy Yield Strength Temper (MPa) 6063 6463 3004 5083 T6 T6 H36 H113 215 215 230 230 5083 5154 5254 5456 H321 H34 H34 H111 230 230 230 230 5182 5052 5252 5454 H32 H36 H28, H38 H34 235 240 240 240 5652 6005 6063 2219 H36 T5 T83 T31, T351 240 240 240 250 3004 5083 5154 5254 H38 H323, H32 H36 H36 250 250 250 250 Alclad 2014 2218 5052 5086 T4 T72 H38 H34 255 255 255 255 5456 5652 Alclad 6061 4043 H321, H116 H38 T6, T651 H18 255 255 255 270 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984). ©2001 CRC Press LLC 1612 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1613 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 384. SELECTING YIELD STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 6 OF 7) Alloy Yield Strength Temper (MPa) 5154 5254 6063 Alclad 2014 H38 H38 T832 T3 270 270 270 275 2218 5454 6061 5083 T71 H36 T6, T651 H343, H34 275 275 275 285 5182 6351 2014 Alclad 2024 H34 T6 T4 T4, T351 285 285 290 290 2219 6205 2011 6201 T62 T5 T3 T6 290 290 295 300 2218 2011 Alclad 2024 5454 T61 T8 T H38 305 310 310 310 6201 2219 4032 7005 T81 T37 T6 T6,T63,T6351 310 315 315 315 2024 6009 2024 5056 T4, T351 T6 T3 H38 325 325 345 345 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1613 15.1 sel Mechanical Page 1614 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 384. SELECTING YIELD STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 7 OF 7) Alloy Yield Strength Temper (MPa) 7005 2219 6070 6066 T53 T81, T851 T6 T6, T651 345 350 350 360 Alclad 2024 2618 6262 2024 T361 All T9 T361 365 370 380 395 2219 5182 5056 2014 T87 H19(n) H18 T6 395 395 405 415 Alclad 2014 Alclad 2024 2048 7075 T6 T81, T851 T73 415 415 415 435 2124 Alclad 2024 7050 7175 T851 T861 T736 T736 440 455 455 455 Alclad 7075 7475 7075 7175 T6,T651 T61 T6,T651 T66 460 460 505 525 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p.299–302, (1984). ©2001 CRC Press LLC 1614 CRC Handbook of Materials Science & Engineering 15.1 sel Mechanical Page 1615 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 385. SELECTING YIELD STRENGTHS OF POLYMERS (SHEET 1 OF 2) Polymer Yield Strength, (ASTM D638) (l03 psi) Polypropylene: High impact Polystyrene, Molded: High impact Polypropylene: Asbestos filled Polypropylene: Flame retardant 2.8—4.3 2.8—5.3 3.3—8.2 3.6—4.2 Polystyrene, Molded: Medium impact Nylon; Molded or Extruded: Type 8 Polypropylene: General purpose Polystyrene, Molded: General purpose 3.7—6.0 3.9 4.5—6.0 5.0—10 Polymide: Unreinforced PVC–acrylic injection molded Nylon; Molded or Extruded: Type 12 Chlorinated Polyether 5—7.5 5.5 5.5—6.5 5.9 PVC–acrylic sheet Polypropylene: Glass reinforced Nylon, Type 6/10; Molded or Extruded: General purpose Nylon; Molded or Extruded: Flexible copolymers 6.5 7—11 7.1—8.5 7.5—10.0 Polyester Injection Moldings: General purpose grade Phenylene Oxide: SE—100 Nylon, Type 6/6: General purpose molding Polyarylsulfone 7.5—8 7.8 8.0—11.8 8—12 ABS–Polycarbonate Alloy Polyester: General purpose grade Polycarbonate Nylon; Molded or Extruded: Type 11 8.2 8.2 8.5 8.5 Nylon; Molded or Extruded: General purpose Nylon, Type 6/6: General purpose extrusion Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow 8.5—12.5 8.6—12.6 8.8 8.8 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1615 15.1 sel Mechanical Page 1616 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 385. SELECTING YIELD STRENGTHS OF POLYMERS (SHEET 2 OF 2) Polymer Yield Strength, (ASTM D638) (l03 psi) Polyphenylene sulfide: Standard Phenylene Oxide: SE—1 Polyacetal Homopolymer: Standard Phenylene oxide (Noryl): Standard 9.511 9.6 10 10.2 Polyester: Asbestos filled grade Nylon; Molded or Extruded: Cast Polyester: Glass reinforced grade Polystyrene, Molded: Glass fiber 30% reinforced 12 12.8 14 14 Phenylene Oxide: Glass fiber reinforced Polyester Moldings: Glass reinforced self extinguishing Phenylene oxide (Noryl): Glass fiber reinforced Polyester Injection Moldings: Glass reinforced grades 14.5—17.0 17 17—19 17—25 Styrene acrylonitrile (SAN): Glass fiber (30%) reinforced Polyacetal Copolymer: 25% glass reinforced Polyphenylene sulfide: 40% glass reinforced Nylon, Type 6/6; Molded or Extruded: Glass fiber reinforced 18 18.5 20—21 Polymide: Glass reinforced 28 25 To convert psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1616 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1617 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 386. SELECTING OF COMPRESSIVE YIELD STRENGTHS POLYMERS (SHEET 1 OF 2) Polymer Compressive Yield Strength (ASTM D690 or D695) (0.1% offset, 1000 psi) Polytetrafluoroethylene (PTFE) Ceramic reinforced (PTFE) Fluorinated ethylene propylene(FEP) Polytrifluoro chloroethylene (PTFCE) 0.7—1.8 1.4—1.8 1.6 2 Cellulose Acetate Butyrate, ASTM Grade: S2 6/10 Nylon: General purpose Cellulose Acetate, ASTM Grade: S2—1 Cellulose Acetate, ASTM Grade: MS—1, MS—2 2.6—4.3 3.0 3.15—6.1 3.2—7.2 Cellulose Acetate, ASTM Grade: H2—1 Polypropylene: High impact Cellulose Acetate, ASTM Grade: MH—1, MH—2 Polyacetal Homopolymer: 22% TFE reinforced 4.3—9.6 4.4 4.4—8.4 4.5 Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow 6/6 Nylon: General purpose molding 6/6 Nylon: General purpose extrusion 4.5 4.5 4.9 4.9 Cellusose Acetate Propionate, ASTM Grade: 3 Polyacetal Homopolymer: Standard Polyacetal Homopolymer: 20% glass reinforced Cellulose Acetate Butyrate, ASTM Grade: MH 4.9—5.8 5.2 5.2 5.3—7.1 Polypropylene: General purpose Cellusose Acetate Propionate, ASTM Grade: 1 Cellulose Acetate, ASTM Grade: H4—1 Polypropylene: Glass reinforced 5.5—6.5 6.2—7.3 6.5—10.6 6.5—7 Polypropylene: Asbestos filled Acrylic Moldings: High impact grade Cellulose Acetate Butyrate, ASTM Grade: H4 Nylon, Type 6: General purpose 7 7.3—12.0 8.8 9.7 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1617 15.2 sel Mechanical Page 1618 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 386. SELECTING OF COMPRESSIVE YIELD STRENGTHS POLYMERS (SHEET 2 OF 2) Polymer Compressive Yield Strength (ASTM D690 or D695) (0.1% offset, 1000 psi) Polyvinyl Chloride: Rigid—normal impact Acrylic Cast Resin Sheets, Rods: General purpose, type I Polyvinylidene— fluoride (PVDF) Nylon, Type 6: Cast 10—11 12—14 12.8—14.2 14 Acrylic Cast Resin Sheets, Rods: General purpose, type II Acrylic Moldings: Grades 5, 6, 8 6/10 Nylon: Glass fiber (30%) reinforced Nylon, Type 6: Glass fiber (30%) reinforced 14—18 14.5—17 18 19—20 6/6 Nylon: Glass fiber reinforced Vinylidene chloride 20—24 75—85 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1618 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1619 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 387. SELECTING FLEXURAL STRENGTHS OF POLYMERS (SHEET 1 OF 4) Polymer Flexural Strength (ASTM D790) (103 psi) Epoxy, Standard: Cast flexible Cellulose Acetate Butyrate, ASTM Grade: S2 Fluorinated ethylene propylene(FEP) Nylon, Type 6: Flexible copolymers 1.2—12.7 2.5—3.95 (yield) 3 (0.1% offset) 3.4—16.4 Polytrifluoro chloroethylene (PTFCE) Cellulose Acetate, ASTM Grade: S2—1 Cellulose Acetate, ASTM Grade: MS—1, MS—2 Polyesters, Cast Thermoset: Flexible 3.5 (0.1% offset) 3.5—5.7 (yield) 3.8—7.1 (yield) 4—16 Polypropylene: High impact Cellulose Acetate, ASTM Grade: MH—1, MH—2 Chlorinated polyether ABS Resins; Molded or Extruded: Low temperature impact 4.1 (yield) 4.4—8.65 (yield) 5 (0.1% offset) 5—8 Cellusose Acetate Propionate, ASTM Grade: 3 Cellulose Acetate Butyrate, ASTM Grade: MH Cellulose Acetate, ASTM Grade: H2—1 ABS Resins; Molded or Extruded: Very high impact 5.6—6.2 (yield) 5.6—6.7 (yield) 6.0—10.0 (yield) 6.0—9.8 Silicone: Granular (silica) reinforced Melamines, Molded: Cellulose filled, electrical Reinforced polyester: High strength (glass fibers) Polypropylene: General purpose 6—10 6—15 6—26 6—7 (yield) Polymide: Unreinforced Cellusose Acetate Propionate, ASTM Grade: 1 Rubber phenolic—chopped fabric filled Rubber phenolic—asbestos filled 6.6—11 6.8—7.9 (yield) 7 7 Alkyd, Molded: Granular (high speed molding) Rubber phenolic—woodflour or flock filled Diallyl Phthalate, Molded: Orlon filled Urea, Molded: Woodflour filled 7—10 7—12 7.5—10.5 7.5—12.0 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1619 15.2 sel Mechanical Page 1620 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 387. SELECTING FLEXURAL STRENGTHS OF POLYMERS (SHEET 2 OF 4) Polymer Flexural Strength (ASTM D790) (103 psi) Urea, Molded: Cellulose filled (ASTM Type 2) Polypropylene: Asbestos filled ABS Resins; Molded or Extruded: High impact 6/10 Nylon: General purpose 7.5—13 7.5—9 (yield) 7.5—9.5 8 Phenolic: Shock: paper, flock, or pulp filled Diallyl Phthalate, Molded: Asbestos filled Alkyd, Molded: Putty (encapsulating) Polypropylene: Glass reinforced 8.0—11.5 8—10 8—11 8—11 (yield) Phenolic: High shock, chopped fabric or cord filled Urea, Molded: Alpha—cellulose filled (ASTM Type l) Polyesters, Cast Thermoset: Rigid Cellulose Acetate, ASTM Grade: H4—1 8—15 8—18 8—24 8.1—11.15 (yield) Phenolic: General, woodflour and flock filled Polyvinylidene— fluoride (PVDF) PVC–acrylic injection molded Acrylic Moldings: High impact grade 8.5—12 8.6—10.8 (0.1% offset) 8.7 8.7—12.0 Cellulose Acetate Butyrate, ASTM Grade: H4 Diallyl Phthalate, Molded: Dacron filled Melamines, Molded: Unfilled ABS Resins; Molded or Extruded: Medium impact 9 (yield) 9—11.5 9.5—14 9.9—11.8 Epoxy, High performance resins: Molded Phenolic: Arc resistant—mineral filled Reinforced polyester: Heat and chemical resistant (asbestos) Polystyrene: General purpose 10—12 10—13 10—13 10—15 Diallyl Phthalate, Molded: Glass fiber filled Phenolic: Very high shock, glass fiber filled PVC–acrylic sheet ABS Resins; Molded or Extruded: Heat resistant 10—18 10—45 10.7 11.0—12.0 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1620 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1621 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 387. SELECTING FLEXURAL STRENGTHS OF POLYMERS (SHEET 3 OF 4) Polymer Flexural Strength (ASTM D790) (103 psi) Epoxy, High performance resins: Cast, rigid Melamines, Molded: Alpha cellulose filled Polyvinyl Chloride And Copolymers: Rigid—normal impact Polyester Injection Moldings: General purpose grade 11—16 11—16 11—16 12 Epoxy novolacs: Cast, rigid Acrylic, Cast Resin Sheets, Rods: General purpose, type I Alkyd, Molded: Glass reinforced (heavy duty parts) Polyester Injection Moldings: General purpose grade 12—13 12—14 12—17 12.8 Phenylene Oxide: SE—100 Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow Polycarbonate 12.8 13 13 13.5 Phenylene Oxide: SE—1 Epoxy, Standard: Cast rigid Melamines, Molded: Glass fiber filled Polyacetal Homopolymer: Standard 13.5 14—18 14—18 14.1 ABS–Polycarbonate Alloy Chlorinated polyvinyl chloride Acrylic Moldings: Grades 5, 6, 8 Acrylic, Cast Resin Sheets, Rods: General purpose, type II 14.3 14.5 15—16 15—17 Vinylidene chloride Phenylene oxides (Noryl): Standard Silicone: Fibrous (glass) reinforced Polyarylsulfone 15—17 15.4 16—19 16.1—17.2 Nylon, Type 6: Cast Polystyrene: Glass fiber —30% reinforced Melamines, Molded: Alpha mineral filled Polyester Injection Moldings: Glass reinforced grade 16.5 17 18—10 19 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1621 15.2 sel Mechanical Page 1622 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 387. SELECTING FLEXURAL STRENGTHS OF POLYMERS (SHEET 4 OF 4) Polymer Flexural Strength (ASTM D790) (103 psi) Polyester Injection Moldings: Asbestos—filled grade Alkyd, Molded: Rope (general purpose) Epoxy, Standard: Molded Polyphenylene sulfide: Standard 19 19—20 19—22 20 Phenylene Oxide: Glass fiber reinforced Styrene acrylonitrile (SAN): Glass fiber (30%) reinforced Polyester Injection Moldings: Glass reinforced grades 6/10 Nylon: Glass fiber (30%) reinforced 20.5—22 22 22—24 23 Polyester Injection Moldings: Glass reinforced self extinguishing Phenylene oxides (Noryl): Glass fiber reinforced 6/6 Nylon: Glass fiber Molybdenum disulfide filled Reinforced polyester sheet molding: general purpose 23 25—28 26—28 26—32 Nylon, Type 6: Glass fiber (30%) reinforced 6/6 Nylon: Glass fiber reinforced Polycarbonate (40% glass fiber reinforced) Polyacetal Copolymer: 25% glass reinforced 26—34 26—35 27 28 Silicone: Woven glass fabric/ silicone laminate Polyphenylene sulfide: 40% glass reinforced Polymide: Glass reinforced Epoxy, High performance resins: Glass cloth laminate 33—47 37 56 70—72 Epoxy, Standard: General purpose glass cloth laminate Epoxy novolacs: Glass cloth laminate Epoxy, Standard: High strength laminate Epoxy, Standard: Filament wound composite 80—90 84—89 165—177 170—180 Nylon, Type 6: General purpose 6/6 Nylon: General purpose molding Unbreakable Unbreakable To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1622 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1623 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 388. SELECTING SHEAR STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 6) Alloy AA No. Temper Shear Strength (MPa) 1060 1060 1350 7072 0 H12 0 0 48 55 55 55 1050 1060 1100 1350 0 H14 0 H12 62 62 62 62 7072 1050 1060 1100 H12 H14 H16 H12 62 69 69 69 1350 6063 7072 1050 H14 0 H14 H16 69 69 69 76 1060 1100 1350 3003 H18 H14 H16 0 76 76 76 76 5005 Alclad 6061 1050 1100 0 0 H18 H16 76 76 83 83 Alclad 3105 5457 6061 H12 0 0 0 83 83 83 83 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1623 15.2 sel Mechanical Page 1624 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 388. SELECTING SHEAR STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 6) Alloy AA No. Temper Shear Strength (MPa) 1100 3003 3105 5005 H18 H14 H12 H12 90 97 97 97 5005 5005 5005 5657 H14 H32 H34 H25 97 97 97 97 6063 6066 6070 6463 T1 0 0 T1 97 97 97 97 1350 3003 3105 3105 H19 H16 H14 H25 105 105 105 105 5005 5005 5050 5657 H16 H36 0 H28, H38 105 105 105 105 3003 3004 3105 5005 H18 0 H16 H18 110 110 110 110 5005 5457 Alclad 3105 H38 H25 H32 H18 110 110 115 115 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 1624 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1625 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 388. SELECTING SHEAR STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 6) Alloy AA No. Temper Shear Strength (MPa) 5050 6063 6463 7005 H32 T5 T5 0 115 115 115 117 2014 Alclad 2014 2024 Alclad 2024 0 0 0 0 125 125 125 125 3004 5050 5052 5457 H34 H34 0 H28, H38 125 125 125 125 5652 6063 5050 3004 0 T831 H36 H36 125 125 130 140 5050 5052 5652 6151 H38 H32 H32 T6 140 140 140 140 3004 5052 5252 5652 H38 H34 H25 H34 145 145 145 145 5154 5154 5182 5254 0 H32 0 0 150 150 150 150 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1625 15.2 sel Mechanical Page 1626 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 388. SELECTING SHEAR STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 6) Alloy AA No. Temper Shear Strength (MPa) 5254 6009 Alclad 6061 6063 H32 T4 T4, T451 T6 150 150 150 150 6063 6463 7075 Alclad 7075 T83 T6 0 0 150 150 150 150 5052 5086 5252 5454 H36 0 H28, H38 0 160 160 160 160 5454 5454 5454 5652 H111 H112 H311 H36 160 160 160 160 5052 5154 5254 5454 H38 H34 H34 H32 165 165 165 165 5652 6061 5083 5056 H38 T4, T451 0 0 165 165 170 180 5154 5254 5454 5086 H36 H36 H34 H34 180 180 180 185 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 1626 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1627 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 388. SELECTING SHEAR STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 5 OF 6) Alloy AA No. Temper Shear Strength (MPa) Alclad 6061 6063 5154 5254 T6, T651 T832 H38 H38 185 185 195 195 6066 6351 2218 5456 T4, T451 T6 T72 H321, H116 200 200 205 205 6005 6061 6070 6205 T5 T6, T651 T4 T5 205 205 205 205 7005 2011 5056 7005 T6,T63,T6351 T3 H38 T53 214 220 220 221 5056 6066 6070 2011 H18 T6, T651 T6 T8 235 235 235 240 6262 Alclad 2014 Alclad 2014 2014 T9 T3 T4 T4 240 255 255 260 2618 4032 7475 7475 All T6 T7351 T7651 260 260 270 270 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1627 15.2 sel Mechanical Page 1628 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 388. SELECTING SHEAR STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 6 OF 6) Alloy AA No. Temper Shear Strength (MPa) Alclad 2024 Alclad 2024 Alclad 2024 Alclad 2014 T T4, T351 T81, T851 T6 275 275 275 285 2024 2024 Alclad 2024 2014 T3 T4, T351 T361 T6 285 285 285 290 2024 Alclad 2024 7175 7475 T361 T861 T736 T651 290 290 290 295 Alclad 7075 7175 7075 T6,T651 T66 T6,T651 315 325 330 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 1628 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1629 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 389. SELECTING TORSIONAL SHEAR STRENGTHS OF GRAY CAST IRON BARS ASTM Class Torsional Shear Strength (MPa) 20 25 30 179 220 276 35 40 50 60 334 393 503 610 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1629 15.2 sel Mechanical Page 1630 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 390. SELECTING HARDNESS OF TOOL STEELS Type Condition Hardness (HRC) S7 L2 S1 S5 Annealed Annealed Annealed Annealed 95 HRB 96 HRB 96 HRB 96 HRB L2 L6 S5 S7 Oil quenched from 855 •C and single tempered at 650 •C Oil quenched from 845 •C and single tempered at 315 •C 650 •C Oil quenched from 870 •C and single tempered at 650 •C Fan cooled from 940 •C and single tempered at 650 •C 30 32 37 39 L2 L6 S1 L6 Oil quenched from 855 •C and single tempered at 540 •C Oil quenched from 845 •C and single tempered at 315 •C 540 •C Oil quenched from 930 •C and single tempered at 650 •C Oil quenched from 845 •C and single tempered at 315 •C 425 •C 41 42 42 46 L2 S1 S5 S1 Oil quenched from 855 •C and single tempered at 425 •C Oil quenched from 930 •C and single tempered at 540 •C Oil quenched from 870 •C and single tempered at 540 •C Oil quenched from 930 •C and single tempered at 425 •C 47 47.5 48 50.5 S7 L2 S5 S7 Fan cooled from 940 •C and single tempered at 540 •C Oil quenched from 855 •C and single tempered at 315 •C Oil quenched from 870 •C and single tempered at 425 •C Fan cooled from 940 •C and single tempered at 425 •C 51 52 52 53 L2 L6 S1 S7 Oil quenched from 855 •C and single tempered at 205 •C Oil quenched from 845 •C and single tempered at 315 •C Oil quenched from 930 •C and single tempered at 315 •C Fan cooled from 940 •C and single tempered at 315 •C 54 54 54 55 S1 S5 S7 S5 Oil quenched from 930 •C and single tempered at 205 •C Oil quenched from 870 •C and single tempered at 315 •C Fan cooled from 940 •C and single tempered at 205 •C Oil quenched from 870 •C and single tempered at 205 •C 57.5 58 58 59 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984). ©2001 CRC Press LLC 1630 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1631 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 391. SELECTING HARDNESS OF GRAY CAST IRONS SAE grade Hardness (HB) G2500 G2500a G1800 170 to 229 170 to 229 187 max G3000 C3500 G3500b 187 to 241 207 to 255 207 to 255 G3500c G4000 G4000d 207 to 255 217 to 269 241 to 321 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). Table 392. SELECTING HARDNESS OF GRAY CAST IRON BARS Grey Cast Iron Bars ASTM Class Hardness (HB) 20 25 30 156 174 210 35 40 212 235 50 60 262 302 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1631 15.2 sel Mechanical Page 1632 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 393. SELECTING HARDNESS OF DUCTILE IRONS Specification Number Grade or Class Hardness (HB) ASTM A395-76; ASME SA395 SAE J434c SAE J434c 60-40-18 D4512 D4018 143-187 156-217 170 max MlL-I-24137(Ships) SAE J434c MlL-I-24137(Ships) Class C D5506 Class A 175 max 187-255 190 max MlL-I-24137(Ships) ASTM A476-70(d); SAE AMS5316 SAE J434c Class B 80-60-03 D7003 190 max 201 min 241-302 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984). ©2001 CRC Press LLC 1632 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1633 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 394. SELECTING HARDNESS OF MALLEABLE IRON CASTINGS Specification Number Grade or Class Hardness (HB) ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A47, A338; ANSI G48.1; FED QQ–I–666c ASTM A47, A338; ANSI G48.1; FED QQ–I–666c ASTM A197 40010 32510 35018 149–197 156 max 156 max 156 max ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 M3210 45008 45006 M4504(a) 156 max 156–197 156–207 163–217 ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL–I–11444B 50005 M5003(a) M5503(b) 60004 179–229 187–241 187–241 197–241 ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL–I–11444B ASTM A602; SAE J158 70003 M7002(b) 80002 M8501(b) 217–269 229–269 241–285 269–302 ASTM A220; ANSI C48.2; MIL–I–11444B 90001 269–321 (a) Air quenched and tempered (b) Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1633 15.2 sel Mechanical Page 1634 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 395. SELECTING HARDNESS OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 5) Alloy AA No. Temper Hardness (BHN) 1060 7072 1060 1100 0 0 H12 0 19 20 23 23 6063 1060 1100 3003 0 H14 H12 0 25 26 28 28 5005 7072 1060 6061 0 H12 H16 0 28 28 30 30 1100 5457 7072 1060 H14 0 H14 H18 32 32 32 35 Alclad 6070 5005 5050 H12 0 H32 0 35 35 36 36 1100 3003 5657 5005 H16 H14 H25 H34 38 40 40 41 6063 6463 6066 1100 T1 T1 0 H18 42 42 43 44 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 1634 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1635 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 395. SELECTING HARDNESS OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 5) Alloy AA No. Temper Hardness (BHN) 2014 3004 5005 5050 0 0 H36 H32 45 45 46 46 2024 3003 5052 5652 0 H16 0 0 47 47 47 47 5457 5657 5005 Alclad H25 H28, H38 H38 H32 48 50 51 52 5050 3003 5457 5050 H34 H18 H28, H38 H36 53 55 55 58 5154 5182 5254 5052 0 0 0 H32 58 58 58 60 5652 6063 6463 7075 H32 T5 T5 0 60 60 60 60 5454 5454 3004 5050 0 H112 H34 H38 62 62 63 63 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1635 15.2 sel Mechanical Page 1636 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 395. SELECTING HARDNESS OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 5) Alloy AA No. Temper Hardness (BHN) 5154 5254 5056 6061 H112 H112 0 T4, T451 63 63 65 65 6205 5154 5254 5052 T1 H32 H32 H34 65 67 67 68 5252 5652 3004 5454 H25 H34 H36 H111 68 68 70 70 5454 6009 6063 6151 H311 T4 T831 T6 70 70 70 71 5052 5154 5254 5454 H36 H34 H34 H32 73 73 73 73 5652 6063 6463 5252 H36 T6 T6 H28, H38 73 73 74 75 6010 3004 5052 5652 T4 H38 H38 H38 76 77 77 77 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 1636 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1637 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 395. SELECTING HARDNESS OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 5) Alloy AA No. Temper Hardness (BHN) 5154 5254 5154 5254 H36 H36 H38 H38 78 78 80 80 5454 6063 5456 6066 H34 T83 H321, H116 T4, T451 81 82 90 90 6070 6201 2011 2218 T4 T6 T3 T72 90 90 95 95 6005 6061 6063 6205 T5 T6, T651 T832 T5 95 95 95 95 6351 2011 5056 2014 T6 T8 H38 T4 95 100 100 105 2218 5056 2218 2024 T71 H18 T61 T3 105 105 115 120 2024 4032 6066 6070 T4, T351 T6 T6, T651 T6 120 120 120 120 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1637 15.2 sel Mechanical Page 1638 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 395. SELECTING HARDNESS OF WROUGHT ALUMINUM ALLOYS (SHEET 5 OF 5) Alloy AA No. Temper Hardness (BHN) 6262 2024 2014 7049 T9 T361 T6 T73 120 130 135 135 7175 7075 7175 T736 T6,T651 T66 145 150 150 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 1638 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1639 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 396. SELECTING HARDNESS OF (SHEET 1 OF 6) CERAMICS Ceramic Hardness Tantalum Monocarbide (TaC) Brinell: 840 Titanium Oxide (TiO2) Knoop: 713-1121 kg/mm2 Trisilicon tetranitride (Si3N4) (α) Knoop: 815-1936kg/mm2 Zirconium Oxide (ZrO2) (partially stabilized) Knoop: 1019-1121 kg/mm2 Zirconium Oxide (ZrO2)(fully stabilized) Trichromium Dicarbide (Cr3C2) Knoop: 1019-1529 kg/mm2 Knoop: 1019-1834 kg/mm2 Hafnium Monocarbide (HfC) Knoop: 1790-1870 kg/mm2 Zirconium Monocarbide (ZrC) Knoop: 2138 kg/mm2 Silicon Carbide (SiC) (cubic, CVD) Dichromium Trioxide (Cr2O3) Knoop: 2853-4483 kg/mm2 Zirconium Mononitride (ZrN) Titanium mononitride (TiN) Tantalum Diboride (TaB2) Knoop 30g: 1983 kg/mm2 Knoop 30g: 2160 kg/mm2 Knoop 30g: 2537 kg/mm2 Titanium Diboride (TiB2) Knoop 30g: 3370 kg/mm2 Tantalum Monocarbide (TaC) Knoop 50g: 1800-1952 kg/mm2 Calcium Oxide (CaO) Uranium Dioxide (UO2) Silicon Dioxide (SiO2) (parallel to optical axis) Knoop 100g: 560 kg/mm2 Knoop 100g: 600 kg/mm2 Silicon Dioxide (SiO2) (normal to optical axis) Knoop: 2955 kg/mm2 Knoop 100g: 710 kg/mm2 Knoop 100g: 790 kg/mm2 Knoop 100g: 825 kg/mm2 Tantalum Monocarbide (TaC) Thorium Dioxide (ThO2) Tungsten Disilicide (WSi2) Knoop 100g: 945 kg/mm2 Knoop 100g: 1090 kg/mm2 Zirconium Oxide (ZrO2) Knoop 100g: 1200 kg/mm2 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 1639 15.2 sel Mechanical Page 1640 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 396. SELECTING HARDNESS OF (SHEET 2 OF 6) CERAMICS Ceramic Hardness Aluminum Nitride (AlN) Molybdenum Disilicide (MoSi2) Knoop 100g: 1225-1230 kg/mm2 Knoop 100g: 1257 kg/mm2 Beryllium Oxide (BeO) Zirconium Mononitride (ZrN) Knoop 100g: 1300 kg/mm2 Knoop 100g: 1510 kg/mm2 Zirconium Diboride (ZrB2) Knoop 100g: 1560 kg/mm2 Chromium Diboride (CrB2) Titanium mononitride (TiN) Knoop 100g: 1700 kg/mm2 Knoop 100g: 1770 kg/mm2 Tungsten Monocarbide (WC) Knoop 100g: 1870-1880 kg/mm2 Aluminum Oxide (Al2O3) Knoop 100g: 2000-2050 kg/mm2 Titanium Monocarbide (TiC) Knoop 100g: 2470 kg/mm2 Silicon Carbide (SiC) Tantalum Diboride (TaB2) Knoop 100g: 2500-2550 kg/mm2 Knoop 100g: 2615 ± 120 kg/mm2 Titanium Diboride (TiB2) Knoop 100g: 2710-3000 kg/mm2 Knoop 100g: 2745 kg/mm2 (green) Silicon Carbide (SiC) Boron Carbide (B4C) Knoop 100g: 2800 kg/mm2 Silicon Carbide (SiC) Titanium Diboride (TiB2) (single crystal) Knoop 100g: 2960 kg/mm2 (black) Zirconium Diboride (ZrB2) (single crystal) Knoop 160g: 2000 kg/mm2 Zirconium Diboride (ZrB2) Knoop 160g: 2100 kg/mm2 Hafnium Diboride (HfB2) (polycrystalline) Knoop 160g: 2400kg/mm at 24 oC Titanium Diboride (TiB2) Knoop 160g: 3500 kg/mm2 Hafnium Diboride (HfB2) (single crystal) Knoop 160g: 3800kg/mm at 24 oC Knoop 100g: 3250±100 kg/mm2 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 1640 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1641 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 396. SELECTING HARDNESS OF (SHEET 3 OF 6) CERAMICS Ceramic Hardness Titanium Monocarbide (TiC) Boron Carbide (B4C) Knoop 1000g: 1905 kg/mm2 Tantalum Diboride (TaB2) Micro: 1700 kg/mm2 Zirconium Monocarbide (ZrC) Micro: 2090 kg/mm2 Titanium Monocarbide (TiC) Molybdenum Disilicide (MoSi2) Micro 20g: 3200 kg/mm2 Tungsten Disilicide (WSi2) Micro 50g: 1260 kg/mm2 Molybdenum Disilicide (MoSi2) Micro 100g: 1290 kg/mm2 Chromium Diboride (CrB2) Micro 100g: 1800 kg/mm2 Boron Nitride (BN) (hexagonal) Aluminum Nitride (AlN) Magnesium Oxide (MgO) Uranium Dioxide (UO2) Mohs: 2 Mohs: 5-5.5 Mohs: 5.5 Mohs: 6-7 Sillimanite (Al2O3 SiO2) Mohs: 6-7 Thorium Dioxide (ThO2) Mohs: 6.5 Zirconium Oxide (ZrO2) Mohs: 6.5 Mullite (3Al2O3 2SiO2) Mohs: 7.5 Zircon (SiO2 ZrO2) Zirconium Mononitride (ZrN) Titanium mononitride (TiN) Mohs: 7.5 Mohs: 8+ Mohs: 8-10 Knoop 1000g: 2230 kg/mm2 Micro 50g: 1200 kg/mm2 Aluminum Oxide (Al2O3) (single crystal) Mohs: 9 Trisilicon tetranitride (Si3N4) Silicon Carbide (SiC) Mohs: 9+ Mohs: 9.2 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 1641 15.2 sel Mechanical Page 1642 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 396. SELECTING HARDNESS OF (SHEET 4 OF 6) CERAMICS Ceramic Hardness Beryllium Oxide (BeO) Mullite (3Al2O3 2SiO2) R45N: 64-67 R45N: 71 Aluminum Oxide (Al2O3) R45N: 78-90 Aluminum Nitride (AlN) (thin film) Aluminum Nitride (AlN) (thick film) Rockwell 15N: 94.0 Rockwell 15N: 94.5 Tungsten Monocarbide (WC) (6% Co, 1-3µm grain size) Tungsten Monocarbide (WC) (24% Co, 1-3µm grain size) Zirconium Diboride (ZrB2) Tungsten Monocarbide (WC) (6% Co, 3-6µm grain size) Titanium Monocarbide (TiC) (98.6% density) Tungsten Monocarbide (WC) (6% Co, 2-4µm grain size) Rockwell A: 81.4 ± 0.4 Rockwell A: 86.9 ± 0.6 Rockwell A: 87-89 Rockwell A: 87.3 ± 0.5 Rockwell A: 88-89 Rockwell A: 88.6 ± 0.5 Tantalum Diboride (TaB2) Tantalum Monocarbide (TaC) Tungsten Monocarbide (WC) (12% Co, 1-3µm grain size) Rockwell A: 89.4 ± 0.5 Titanium Monocarbide (TiC) (99.5% density) Titanium Monocarbide (TiC) (100% density) Tungsten Monocarbide (WC) Rockwell A: 91-93.5 Rockwell A: 91-93.5 Rockwell A: 92 Zirconium Monocarbide (ZrC) Trisilicon tetranitride (Si3N4) Rockwell A: 92.5 Rockwell A: 99 Rockwell A: 89 Rockwell A: 89 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 1642 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1643 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 396. SELECTING HARDNESS OF (SHEET 5 OF 6) CERAMICS Ceramic Hardness Cordierite (2MgO 2Al2O3 5SiO2) (glass) Vickers: 672.5 kg/mm2 Titanium Oxide (TiO2) Trisilicon tetranitride (Si3N4) (α) Vickers: 713-1121 kg/mm2 Vickers: 815-1936kg/mm2 Cordierite (2MgO 2Al2O3 5SiO2) Vickers: 835.6 kg/mm2 Zirconium Oxide (ZrO2) (partially stabilized) Zirconium Oxide (ZrO2)(fully stabilized) Trichromium Dicarbide (Cr3C2) Vickers: 1019-1121 kg/mm2 Vickers: 1019-1529 kg/mm2 Vickers: 1019-1834 kg/mm2 Mullite (3Al2O3 2SiO2) Vickers: 1120 kg/mm2 Boron Carbide (B4C) Vickers: 2400 kg/mm2 Silicon Carbide (SiC) (cubic, CVD) Dichromium Trioxide (Cr2O3) Vickers: 2853-4483 kg/mm2 Tungsten Disilicide (WSi2) Vickers 10g: 1632 kg/mm2 Aluminum Oxide (Al2O3) Vickers 20g: 2600 kg/mm2 Silicon Carbide (SiC) Vickers 25g: 3000-3500 kg/mm2 Chromium Diboride (CrB2) Vickers 50g: 1800 kg/mm2 Tantalum Monocarbide (TaC) Zirconium Diboride (ZrB2) Vickers 50g: 1800 kg/mm2 Tungsten Monocarbide (WC) Vickers 50g: 2400 kg/mm2 Hafnium Monocarbide (HfC) Vickers 50g: 2533-3202 kg/mm2 Zirconium Monocarbide (ZrC) Vickers 50g: 2600 kg/mm2 Aluminum Oxide (Al2O3) Vickers 50g: 2720 kg/mm2 Titanium Monocarbide (TiC) Titanium Diboride (TiB2) Vickers 50g: 2900-3200 kg/mm2 Vickers 50g: 3400 kg/mm2 Vickers: 2955 kg/mm2 Vickers 50g: 2200 kg/mm2 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 1643 15.2 sel Mechanical Page 1644 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 396. SELECTING HARDNESS OF (SHEET 6 OF 6) CERAMICS Ceramic Hardness Tungsten Disilicide (WSi2) Molybdenum Disilicide (MoSi2) Vickers 100g: 1090 kg/mm2 Vickers 100g: 1290-1550 kg/mm2 Tungsten Monocarbide (WC) Vickers 100g: 1730 kg/mm2 Zirconium Monocarbide (ZrC) Vickers 100g: 2836-3840 kg/mm2 Titanium Monocarbide (TiC) Vickers 100g: 2850-3390 kg/mm2 Silicon Dioxide (SiO2) (1011 face) 10 µm diagonal Silicon Dioxide (SiO2) (normal to optical axis) Silicon Dioxide (SiO2) Silicon Dioxide (SiO2) (parallel to optical axis) Vickers 500g: 1040-1130 kg/mm2 Vickers 500g: 1103 kg/mm2 Vickers 500g: 1120 kg/mm2 Vickers 500g: 1260 kg/mm2 Silicon Dioxide (SiO2) (polished 1010 face) 10 µm diagonal Silicon Dioxide (SiO2) Vickers 500g: 1300 kg/mm2 (1010 face) 10 µm diagonal Vickers 500g:1120-1230 kg/mm2 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 1644 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1645 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 397. SELECTING MICROHARDNESS OF GLASS Glass Test Microhardness SiO2 glass Knoop 500–679 B2O3 glass Vickers Vickers Vickers Vickers 194–205 227–253 231–257 237–269–345 Vickers Vickers Vickers Vickers 239–267 239–271 251–279 276 Vickers Vickers Vickers Vickers 292 293–297 297 328–345 Vickers Vickers Vickers Vickers 378±2 380 394±2 413±3 Vickers Vickers Vickers Vickers 414±4 423±4 460 503 SiO2–B2O3 glass (95% mol B2O3) SiO2–B2O3 glass (90% mol B2O3) SiO2–B2O3 glass (75% mol B2O3) SiO2–B2O3 glass (85% mol B2O3) SiO2–B2O3 glass (80% mol B2O3) SiO2–B2O3 glass (70% mol B2O3) B2O3–Na2O glass (5% mol Na2O) B2O3–Na2O glass (10% mol Na2O) SiO2–B2O3 glass (65% mol B2O3) B2O3–Na2O glass (15% mol Na2O) SiO2–B2O3 glass (60% mol B2O3) SiO2–Na2O glass (45% mol Na2O) B2O3–Na2O glass (20% mol Na2O) SiO2–Na2O glass (40% mol Na2O) SiO2–Na2O glass (30% mol Na2O) SiO2–Na2O glass (35% mol Na2O) SiO2–Na2O glass (25% mol Na2O) B2O3–Na2O glass (25% mol Na2O) B2O3–Na2O glass (30% mol Na2O) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1645 15.2 sel Mechanical Page 1646 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 398. SELECTING HARDNESS OF (SHEET 1 OF 5) POLYMERS Polymer Hardness, (ASTM D785) (Rockwell) Polyester, Thermoset: Flexible Polyester, Thermoset: Rigid Polyester: Heat & chemical resistant (asbestos reinforced) Polyester: Sheet molding compounds, general purpose 6—40 (Barcol) 35—50 (Barcol) 40—70 (Barcol) 45—60 (Barcol) Cellusose Acetate Propionate, ASTM Grade: 6 Polyethylene, Type III: High molecular weight Alkyd, Molded: Putty (encapsulating) Alkyd, Molded: Granular (high speed molding) 57 60—65 (Shore) 60—70 (Barcol) 60—70 (Barcol) Polyester moldings: High strength (glass fibers) Reinforced Epoxy, Standard: Cast High strength laminate Alkyd, Molded: Rope (general purpose) Alkyd, Molded: Glass reinforced (heavy duty parts) 60—80 (Barcol) 70—72 (Barcol) 70—75 (Barcol) 70—80 (Barcol) Silicone: Woven glass fabric/ silicone laminate Epoxy, Standard: Cast Molded Epoxy, High performance resins: Glass cloth laminate Cellusose Acetate Propionate, ASTM Grade: 3 75 (Barcol) 75-80 (Barcol) 75—80 92—96 Cellusose Acetate Propionate, ASTM Grade: 1 Epoxy, High performance resins: Cast, rigid 100—109 107—112 Polyvinyl Chloride: Nonrigid—general Vinylidene chloride A50—100 (Shore, ASTM D676) A78—100 (Shore, ASTM D676) >A95 (Shore, ASTM D676) Polyethylene, Type I: Melt index 6—26 Polyethylene, Type I: Melt index 0.3—3.6 C73, D47—53 (Shore) C73, D50—52 (Shore) Olefin Copolymer, Molded: EEA (ethylene ethyl acrylate) Olefin Copolymer, Molded: EVA (ethylene vinyl acetate) Polyethylene, Type I: Melt index 200 Polytetrafluoroethylene (PTFE) D35 (Shore) D36 (Shore) D45 (Shore) D52 Polyvinyl Chloride: Nonrigid—electrical Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1646 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1647 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 398. SELECTING HARDNESS OF (SHEET 2 OF 5) Polymer POLYMERS Hardness, (ASTM D785) (Rockwell) Polyethylene, Type II: Melt index 20 Polyethylene, Type II: Melt index l.0—1.9 Fluorinated ethylene propylene(FEP) Olefin Copolymer, Molded: Propylene—ethylene ionomer D55 (Shore) D55—D56 (Shore) D57—58 Polyethylene, Type III: Melt Melt index 0.l—12.0 Olefin Copolymer, Molded: Ethylene butene Polyethylene, Type III: Melt index 0.2—0.9 D60—70 (Shore) D65 (Shore) D68—70 (Shore) Polyethylene, Type III: Melt index 1.5—15 D68—70 (Shore) D70—85 (Shore, ASTM D676) D94—96 Polyvinyl Chloride: Rigid—normal impact Epoxy, High performance resins: Molded D60 (Shore) 6/10 Nylon: Glass fiber (30%) reinforced Phenolic, Molded: Very high shock: glass fiber filled 6/6 Nylon: Glass fiber reinforced Phenolic, Molded: High shock: chopped fabric or cord filled E40—50 E50—70 E60—E80 Phenolic, Molded: General: woodflour and flock filled Phenolic, Molded: Shock: paper, flock, or pulp filled Urea, Molded: Alpha—cellulose filled (ASTM Type l) E85—100 E85—95 E94—97 Melamine, Molded: Unfilled Polymide: Glass reinforced E110 E114 Phenylene Oxide: Glass fiber reinforced L106, L108 Polystyrene, Molded: High impact Acrylic Moldings: High impact grade Rubber phenolic—woodflour or flock filled Polystyrene, Molded: Medium impact M3—43 M38—45 M40—90 M47—65 E80—90 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1647 15.2 sel Mechanical Page 1648 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 398. SELECTING HARDNESS OF (SHEET 3 OF 5) POLYMERS Polymer Hardness, (ASTM D785) (Rockwell) Rubber phenolic—asbestos filled Epoxy, Standard: Cast Cast flexible Polyvinyl Chloride & Copolymers: Vinylidene chloride Rubber phenolic—chopped fabric filled M50 M50-100 M50—65 M57 Polycarbonate Silicone: Granular (silica) reinforced Polystyrene, Molded: General purpose Styrene acrylonitrile (SAN) M70 M71—95 M72 M75—85 Polyacetal Homopolymer: 22% TFE reinforced Polyacetal Copolymer: 25% glass reinforced Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow M78 M79 M80 M80 Acrylic Moldings: Grades 5, 6, 8 Acrylic Cast Resin Sheets, Rods: General purpose, type I Phenylene oxides (Noryl): Glass fiber reinforced Polyester, Thermoplastic Moldings: Asbestos—filled grade M80—103 M80—90 M84 Polyarylsulfone Polystyrene, Molded: Glass fiber -30% reinforced Silicone: Fibrous (glass) reinforced Polyacetal Homopolymer: 20% glass reinforced M85—110 M85—95 M87 M90 Glass fiber (30%) reinforced Styrene acrylonitrile (SAN) Polyacetal Homopolymer: Standard 6/6 Nylon: Glass fiber Molybdenum disulfide filled Thermoset Carbonate: Allyl diglycol carbonate M90—123 M94 M95—100 M95—M100 (Barcol) Acrylic Cast Resin Sheets, Rods: General purpose, type II Polycarbonate (40% glass fiber reinforced) Epoxy, Standard: Cast Filament wound composite Phenolic, Molded: Arc resistant—mineral M96—102 M97 M98-120 M105—115 M85 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1648 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1649 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 398. SELECTING HARDNESS OF (SHEET 4 OF 5) Polymer Epoxy, Standard: Cast rigid Cellusose Acetate Propionate, ASTM Grade: Asbestos filled Cellusose Acetate Propionate, ASTM Grade: Orlon filled Cellusose Acetate Propionate, ASTM Grade: Glass fiber filled POLYMERS Hardness, (ASTM D785) (Rockwell) M106 M107 M108 M108 Epoxy, Standard: Cast General purpose glass cloth laminate Melamine, Molded: Cellulose filled electrical Urea, Molded: Alpha—cellulose filled (ASTM Type l) Urea, Molded: Woodflour filled M115—125 M116—120 M116—120 Cellulose Acetate Butyrate, ASTM Grade: S2 Polypropylene: High impact Polytetrafluoroethylene (PTFE): Ceramic reinforced Cellulose Acetate, ASTM Grade: S2—1 R23—42 R28—95 R35—55 R49—88 Cellulose Acetate, ASTM Grade: MS—1, MS—2 Polypropylene: Flame retardant Nylon, Type 6: Flexible copolymers Cellulose Acetate, ASTM Grade: MH—1, MH—2 R54—96 R60—R105 R72—Rll9 R74—104 ABS Resin; Molded, Extruded: Low temperature impact Cellulose Acetate Butyrate, ASTM Grade: MH Polypropylene: General purpose ABS Resin; Molded, Extruded: Very high impact R75—95 R80—100 R80—R100 R85—105 Cellulose Acetate, ASTM Grade: H2—1 Polypropylene: Asbestos filled Polypropylene: Glass reinforced Nylon, Type 6: Glass fiber (30%) reinforced R89—112 R90—R110 R90—R115 R93—121 ABS Resin; Molded, Extruded: High impact Chlorinated polyether Nylon, Type 11 Cellulose Acetate, ASTM Grade: H4—1 R95—113 R100 R100—R108 R103—120 M115—117 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1649 15.2 sel Mechanical Page 1650 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 398. SELECTING HARDNESS OF (SHEET 5 OF 5) POLYMERS Polymer Hardness, (ASTM D785) (Rockwell) PVC–acrylic injection molded PVC–acrylic sheet Nylon, Type 12 ABS Resin; Molded, Extruded: Heat resistant R104 R105 R106 R107—116 ABS Resin; Molded, Extruded: Medium impact Polyvinylidene— fluoride (PVDF) Polytrifluoro chloroethylene (PTFCE) Polyvinyl Chloride & Copolymers: Rigid—normal impact R108—115 R109—110 R110—115 R110—120 6/10 Nylon: General purpose Cellulose Acetate Butyrate, ASTM Grade: H4 Phenylene Oxide: SE—100 Nylon, Type 6: Cast R111 R114 R115 R116 Polyester, Thermoplastic Moldings: General purpose grade Polyester, Thermoplastic Moldings: General purpose grade Polyester, Thermoplastic Moldings: Glass reinforced grade Chlorinated polyvinyl chloride R117 R117—M85 R118 ABS–Polycarbonate Alloy 6/6 Nylon: General purpose extrusion Nylon, Type 6: General purpose 6/6 Nylon: General purpose molding R118 R118—108 R118—R120 R118—120, R108 Polyester, Thermoplastic Moldings: Glass reinforced grades Polyester, Thermoplastic: Glass reinforced self extinguishing Phenylene Oxide: SE—1 R118—M90 Phenylene oxides (Noryl): Standard Polyphenylene sulfide: Standard Polyphenylene sulfide: 40% glass reinforced R120 R120—124 R123 R117 R119 R119 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1650 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1651 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 399. SELECTING COEFFICIENTS OF STATIC FRICTION FOR POLYMERS Polymer Coefficient of Static Friction (Against Self) (Dimensionless) 6/6 Nylon: General purpose molding Polyacetal Homopolymer: 22% TFE reinforced Polyarylsulfone Polyacetal Homopolymer: Standard 0.04—0.13 0.05—0.15 (against steel) 0.1—0.3 0.1—0.3 (against steel) Polyacetal Homopolymer: 20% glass reinforced Polyester; Thermoplastic Moldings: General purpose grade Polyester; Thermoplastic Moldings: Glass reinforced grades Polyester; Thermoplastic : Glass reinforced self extinguishing 0.1—0.3 (against steel) 0.13 (against steel) 0.14 (against steel) Polyacetal Copolymer: Standard Polyacetal Copolymer: 25% glass reinforced Polyacetal Copolymer: High flow Polyester; Thermoplastic Moldings: Glass reinforced grades 0.15 (against steel) 0.15 (against steel) 0.15 (against steel) 0.16 (ASTM D1894) Polyester; Thermoplastic: Glass reinforced self extinguishing Polyester; Thermoplastic Moldings: General purpose grade ABS–Polycarbonate Alloy Nylon, Type 6: Cast 0.16 (ASTM D1894) 0.17 (ASTM D1894) 0.2 0.32 (dynamic ) Polycarbonate Phenylene oxides (Noryl): Standard 0.52 0.67 0.14 (against steel) Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1651 15.2 sel Mechanical Page 1652 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 400. SELECTING ABRASION RESISTANCE OF POLYMERS Polymer Abrasion Resistance (Taber, CS—17 wheel, ASTM D1044) (mg / 1000 cycles) Polymide: Unreinforced PVC–acrylic injection molded PVC–acrylic sheet Nylon, Type 6: Cast 0.004—0.08 0.0058 (CS—10 wheel) 0.073 (CS—10 wheel) 2.7 6/6 Nylon: General purpose extrusion 6/6 Nylon: General purpose molding Nylon, Type 6: General purpose Polyester Injection Moldings:General purpose grade 3—5 3—8 5 6.5 Polyacetal Homopolymer: 22% TFE reinforced Polyester Injection Moldings:Glass reinforced grades Polycarbonate Polyester Injection Moldings:Glass reinforced self extinguishing 9 9—50 10 Polyacetal Copolymer:Standard Polyacetal Copolymer:High flow Polyacetal Homopolymer: Standard Polymide: Glass reinforced 14 14 14—20 20 Phenylene Oxide: SE—1 Phenylene oxides (Noryl): Standard Polyacetal Homopolymer: 20% glass reinforced Phenylene Oxide: Glass fiber reinforced 20 20 33 35 Polycarbonate (40% glass fiber reinforced) Polyacetal Copolymer:25% glass reinforced Polyarylsulfone Phenylene Oxide: SE—100 40 40 40 100 Polystyrene, Molded: Glass fiber -30% reinforced Polyvinylidene— fluoride (PVDF) Polytrifluoro chloroethylene (PTFCE) 164 600—1200 8000 11 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1652 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1653 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 401. SELECTING FATIGUE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 1 OF 4) Alloy AA No. Temper Fatigue Strength (MPa) 1060 1060 1060 1100 0 H12 H14 0 21 28 34 34 1100 1060 1060 1100 H12 H16 H18 H14 41 45 45 48 1350 3003 Alclad 6063 H19 0 H12 0 48 48 55 55 1100 1100 3003 6061 H16 H18 H14 0 62 62 62 62 6063 6070 3003 3003 T1 0 H16 H18 62 62 69 69 6063 6063 6463 6463 T5 T6 T1 T5 69 69 69 69 6463 5050 2014 2024 T6 0 0 0 69 83 90 90 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1653 15.2 sel Mechanical Page 1654 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 401. SELECTING FATIGUE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 2 OF 4) Alloy AA No. Temper Fatigue Strength (MPa) 5050 5050 6070 6262 H32 H34 T4 T9 90 90 90 90 6351 3004 5050 5050 T6 0 H36 H38 90 97 97 97 6005 6005 6061 6061 T1 T5 T4, T451 T6, T651 97 97 97 97 6070 2219 2219 2219 T6 T62 T81, T851 T87 97 105 105 105 Alclad 3004 6205 3004 H32 H34 T5 H36 105 105 105 110 3004 4032 5052 5652 H38 T6 0 0 110 110 110 110 6066 5052 5154 5154 T6, T651 H32 0 H112 110 115 115 115 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 1654 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1655 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 401. SELECTING FATIGUE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 3 OF 4) Alloy AA No. Temper Fatigue Strength (MPa) 5254 5254 5652 6009 0 H112 H32 T4 115 115 115 115 6010 2011 2011 2014 T4 T3 T8 T6 115 125 125 125 2024 2036 2618 5052 T361 T4 All H34 125 125 125 125 5154 5254 5652 7005 H32 H32 H34 T6,T63,T6351 125 125 125 125 5052 5154 5254 5652 H36 H34 H34 H36 130 130 130 130 2014 2024 2024 5052 T4 T3 T4, T351 H38 140 140 140 140 5056 5154 5182 5254 0 H36 0 H36 140 140 140 140 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1655 15.2 sel Mechanical Page 1656 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 401. SELECTING FATIGUE STRENGTHS OF WROUGHT ALUMINUM ALLOYS (SHEET 4 OF 4) Alloy AA No. Temper Fatigue Strength (MPa) 5652 7005 5154 5254 H38 T53 H38 H38 140 140 145 145 5056 5056 5083 7075 H18 H38 H321 T6,T651 150 150 160 160 7175 7175 2048 7475 T66 T736 T7351 160 160 220 220 7050 7049 T736 T73 240 295 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 1656 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1657 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 402. SELECTING REVERSED BENDING FATIGUE LIMITS OF GRAY CAST IRON BARS ASTM Class Reversed Bending Fatigue Limit (MPa) 20 25 30 69 79 97 35 40 50 60 110 128 148 169 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1657 15.2 sel Mechanical Page 1658 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 403. SELECTING IMPACT ENERGY OF TOOL STEELS Type Condition Impact Energy (J) L6 L6 L2 L6 Oil quenched from 845 ˚C and single tempered at 315 ˚C Oil quenched from 845 ˚C and single tempered at 425 ˚C Oil quenched from 855 ˚C and single tempered at 315 ˚C Oil quenched from 845 ˚C and single tempered at 540 ˚C 12(a) 18(a) 19(a) 23(a) L2 L2 L2 L6 Oil quenched from 855 ˚C and single tempered at 425 ˚C Oil quenched from 855 ˚C and single tempered at 205 ˚C Oil quenched from 855 ˚C and single tempered at 540 ˚C Oil quenched from 845 ˚C and single tempered at 650 ˚C 26(a) 28(a) 39(a) 81(a) L2 S5 S1 Oil quenched from 855 ˚C and single tempered at 650 ˚C Oil quenched from 870 ˚C and single tempered at 540 ˚C Oil quenched from 930 ˚C and single tempered at 425 ˚C 125(a) 188(b) 203(b) S5 S1 S5 S1 Oil quenched from 870 ˚C and single tempered at 205 ˚C Oil quenched from 930 ˚C and single tempered at 540 ˚C Oil quenched from 870 ˚C and single tempered at 315 ˚C Oil quenched from 930 ˚C and single tempered at 315 ˚C 206(b) 230(b) 232(b) 233(b) S5 S7 S7 S1 Oil quenched from 870 ˚C and single tempered at 425 ˚C Fan cooled from 940 ˚C and single tempered at 425 ˚C Fan cooled from 940 ˚C and single tempered at 205 ˚C Oil quenched from 930 ˚C and single tempered at 205 ˚C 243(b) 243(b) 244(b) 249(b) S7 S7 S7 Fan cooled from 940 ˚C and single tempered at 315 ˚C Fan cooled from 940 ˚C and single tempered at 540 ˚C Fan cooled from 940 ˚C and single tempered at 650 ˚C 309(b) 324(b) 358(b) (a) Charpy V-notch. (b) Charpy unnotched. Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984). ©2001 CRC Press LLC 1658 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1659 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 404. SELECTING IMPACT STRENGTHS OF (SHEET 1 OF 5) POLYMERS Polymer Impact Strength (Izod notched, ASTM D256) (ft—lb / in.) Thermoset Cast Polyyester: Rigid Melamine, Molded: mineral filled Urea, Molded: Cellulose filled (ASTM Type 2) Urea, Molded: Alpha—cellulose filled (ASTM Type l) 0.18—0.40 0.2 0.20—0.275 0.20—0.35 Acrylic Moldings: Grades 5, 6, 8 Thermoset Allyl diglycol carbonate Polystyrene, Molded: General purpose Epoxy, Standard: Cast rigid 0.2—0.4 0.2—0.4 0.2—0.4 (ASTM D638) 0.2—0.5 Phenolic, Molded: General, woodflour and flock filled Alkyd, Molded: Putty (encapsulating) Urea, Molded: Woodflour filled Melamine, Molded: Cellulose filled electrical 0.24—0.50 0.25—0.35 0.25—0.35 0.27—0.36 Styrene acrylonitrile (SAN) Polyphenylene sulfide: Standard Alkyd, Molded: Granular (high speed molding) Melamine, Molded: Alpha cellulose filled 0.29—0.54 0.3 0.30—0.35 0.30—0.35 Phenolic, Molded: Arc resistant—mineral filled Diallyl Phthalate, Molded: Asbestos filled Epoxy, Standard: Cast flexible Rubber phenolic—asbestos filled 0.30—0.45 0.30—0.50 0.3—0.2 0.3—0.4 Epoxy, High performance: Molded Silicone, Molded: Granular (silica) reinforced Rubber phenolic—woodflour or flock filled Acrylic Cast Resin Sheets, Rods: General purpose, type I 0.3—0.5 0.34 0.34—1.0 0.4 To convert ft–lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1659 15.2 sel Mechanical Page 1660 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 404. SELECTING IMPACT STRENGTHS OF (SHEET 2 OF 5) POLYMERS Polymer Impact Strength (Izod notched, ASTM D256) (ft—lb / in.) Acrylic Cast Resin Sheets, Rods: General purpose, type II Olefin Copolymers, Molded: Ethylene butene Chlorinated polyether Epoxy, Standard: Molded 0.4 0.4 0.4 (D758) 0.4—0.5 Phenolic, Molded: Shock: paper, flock, or pulp filled Polypropylene: General purpose Polyethylene, Type III: Melt Melt index 0.l—12.0 Reinforced polyester: Heat and chemical resistsnt (asbestos) 0.4—1.0 0.4—2.2 0.4—6.0 0.45—1.0 Epoxy, High performance: Cast, rigid Polymide: Unreinforced Polyester; Thermoplastic Moldings: Asbestos—filled grade Diallyl Phthalate, Molded: Orlon filled 0.5 0.5 0.5 0.5—1.2 Polystyrene, Molded: Medium impact Polypropylene: Asbestos filled Polyvinyl Chloride And Copolymers: Rigid—normal impact Melamine, Molded: Glass fiber filled 0.5—1.2 (ASTM D638) 0.5—1.5 Diallyl Phthalate, Molded: Glass fiber filled Polypropylene: Glass reinforced 6/6 Nylon: General purpose molding Nylon Type 6: General purpose 0.5—15.0 0.5—2 0.55—2.0 (ASTM D638) 0.6—1.2 6/10 Nylon: General purpose Phenolic, Molded: High shock: chopped fabric or cord filled Polyacetal Homopolymer: 22% TFE reinforced Polyacetal Homopolymer: 20% glass reinforced 0.6—1.6 0.6—8.0 0.7 (ASTM D638) 0.8 (ASTM D638) 0.5—10 0.5—12.0 To convert ft–lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1660 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1661 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 404. SELECTING IMPACT STRENGTHS OF (SHEET 3 OF 5) POLYMERS Polymer Impact Strength (Izod notched, ASTM D256) (ft—lb / in.) Polystyrene, Molded: High impact Acrylic Moldings: High impact grade Polyacetal Copolymer: High flow Polyester; Thermoplastic Moldings: General purpose grade 0.8—1.8 (ASTM D638) 0.8—2.3 1 1.0—1.2 Polyester; Thermoplastic Moldings: Glass reinforced grades Reinforced polyester moldings: High strength (glass fibers) Polyphenylene sulfide: 40% glass reinforced Olefin Copolymers, Molded: Propylene—ethylene 1.0—2.2 1—10 1.09 1.1 Nylon Type 6: Cast Phenylene oxides (Noryl): Standard Polyethylene, Type III: Melt index 1.5—15 Nylon: Type 12 1.2 1.2—1.3 1.2—2.5 1.2—4.2 Polyacetal Copolymer: Standard 6/6 Nylon: General purpose extrusion Glass fiber (30%) reinforced Styrene acrylonitrile (SAN) Polyacetal Homopolymer: Standard 1.3 1.3 (ASTM D638) 1.35—3.0 1.4 (ASTM D638) Olefin Copolymers, Molded: Polyallomer Polypropylene: High impact Nylon Type 6: Flexible copolymers Polyarylsulfone 1.5 1.5—12 1.5—19 1.6—5.0 Cellusose Acetate Propionate, ASTM Grade: 1 Diallyl Phthalate, Molded: Dacron filled Polyacetal Copolymer: 25% glass reinforced Polyester; Moldings: Glass reinforced self extinguishing 1.7—2.7 1.7—5.0 1.8 1.8 To convert ft–lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1661 15.2 sel Mechanical Page 1662 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 404. SELECTING IMPACT STRENGTHS OF (SHEET 4 OF 5) POLYMERS Polymer Impact Strength (Izod notched, ASTM D256) (ft—lb / in.) Phenylene oxides (Noryl): Glass fiber reinforced Rubber phenolic—chopped fabric filled ABS Resin: Medium impact ABS Resin: Heat resistant 1.8—2.0 2.0—2.3 2.0—4.0 2.0—4.0 Polytetrafluoroethylene (PTFE) Vinylidene chloride Alkyd, Molded: Rope (general purpose) Polypropylene: Flame retardant 2.0—4.0 2—8 2.2 2.2 Nylon Type 6: Glass fiber (30%) reinforced Phenylene Oxide: Glass fiber reinforced Polystyrene, Molded: Glass fiber —30% reinforced 6/6 Nylon: Glass fiber reinforced 2.2—3.4 2.3 (ASTM D638) 2.5 2.5—3.4 (ASTM D638) Cellulose Acetate Butyrate, ASTM Grade: H4 Polyvinylidene— fluoride (PVDF) ABS Resin: High impact Nylon: Type 11 3 3.0—10.3 3.0—5.0 3.3—3.6 6/10 Nylon: Glass fiber (30%) reinforced Polytrifluoro chloroethylene (PTFCE) Cellusose Acetate Propionate, ASTM Grade: 3 Thermoset Cast Polyyester: Flexible 3.4 3.50—3.62 3.5—5.6 4 Polyethylene, Type III: Melt index 0.2—0.9 Cellulose Acetate Butyrate, ASTM Grade: MH Phenylene Oxide: SE—100 Phenylene Oxide: SE—1 4.0—14 4.4—6.9 5 (ASTM D638) 5 (ASTM D638) To convert ft–lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1662 CRC Handbook of Materials Science & Engineering 15.2 sel Mechanical Page 1663 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 404. SELECTING IMPACT STRENGTHS OF (SHEET 5 OF 5) POLYMERS Polymer Impact Strength (Izod notched, ASTM D256) (ft—lb / in.) ABS Resin: Very high impact Reinforced polyester Sheet molding, general purpose ABS Resin: Low temperature impact Chlorinated polyvinyl chloride 5.0—7.5 5—15 6—10 6.3 Cellulose Acetate Butyrate, ASTM Grade: S2 Alkyd, Molded: Glass reinforced (heavy duty parts) Olefin Copolymers, Molded: Ionomer Cellusose Acetate Propionate, ASTM Grade: 6 7.5—10.0 8—12 9—14 9.4 Silicone, Molded: Fibrous (glass) reinforced ABS–Polycarbonate Alloy Silicone: Woven glass fabric/ silicone laminate Phenolic, Molded: Very high shock: glass fiber filled 10 10 (ASTM D638) 10—25 10—33 Epoxy, Standard: General purpose glass cloth laminate Polycarbonate Epoxy novolacs: Cast, rigid PVC–acrylic sheet 12—15 12—16 13—17 15 PVC–acrylic injection molded Polymide: Glass reinforced Epoxy, Standard: High strength laminate Nylon: Type 8 15 17 60—61 >16 Polyethylene, Type III: High molecular weight Fluorinated ethylene propylene(FEP) Polyvinyl Chloride And Copolymers: Nonrigid—general Polyvinyl Chloride And Copolymers: Nonrigid—electrical >20 No break Variable Variable To convert ft–lb / in. to N•m/m, multiply by 53.38 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1663 15.3 sel Mechanical Page 1664 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 405. SELECTING TENSILE MODULI OF GRAY CAST IRONS ASTM Class Tensile Modulus (GPa) 20 25 30 35 66 to 97 79 to 102 90 to 113 100 to 119 40 50 60 110 to 138 130 to 157 141 to 162 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). Table 406. SELECTING TENSILE MODULI OF TREATED DUCTILE IRONS Treatment Tension Modulus (GPa) 120 90-02 65-45-12 80-55-06 60-40-18 164 168 168 169 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984). ©2001 CRC Press LLC 1664 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1665 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 407. SELECTING YOUNG’S MODULI OF CERAMICS (SHEET 1 OF 6) Ceramic Temperature Young’s Modulus (psi) Boron Nitride (BN), parallel to c axis 700˚C 0.51x106 Boron Nitride (BN), parallel to a axis 700˚C 1.54x106 Boron Nitride (BN), parallel to a axis Zirconium Oxide (ZrO2) (plasma sprayed) 1000˚C 1.65x106 500˚C 2x106 Zirconium Oxide (ZrO2) (plasma sprayed) 1100˚C 3.05x106 Zirconium Diboride (ZrB2) (22.4% density, foam) 3.305x106 Boron Nitride (BN), parallel to c axis 300˚C 3.47x106 Magnesium Oxide (MgO) 1300˚C 4 x106 Mullite (3Al2O3 2SiO2) (ρ=2.77 g/cm3) 1200˚C 4.00x106 Boron Nitride (BN), parallel to c axis Titanium Diboride (TiB2) 23˚C 4.91x106 (12.0 µm grain size, ρ=4.66g/cm3, 9.6wt% Ni) Zirconium Oxide (ZrO2) (plasma sprayed) 6.29x106 room temp. Hafnium Dioxide (HfO2) 6.96x106 8.2x106 Boron Nitride (BN), parallel to a axis 300˚C 8.79x106 Magnesium Oxide (MgO) 1200˚C 10 x106 Boron Nitride (BN), parallel to a axis Thorium Dioxide (ThO2) 23˚C 11.47-36.3x106 12.46x106 1200˚C 12.8x106 Zirconium Oxide (ZrO2) (plasma sprayed) 1500˚C 12.8x106 Titanium Mononitride (TiN) To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1665 15.3 sel Mechanical Page 1666 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 407. SELECTING YOUNG’S MODULI OF CERAMICS (SHEET 2 OF 6) Ceramic Temperature Cordierite (2MgO 2Al2O3 5SiO2) glass Young’s Modulus (psi) 13.92x106 Zirconium Oxide (ZrO2) (fully stabilized) room temp. 14.1-30.0x106 Zirconium Oxide (ZrO2) (plasma sprayed) 1400˚C 14.2x106 Trisilicon tetranitride (Si3N4) (reaction sintered) 20˚C 14.5-31.9x106 Mullite (3Al2O3 2SiO2) (ρ=2.77 g/cm3) 800˚C 14.79x106 Dichromium Trioxide (Cr2O3) >14.9x106 Zirconium Oxide (ZrO2) (plasma sprayed) 1200˚C 17.1-18.0x106 Thorium Dioxide (ThO2) 1000˚C 17.1x106 Trisilicon tetranitride (Si3N4) (reaction sintered) 1400˚C 17.4-29.0x106 Thorium Dioxide (ThO2) room temp. 17.9-34.87x106 Thorium Dioxide (ThO2) 800˚C 18-18.5x106 Mullite (3Al2O3 2SiO2) (ρ=2.77 g/cm3) 25˚C 18.42x106 Zirconium Oxide (ZrO2) (plasma sprayed) 1000˚C 18.5-25x106 400˚C 18.89x106 800˚C 18.9x106 room temp. 19.96x106 1145˚C 1300˚C 20 x106 20.1x106 Mullite (3Al2O3 2SiO2 ) (ρ=2.77 g/cm3) Zirconium Oxide (ZrO2) (plasma sprayed) Zirconium Oxide (ZrO2) (stabilized, ρ=5.634 g/cm3) Beryllium Oxide (BeO) Spinel (Al2O3 MgO) To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1666 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1667 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 407. SELECTING YOUNG’S MODULI OF CERAMICS (SHEET 3 OF 6) Ceramic Temperature Cordierite (2MgO 2Al2O3 5SiO2) Mullite (3Al2O3 2SiO2 ) (ρ=2.779 g/cm3) Young’s Modulus (psi) 20.16x106 room temp. 20.75x106 Magnesium Oxide (MgO) Uranium Dioxide (UO2) 1000˚C 21 x106 0-1000˚C 21x106 Zircon (SiO2 ZrO2) room temp. 24x106 Zirconium Oxide (ZrO2) (plasma sprayed) room temp. 24.8-27x106 Cerium Dioxide (CeO2) 24.9x106 Spinel (Al2O3 MgO) 1200˚C 25.0x106 Uranium Dioxide (UO2) 20˚C 25x106 Trisilicon tetranitride (Si3N4) (hot pressed) 1400˚C 25.38-36.25x106 Aluminum Oxide (Al2O3) 1500˚C 25.6 x106 Uranium Dioxide (UO2) (ρ=10.37 g/cm3) room temp. 27.98x106 Trisilicon tetranitride (Si3N4) (sintered) 20˚C 28.28-45.68x106 Zirconium Monocarbide (ZrC) room temp. 28.3-69.6x106 Silicon Carbide (SiC) (reaction sintered) 1400˚C 29-46.4x106 Magnesium Oxide (MgO) 600˚C 29.5 x106 Zirconium Oxide (ZrO2) (partially stabilized) room temp. 29.7x106 Spinel (Al2O3 MgO) 1000˚C 30.4x106 Magnesium Oxide (MgO) Chromium Diboride (CrB2) room temp. 30.5-36.3x106 30.6x106 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1667 15.3 sel Mechanical Page 1668 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 407. SELECTING YOUNG’S MODULI OF CERAMICS (SHEET 4 OF 6) Ceramic Temperature Young’s Modulus (psi) Aluminum Oxide (Al2O3) 1250˚C 32 x106 Aluminum Oxide (Al2O3) 1400˚C 32.7 x106 Spinel (Al2O3 MgO) 800˚C 32.9x106 Beryllium Oxide (BeO) 1000˚C 33 x106 Mullite (3Al2O3 2SiO2) (full density) room temp. 33.35x106 Spinel (Al2O3 MgO) 600˚C 34x106 Spinel (Al2O3 MgO) 200˚C 34.4x106 Spinel (Al2O3 MgO) room temp. 34.5x106 Spinel (Al2O3 MgO) 400˚C 34.5x106 Zirconium Oxide (ZrO2) (plasma sprayed) 20˚C 36x106 Trisilicon tetranitride (Si3N4) (hot pressed) 20˚C 36.25-47.13x106 Tantalum Diboride (TaB2) 37 x106 Spinel (Al2O3 MgO) (ρ=3.510 g/cm3) room temp. 38.23x106 Molybdenum Disilicide (MoSi2) room temp. 39.3-56.36x106 Aluminum Oxide (Al2O3) 1200˚C 39.8-53.65 x106 Beryllium Oxide (BeO) 800˚C 40 x106 Aluminum Nitride (AlN) Titanium Oxide (TiO2) 1400˚C 40x106 Tantalum Monocarbide (TaC) Boron Carbide (B4C) room temp. 41.3-91.3x106 room temp. 42-65.2x106 41x106 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1668 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1669 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 407. SELECTING YOUNG’S MODULI OF CERAMICS (SHEET 5 OF 6) Ceramic Temperature Young’s Modulus (psi) Magnesium Oxide (MgO) (ρ = 3.506 g/cm3) Beryllium Oxide (BeO) room temp. 42.74x106 room temp. 42.8-45.5x106 Silicon Carbide (SiC) (sintered) 1400˚C 43.5-58.0x106 Silicon Carbide (SiC) (pressureless sintered) room temp. 43.9x106 Titanium Monocarbide (TiC) Aluminum Oxide (Al2O3) 1000˚C 45-55x106 1000˚C 45.5-50 x106 Aluminum Nitride (AlN) Zirconium Diboride (ZrB2) 1000˚C 46x106 Aluminum Oxide (Al2O3) 500˚C 50-57.275 x106 Aluminum Oxide (Al2O3) Aluminum Nitride (AlN) room temp. 25˚C 50-59.3x106 50x106 Silicon Carbide (SiC) (reaction sintered) 20˚C 50.75-54.38x106 Silicon Carbide (SiC) (reaction sintered) Aluminum Oxide (Al2O3) 1200˚C 51x106 800˚C 51.2 x106 Silicon Carbide (SiC) (reaction sintered) Titanium Diboride (TiB2) 800˚C 53x106 49.8-63.8x106 53.2x106 Trichromium Dicarbide (Cr3C2) 54.1x106 Silicon Carbide (SiC) (sintered) 20˚C 54.38-60.9x106 Silicon Carbide (SiC) (reaction sintered) 400˚C 55x106 Silicon Carbide (SiC) (hot presses) 1400˚C 55.1x106 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1669 15.3 sel Mechanical Page 1670 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 407. SELECTING YOUNG’S MODULI OF CERAMICS (SHEET 6 OF 6) Ceramic Temperature Young’s Modulus (psi) Silicon Carbide (SiC) (ρ = 3.128 g/cm3) Silicon Carbide (SiC) (self bonded) room temp. 58.2x106 room temp. 59.5x106 Silicon Carbide (SiC) (ρ = 3.120 g/cm3) Silicon Carbide (SiC) (cubic, CVD) room temp. 59.52x106 room temp. 60.2-63.9x106 Hafnium Monocarbide (HfC) (ρ = 11.94 g/cm3) Silicon Carbide (SiC) (hot pressed) room temp. 61.55x106 20˚C 62.4-65.3x106 Titanium Monocarbide (TiC) room temp. 63.715x106 Silicon Carbide (SiC) (hot pressed) room temp. 63.8x106 Titanium Diboride (TiB2) (3.5 µm grain size, ρ=4.37g/cm3, 0.8wt% Ni) Titanium Diboride (TiB2) 75.0x106 (6.0 µm grain size, ρ=4.56g/cm3, 0.16wt% Ni) 77.9x106 Titanium Diboride (TiB2) (6.0 µm grain size, ρ=4.46g/cm3) Tungsten Monocarbide (WC) 81.6x106 room temp. 96.91-103.5x106 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1670 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1671 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 408. SELECTING YOUNG’S MODULI OF (SHEET 1 OF 2) Glass Temperature B2O3 glass SiO2–B2O3 glass (90% mol B2O3) SiO2–B2O3 glass (85% mol B2O3) SiO2–B2O3 glass (95% mol B2O3) room temp. SiO2–B2O3 glass (65% mol B2O3) SiO2–B2O3 glass (60% mol B2O3) SiO2–B2O3 glass (70% mol B2O3) SiO2–B2O3 glass (75% mol B2O3) 15˚C SiO2–PbO glass (65.0% mol PbO) B2O3–Na2O glass (20% mol Na2O) 15˚C SiO2–PbO glass (60.0% mol PbO) SiO2–PbO glass (50.0% mol PbO) SiO2–Na2O glass (40% mol Na2O) 200–250˚C SiO2–PbO glass (35.7% mol PbO) SiO2–PbO glass (24.6% mol PbO) SiO2–PbO glass (55.0% mol PbO) SiO2–PbO glass (30.0% mol PbO) SiO2–Na2O glass (33% mol Na2O) 200–250˚C SiO2–PbO glass (45.0% mol PbO) SiO2–Na2O glass (40% mol Na2O) –196˚C SiO2–PbO glass (38.4% mol PbO) B2O3–Na2O glass (25% mol Na2O) Young’s Modulus (GPa) 17.2–17.7 20.9 21.2 21.2 22.5 22.8 23.3 23.5 SiO2–B2O3 glass (80% mol B2O3) B2O3–Na2O glass (10% mol Na2O) GLASS 15˚C 24.1 31.4 41.2 43.2 43.6 44.1 46.1 46.3 47.1 49.3 50.1 51.0 51.7 51.9 52.8 53.7 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1671 15.3 sel Mechanical Page 1672 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 408. SELECTING YOUNG’S MODULI OF (SHEET 2 OF 2) GLASS Glass Temperature Young’s Modulus (GPa) SiO2–Na2O glass (25% mol Na2O) 200–250˚C –196˚C –196˚C 15˚C 53.9 54.9 56.9 57.1 15˚C room temp. room temp. room temp. 59.4 60.2 60.3 60.5 room temp. room temp. room temp. 20˚C 61.4 62.0 64.4 72.76–74.15 998˚C (annealing point) 1096˚C (straining point) 79.87 80.80 SiO2–Na2O glass (33% mol Na2O) SiO2–Na2O glass (25% mol Na2O) B2O3–Na2O glass (37% mol Na2O) B2O3–Na2O glass (33.3% mol Na2O) SiO2–Na2O glass (35% mol Na2O) SiO2–Na2O glass (33% mol Na2O) SiO2–Na2O glass (30% mol Na2O) SiO2–Na2O glass (25% mol Na2O) SiO2–Na2O glass (20% mol Na2O) SiO2–Na2O glass (15% mol Na2O) SiO2 glass SiO2 glass SiO2 glass Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1672 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1673 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 409. SELECTING MODULI OF ELASTICITY IN TENSION FOR POLYMERS (SHEET 1 OF 3) Polymer Modulus of Elasticity in Tension (ASTM D638) (l05 psi) Polyester, Cast Thermoset: Flexible Polyvinyl Chloride & Copolymers: Nonrigid—general Polyvinyl Chloride & Copolymers: Nonrigid—electrical Polyethylene, Type I: Melt index 6—26 0.001—0.10 0.004—0.03 (ASTM D412) 0.01—0.03 (ASTM D412) 0.20—0.24 Polyethylene, Type I: Melt index 0.3—3.6 Polytetrafluoroethylene (PTFE) Fluorinated ethylene propylene(FEP) Epoxy, Standard: Cast flexible 0.21—0.27 0.38—0.65 0.5—0.7 0.5—2.5 Vinylidene chloride Chlorinated polyether Polystyrene, Molded: High impact Ceramic reinforced (PTFE) 0.7—2.0 (ASTM D412) 1.5 1.50—3.80 (D638) 1.5—2.0 Polyester, Cast Thermoset: Rigid Polyvinylidene— fluoride (PVDF) Polytrifluoro chloroethylene (PTFCE) ABS Resin: Very high impact 1.5—6.5 1.7—2 1.9—3.0 2.0—3.1 ABS Resin: Low temperature impact Acrylic Cast Resin Moldings: High impact grade ABS Resin: High impact Polystyrene, Molded: Medium impact 2.0—3.1 2.3—3.3 2.6—3.2 2.6—4.7 (D638) Polyvinyl Chloride & Copolymers: Rigid—normal impact ABS Resin: Medium impact Polycarbonate ABS Resin: Heat resistant 3 5—4.0 (ASTM D412) 3.3—4.0 3.45 3.5—4.2 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1673 15.3 sel Mechanical Page 1674 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 409. SELECTING MODULI OF ELASTICITY IN TENSION FOR POLYMERS (SHEET 2 OF 3) Polymer Modulus of Elasticity in Tension (ASTM D638) (l05 psi) Acrylic Cast Resin Sheets, Rods: General purpose, type I Acrylic Cast Resin Moldings: Grades 5, 6, 8 Rubber phenolic—chopped fabric filled Chlorinated polyvinyl chloride 3.5—4.5 3.5—5.0 3.5—6 3.7 Acrylic Cast Resin Sheets, Rods: General purpose, type II Styrene acrylonitrile (SAN) Epoxy, High performance: Cast, rigid Rubber phenolic—woodflour or flock filled 4.0—5.0 4.0—5.2 4—5 4—6 Epoxy, Standard: Cast rigid Polystyrene, Molded: General purpose Epoxy novolacs: Cast, rigid Rubber phenolic—asbestos filled 4.5 4.6—5.0 (D638) 4.8—5.0 5—9 Diallyl Phthalate, Molded: Orlon filled Phenolic, Shock: paper, flock, or pulp filled Phenolic, General: woodflour and flock filled Phenolic, High shock: chopped fabric or cord filled 6 8—12 8—13 9—14 Melamine; Molded: Cellulose filled electrical Phenolic, Molded: Arc resistant—mineral filled Urea, Molded: Woodflour filled Diallyl Phthalate, Molded: Asbestos filled 10—11 10—30 11—14 12 Reinforced polyester moldings: Heat & chemical resistsnt (asbestos) Polystyrene, Molded: Glass fiber -30% reinforced Urea, Molded: Alpha—cellulose filled (ASTM Type l) Reinforced polyester Sheet molding: general purpose 12.1 (D638) 13—16 15—20 12—15 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1674 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1675 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 409. SELECTING MODULI OF ELASTICITY IN TENSION FOR POLYMERS (SHEET 3 OF 3) Polymer Modulus of Elasticity in Tension (ASTM D638) (l05 psi) Reinforced polyester moldings: High strength (glass fibers) Polycarbonate (40% glass fiber reinforced) Glass fiber (30%) reinforced Styrene acrylonitrile (SAN) Epoxy novolacs: Glass cloth laminate 16—20 17 17.5 27.5 Silicone: Woven glass fabric/ silicone laminate Phenolic, Very high shock: glass fiber filled Epoxy, High performance Molded: Glass cloth laminate Epoxy, Standard, Molded: General purpose glass cloth laminate 28 (ASTM D651) 30—33 32—33 Epoxy, Standard, Molded: High strength laminate Epoxy, Standard, Molded: Filament wound composite 57—58 72—64 33—36 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1675 15.3 sel Mechanical Page 1676 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 410. SELECTING COMPRESSION MODULI OF TREATED DUCTILE IRONS Treatment Compression Modulus (GPa) 65-45-12 60-40-18 120 90-02 80-55-06 163 164 164 165 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984). Table 411. SELECTING MODULUS OF ELASTICITY IN COMPRESSION FOR POLYMERS Polymer Modulus of Elasticity in Compression (ASTM D638) (l05 psi) Polytetrafluoroethylene (PTFE) Fluorinated ethylene propylene(FEP) 0 70—0.90 0.6—0.8 Ceramic reinforced (PTFE) Polyvinylidene— fluoride (PVDF) Polytrifluoro chloroethylene (PTFCE) 1.5—2.0 1.7—2 1.8 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1676 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1677 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 412. SELECTING BULK MODULI OF GLASS Glass Temperature B2O3-Na2O glass (10% mol Na2O) SiO2-PbO glass (38.4% mol PbO) SiO2-PbO glass (30.0% mol PbO) SiO2-PbO glass (55.0% mol PbO) 15˚C SiO2-PbO glass (50.0% mol PbO) Bulk Modulus (GPa) 23.2 25.1 25.6 29.5 30.5 30.6 31.01-37.62 31.1 SiO2-PbO glass (45.0% mol PbO) SiO2 glass SiO2-PbO glass (35.7% mol PbO) SiO2-PbO glass (65.0% mol PbO) 15˚C room temp. 31.6 33.1 33.6 33.8 room temp. room temp. room temp. 33.9 34.8 36.5 38.2 B2O3-Na2O glass (37% mol Na2O) 15˚C room temp. room temp. 15˚C 39.2 39.8 40.1 42.1 B2O3-Na2O glass (33.3% mol Na2O) 15˚C 44.4 SiO2-PbO glass (60.0% mol PbO) B2O3-Na2O glass (20% mol Na2O) SiO2-Na2O glass (15% mol Na2O) SiO2-PbO glass (24.6% mol PbO) SiO2-Na2O glass (20% mol Na2O) SiO2-Na2O glass (25% mol Na2O) SiO2-Na2O glass (30% mol Na2O) B2O3-Na2O glass (25% mol Na2O) SiO2-Na2O glass (35% mol Na2O) SiO2-Na2O glass (33% mol Na2O) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1677 15.3 sel Mechanical Page 1678 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 413. SELECTING MODULI OF ELASTICITY IN FLEXURE OF POLYMERS (SHEET 1 OF 6) Polymer Modulus of Elasticity in Flexure (ASTM D790) (105 psi) Polyester, Thermoset Cast: Flexible Olefin Copolymer, Molded: Propylene—ethylene Olefin Copolymer, Molded: Ethylene butene Polyethylene, Type I: Melt index 200 0.001—0.39 0.00140 0.00165 0.1 (ASTM D747) Polyethylene, Type I: Melt index 6—26 Polyethylene, Type I: Melt index 0.3—3.6 Polyethylene, Type II: Melt index 20 Polyethylene, Type II: Melt index l.0—1.9 0.12—0.3 (ASTM D747) 0.13—0.27 (ASTM D747) 0.35—0.5 (ASTM D747) 0.35—0.5 (ASTM D747) Epoxy, Standard: Cast flexible Nylon, Type 8 Polytetrafluoroethylene (PTFE) Cellulose Acetate Butyrate, ASTM Grade: S2 0.36—3.9 0.4 0.6—1.1 0.70—0.90 (ASTM D747) Olefin Copolymer, Molded: Polyallomer Polyethylene, Type III: High molecular weight Fluorinated ethylene propylene(FEP) Polyethylene, Type III: Melt Melt index 0.l—12.0 0.7—1.3 0.75 (ASTM D747) 0.8 0.9—0.25 (ASTM D747) Nylon, Type 6: Flexible copolymers Nylon, Type 6: Glass fiber (30%) reinforced Polypropylene: High impact Polyester, Thermoset Cast: Rigid 0.92—3.2 1.0—1.4 1.0—2.0 1—9 Cellulose Acetate, ASTM Grade: S2—1 Cellusose Acetate Propionate, ASTM Grade: 6 Cellulose Acetate Butyrate, ASTM Grade: MH Cellulose Acetate, ASTM Grade: MS—1, MS—2 1.05—1.65 (ASTM D747) 1.1 1.20—1.40 (ASTM D747) 1.25—1.90 (ASTM D747) To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1678 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1679 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 413. SELECTING MODULI OF ELASTICITY IN FLEXURE OF POLYMERS (SHEET 2 OF 6) Polymer Modulus of Elasticity in Flexure (ASTM D790) (105 psi) Chlorinated polyether Polyethylene, Type III: Melt index 0.2—0.9 Nylon, Type 6: General purpose Cellusose Acetate Propionate, ASTM Grade: 3 1.3 (0.1% offset) 1.3—1.5 (ASTM D747) 1.4—3.9 1.45—1.55 Polyethylene, Type III: Melt index 1.5—15 Cellulose Acetate, ASTM Grade: MH—1, MH—2 Cellulose Acetate, ASTM Grade: H2—1 Nylon, Type 11 1.5 (ASTM D747) 1.50—2.15 (ASTM D747) 1.50—2.35 (ASTM D747) 1.51 6/10 Nylon: General purpose Cellusose Acetate Propionate, ASTM Grade: 1 Polypropylene: General purpose Polyvinylidene— fluoride (PVDF) 1.6—2.8 1.7—1.8 1.7—2.5 1.75—2.0 6/6 Nylon: General purpose extrusion Cellulose Acetate Butyrate, ASTM Grade: H4 Polypropylene: Flame retardant Polytrifluoro chloroethylene (PTFCE) 1.75—4.1 1.8 (ASTM D747) 1.9—6.1 2.0—2.5 Cellulose Acetate, ASTM Grade: H4—1 ABS Resins; Molded, Extruded: Very high impact ABS Resins; Molded, Extruded: Low temperature impact Polystyrene; Molded: High impact 2.0—2.55 (ASTM D747) 2.0—3.2 2.0—3.2 2.3—4.0 ABS Resins; Molded, Extruded: High impact Thermoset Allyl diglycol carbonate Acrylic Moldings: High impact grade PVC–acrylic injection molded 2.5—3.2 2.5—3.3 2.7—3.6 3 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1679 15.3 sel Mechanical Page 1680 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 413. SELECTING MODULI OF ELASTICITY IN FLEXURE OF POLYMERS (SHEET 3 OF 6) Polymer Modulus of Elasticity in Flexure (ASTM D790) (105 psi) Polycarbonate Polyester, Injection Moldings: General purpose grade Polypropylene: Asbestos filled Rubber phenolic—chopped fabric filled 3.4 3.4 3.4—6.5 3.5 ABS Resins; Molded, Extruded: Medium impact ABS Resins; Molded, Extruded: Heat resistant Acrylic Cast Resin Sheets, Rods: General purpose, type I Acrylic Moldings: Grades 5, 6, 8 3.5—4.0 3.5—4.2 3.5—4.5 3.5—5.0 Polystyrene; Molded: Medium impact Phenylene Oxide: SE—100 Phenylene Oxide: SE—1 Polyacetal Copolymer: Standard 3.5—5.0 3.6 3.6 3.75 Polyacetal Copolymer: High flow Polyvinyl Chloride And Copolymers: Rigid—normal impact Chlorinated polyvinyl chloride Phenylene oxides (Noryl): Standard 3.75 3.8—5.4 3.85 3.9 ABS–Polycarbonate Alloy PVC–acrylic sheet Polyacetal Homopolymer: 22% TFE reinforced Polyarylsulfone 4 4 4 4 Acrylic Cast Resin Sheets, Rods: General purpose, type II Epoxy, High performance: Cast, rigid Polystyrene; Molded: General purpose Rubber phenolic—woodflour or flock filled 4.0—5.0 4—5 4—5 4—6 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1680 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1681 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 413. SELECTING MODULI OF ELASTICITY IN FLEXURE OF POLYMERS (SHEET 4 OF 6) Polymer Modulus of Elasticity in Flexure (ASTM D790) (105 psi) Polypropylene: Glass reinforced Polyacetal Homopolymer: Standard 6/6 Nylon: General purpose molding Epoxy novolacs: Cast, rigid 4—8.2 4.1 4.1—4.5, 1.75 4.4—4.8 Epoxy, Standard: Cast rigid Ceramic reinforced (PTFE) Rubber phenolic—asbestos filled Polymide: Unreinforced 4.5—5.4 4.64 5 5—7 Nylon, Type 6: Cast Polyphenylene sulfide: Standard Phenylene Oxide: Glass fiber reinforced Phenolic, Molded: General: woodflour and flock filled 5.05 5.5—6.0 7.4—10.4 8—12 Phenolic, Molded: Shock: paper, flock, or pulp filled 6/10 Nylon: Glass fiber (30%) reinforced Polyacetal Homopolymer: 20% glass reinforced Phenolic, Molded: High shock: chopped fabric or cord filled 8—12 8.5 8.8 9—13 Melamine, Molded: Unfilled Melamine, Molded: Cellulose filled electrical 6/6 Nylon: Glass fiber reinforced Phenolics: Molded: Arc resistant—mineral 10—13 10—13 10—18 10—30 Polyacetal Copolymer: 25% glass reinforced 6/6 Nylon: Glass fiber Molybdenum disulfide filled Polycarbonate (40% glass fiber reinforced) Polyester, Moldings: Glass reinforced self extinguishing 11 11—13 12 12 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1681 15.3 sel Mechanical Page 1682 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 413. SELECTING MODULI OF ELASTICITY IN FLEXURE OF POLYMERS (SHEET 5 OF 6) Modulus of Elasticity in Flexure (ASTM D790) (105 psi) Polymer Polystyrene; Molded: Glass fiber -30% reinforced Phenylene oxides (Noryl): Glass fiber reinforced Polyester, Thermoplastic Moldings: Glass reinforced grades Silicone, Molded: Granular (silica) reinforced 12 12, 15.5 Glass fiber (30%) reinforced Styrene acrylonitrile (SAN) Reinforced polyester sheet molding: general purpose Epoxy, Standard: Molded Reinforced polyester moldings: High strength (glass fibers) 14.5 15—18 15—25 Polyphenylene sulfide: 40% glass reinforced Alkyds, Molded Rope (general purpose) Alkyds, Molded: Granular (high speed molding) Alkyds, Molded: Glass reinforced (heavy duty parts) 17—22 22—27 22—27 22—28 Melamine, Molded: Glass fiber filled Silicone, Molded: Fibrous (glass) reinforced Silicone, Molded: Woven glass fabric/ silicone laminate Epoxy, High performance: Glass cloth laminate 24 25 26—32 28—31 Phenolic, Molded: Very high shock: glass fiber filled Epoxy novolacs: Glass cloth laminate Polyester, Thermoplastic Moldings: General purpose grade Epoxy, Standard: General purpose glass cloth laminate 30—33 32—35 12—15 14—17 15—25 33 36—39 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1682 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1683 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 413. SELECTING MODULI OF ELASTICITY IN FLEXURE OF POLYMERS (SHEET 6 OF 6) Polymer Modulus of Elasticity in Flexure (ASTM D790) (105 psi) Polyimide: Glass reinforced Epoxy, Standard: High strength laminate Epoxy, Standard: Filament wound composite Polyester, Thermoplastic Moldings: Glass reinforced grade 38.4 53—55 69—75 Polyester, Thermoplastic Moldings: Asbestos—filled grade 90 87 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1683 15.3 sel Mechanical Page 1684 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 414. SELECTING SHEAR MODULI OF (SHEET 1 OF 2) GLASS Glass Temperature Shear Modulus (GPa) B2O3 glass B2O3 glass B2O3 glass B2O3 glass 300˚C 290˚C 280˚C 270˚C 4.75 5.15 5.49 5.78 B2O3 glass 260˚C 250˚C room temp. 15˚C 6.07 6.29 6.55 12.3 B2O3 glass B2O3 glass B2O3–Na2O glass (10% mol Na2O) SiO2–PbO glass (65.0% mol PbO) B2O3–Na2O glass (20% mol Na2O) 15˚C SiO2–PbO glass (60.0% mol PbO) SiO2–PbO glass (50.0% mol PbO) SiO2–PbO glass (35.7% mol PbO) SiO2–PbO glass (55.0% mol PbO) SiO2–PbO glass (24.6% mol PbO) B2O3–Na2O glass (25% mol Na2O) 15˚C SiO2–PbO glass (45.0% mol PbO) SiO2–PbO glass (30.0% mol PbO) B2O3–Na2O glass (37% mol Na2O) 15˚C SiO2–PbO glass (38.4% mol PbO) B2O3–Na2O glass (33.3% mol Na2O) SiO2–Na2O glass (35% mol Na2O) SiO2–Na2O glass (18% mol Na2O) SiO2–Na2O glass (33% mol Na2O) 15˚C room temp. 160˚C room temp. 16.1 16.8 17.0 17.5 18.5 20.2 20.4 21.1 21.2 21.4 22.4 23.0 23.2 24.1 24.2 24.2 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1684 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1685 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 414. SELECTING SHEAR MODULI OF (SHEET 2 OF 2) GLASS Glass Temperature Shear Modulus (GPa) SiO2–Na2O glass (30% mol Na2O) room temp. 80˚C 0˚C room temp. 24.5 24.8 25.0 25.2 –100˚C room temp. –100—160˚C –100˚C 25.8 25.8 26.9 27.2 160˚C room temp. 0˚C 80˚C 27.2 27.2 27.4 27.6 20˚C 998˚C (annealing point) 1096˚C (straining point) 31.38 33.57 34.15 SiO2–Na2O glass (18% mol Na2O) SiO2–Na2O glass (18% mol Na2O) SiO2–Na2O glass (25% mol Na2O) SiO2–Na2O glass (18% mol Na2O) SiO2–Na2O glass (20% mol Na2O) SiO2–Na2O glass (7.5% mol Na2O) SiO2–Na2O glass (5% mol Na2O) SiO2–Na2O glass (5% mol Na2O) SiO2–Na2O glass (15% mol Na2O) SiO2–Na2O glass (5% mol Na2O) SiO2–Na2O glass (5% mol Na2O) SiO2 glass SiO2 glass SiO2 glass Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1685 15.3 sel Mechanical Page 1686 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 415. SELECTING TORSIONAL MODULI OF GRAY CAST IRONS ASTM Class Torsional Modulus (GPa) 20 25 30 27 to 39 32 to 41 36 to 45 35 40 50 60 40 to 48 44 to 54 50 to 55 54 to 59 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p166-167, (1984). Table 416. SELECTING TORSIONAL MODULI OF TREATED DUCTILE IRONS Treatment Torsion Modulus (GPa) 80-55-06 60-40-18 120-90-02 65-45-12 62 63 63.4 64 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984). ©2001 CRC Press LLC 1686 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1687 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 417. SELECTING MODULI OF RUPTURE FOR CERAMICS (SHEET 1 OF 5) Ceramic Temperature (˚C) Modulus of Rupture (psi) Boron Nitride (BN) parallel to c axis 1000 1.08x103 Boron Nitride (BN) parallel to c axis 1500 1.25x103 Boron Nitride (BN) parallel to c axis 1800 1.50x103 Boron Nitride (BN) parallel to c axis 700 1.90x103 Boron Nitride (BN) parallel to a axis 1000 2.18x103 Boron Nitride (BN) parallel to c axis 2000 2.45x103 Zirconium Monocarbide (ZrC) 2000 2.5x103 1200 3.4x103 Boron Nitride (BN) parallel to a axis 700 3.84x103 Hafnium Monocarbide (HfC) (ρ = 11.9 g/cm3) Zirconium Monocarbide (ZrC) 2200 4.78x103 1750 5.14x103 ) (ρ=1.8g/cm3) Cordierite (2MgO 2Al2O3 5SiO2 5.37x103 Titanium Diboride (TiB2) (98% dense) Titanium Diboride (TiB2) (3.5 µm grain size, ρ=4.37g/cm3, 0.8wt% Ni) Mullite (3Al2O3 2SiO2) 25 Titanium Diboride (TiB2) (6.0 µm grain size, ρ=4.46g/cm3) 5.7x103 6-27x103 6.2x103 Titanium Diboride (TiB2) (12.0 µm grain size, ρ=4.66g/cm3, 9.6wt% Ni) 6.29x103 Boron Nitride (BN) parallel to c axis 300 7.03x103 Trisilicon Tetranitride (Si3N4) (reaction sintered) 20 7.25-43.5x103 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 1687 15.3 sel Mechanical Page 1688 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 417. SELECTING MODULI OF RUPTURE FOR CERAMICS (SHEET 2 OF 5) Ceramic Temperature (˚C) Modulus of Rupture (psi) Boron Nitride (BN) parallel to c axis 25 7.28-13.2x103 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) 800 8x103 Zirconium Monocarbide (ZrC) 1250 8.3x103 25 8.5x103 room temp. 10-14.9x103 10x103 ) (ρ=2.77g/cm3) Mullite (3Al2O3 2SiO2 Titanium Oxide (TiO2) Hafnium Dioxide (HfO2) Titanium Diboride (TiB2) (6.0 µm grain size, ρ=4.56g/cm3, 0.16wt% Ni) 11.0x103 Silicon Carbide (SiC) 1400 11x103 Mullite (3Al2O3 2SiO2) (ρ=2.77g/cm3) 1200 11.5x103 Hafnium Monocarbide (HfC) (ρ = 11.9 g/cm3) Titanium mononitride (TiN) (10wt% AlO & 10wt% AlN) 2000 12.64x103 Mullite (3Al2O3 2SiO2) (ρ=2.77g/cm3) 400 13.5x103 Titanium Monocarbide (TiC) (ρ = 4.85 g/cm3) Silicon Carbide (SiC) 2000 13.6x103 1800 15x103 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) 400 15x103 Boron Nitride (BN) parallel to a axis 300 15.14x103 Boron Nitride (BN) parallel to a axis 25 15.88x103 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.51g/cm3) 25 16x103 Zirconium Monocarbide (ZrC) room temp. 16.6-22.5x103 13.34x103 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 1688 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1689 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 417. SELECTING MODULI OF RUPTURE FOR CERAMICS (SHEET 3 OF 5) Ceramic Temperature (˚C) Modulus of Rupture (psi) Mullite (3Al2O3 2SiO2) (ρ=2.77g/cm3) 800 16.7x103 Aluminum Nitride (AlN) 1400 18.1x103 Molybdenum Disilicide (MoSi2) (ρ = 5.57 g/cm3) room temp. 18.57x103 19x103 Titanium Diboride (TiB2) Zirconium Oxide (ZrO2) (5-10 CaO stabilized) room temp. 20-35x103 23.93x103 Titanium mononitride (TiN) (30wt% AlO & 10wt% AlN) Beryllium Oxide (BeO) room temp. 24-29 x103 Silicon Carbide (SiC) 1300 25x103 Silicon Carbide (SiC) room temp. 27x103 Aluminum Nitride (AlN) 1000 27x103 Aluminum Oxide (Al2O3) (80% dense, 20µm grain size) 600 20 28x103 30x103 1100 room temp. 900 room temp. 30x103 30x103 31x103 32.67x103 Aluminum Oxide (Al2O3) (80% dense, 20µm grain size) Aluminum Oxide (Al2O3) (80% dense, 20µm grain size) Zirconium Oxide (ZrO2) (MgO stabilized) Aluminum Oxide (Al2O3) (80% dense, 20µm grain size) Titanium Monocarbide (TiC) (ρ = 4.85 g/cm3) Titanium mononitride (TiN) (30wt% AlO & 30wt% AlN) 33.25x103 Titanium mononitride (TiN) 34x103 Hafnium Monocarbide (HfC) (ρ = 11.9 g/cm3) Molybdenum Disilicide (MoSi2) (hot pressed) room temp. room temp. 34.67x103 36-57x103 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 1689 15.3 sel Mechanical Page 1690 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 417. SELECTING MODULI OF RUPTURE FOR CERAMICS (SHEET 4 OF 5) Temperature (˚C) Ceramic Modulus of Rupture (psi) >38x103 Dichromium Trioxide (Cr2O3) Aluminum Nitride (AlN) (hot pressed) 25 38.5x103 Trisilicon Tetranitride (Si3N4) (sintered) 20 39.9-121.8x103 42x103 Silicon Carbide (SiC) (with 1wt% B addictive) Molybdenum Disilicide (MoSi2) (hot pressed) 1100 room temp. 1200 42x103 50.7x103 55.00x103 Tungsten Monocarbide (WC) room temp. 55.65-84x103 Aluminum Oxide (Al2O3) (80% dense, 3µm grain size) 20 56x103 Aluminum Oxide (Al2O3) (80% dense, 3µm grain size) Molybdenum Disilicide (MoSi2) (sintered) 58x103 Silicon Carbide (SiC) (with 1 wt% Be addictive) 900 room temp. 58x103 60 x103 Molybdenum Disilicide (MoSi2) (hot pressed) 600 20 980 1090 62x103 65.3-159.5x103 67.25x103 72.00x103 Molybdenum Disilicide (MoSi2) (sintered) 1090 86.00x103 131 x103 Aluminum Oxide (Al2O3) (80% dense, 3µm grain size) Aluminum Oxide (Al2O3) Aluminum Oxide (Al2O3) (80% dense, 3µm grain size) Trisilicon Tetranitride (Si3N4) (hot pressed) Molybdenum Disilicide (MoSi2) (sintered) Aluminum Oxide (Al2O3) (single crystal) Silicon Carbide (SiC) (with 1wt% Al addictive) Aluminum Oxide (Al2O3) 136x103 (zirconia toughened alumina, 15 vol% ZrO2) 137x103 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC 1690 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1691 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 417. SELECTING MODULI OF RUPTURE FOR CERAMICS (SHEET 5 OF 5) Ceramic Temperature (˚C) Modulus of Rupture (psi) Aluminum Oxide (Al2O3) (zirconia toughened alumina, 25 vol% ZrO2) Aluminum Oxide (Al2O3) (zirconia toughened alumina, 50 vol% ZrO2) Zirconium Oxide (ZrO2) (sintered yittria doped zirconia) Zirconium Oxide (ZrO2) (hot pressed yittria doped zirconia) 139x103 145x103 148x103 222x103 To convert from psi to MPa, multiply by 145. Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991). ©2001 CRC Press LLC Shackelford & Alexander 1691 15.3 sel Mechanical Page 1692 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 418. SELECTING POISSON ’S RATIOS FOR CERAMICS (SHEET 1 OF 2) Ceramic Poisson’s Ratio Titanium Diboride (TiB2) 0.09—0.28 0.10 Titanium Diboride (TiB2) (6.0 µm grain size, ρ=4.46g/cm3) Titanium Diboride (TiB2) (6.0 µm grain size, ρ=4.56g/cm3, 0.16wt% Ni) Titanium Diboride (TiB2) 0.11 (3.5 µm grain size, ρ=4.37g/cm3, 0.8wt% Ni) 0.12 Zirconium Diboride (ZrB2) 0.144 Titanium Diboride (TiB2) (12.0 µm grain size, ρ=4.66g/cm3, 9.6wt% Ni) Molybdenum Disilicide (MoSi2) 0.15 0.158—0.172 Magnesium Oxide (MgO) (ρ = 3.506 g/cm3) (room temp) Hafnium Monocarbide (HfC) 0.163 0.166 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) 0.17 Tantalum Monocarbide (TaC) 0.1719—0.24 Silicon Carbide (SiC) (ρ = 3.128 g/cm3) (room temp) Titanium Monocarbide (TiC) Boron Carbide (B4C) 0.183—0.192 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) Aluminum Oxide (Al2O3) Trisilicon tetranitride (Si3N4) (presureless sintered) Zirconium Oxide (ZrO2) (partially stabilized) Zirconium Oxide (ZrO2) (fully stabilized) 0.187—189 0.207 0.21 0.21—0.27 0.22—0.27 0.23 0.23—0.32 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC 1692 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1693 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 418. SELECTING POISSON ’S RATIOS FOR CERAMICS (SHEET 2 OF 2) Ceramic Poisson’s Ratio Mullite (3Al2O3 2SiO2) (ρ=2.779 g/cm3) Tungsten Monocarbide (WC) Trisilicon tetranitride (Si3N4) 0.238 Zirconium Oxide (ZrO2) (plasma sprayed) Zirconium Monocarbide (ZrC) (ρ = 6.118 g/cm3) Cordierite (2MgO 2Al2O3 5SiO2) (glass) Beryllium Oxide (BeO) Cerium Dioxide (CeO2) Thorium Dioxide (ThO2) (ρ=9.722 g/cm3) 0.24 0.24 0.25 0.257 0.26 0.26—0.34 0.27—0.31 Titanium Oxide (TiO2) 0.275 0.28 Spinel (Al2O3 MgO) (ρ=3.510 g/cm3) 0.294 Uranium Dioxide (UO2) (ρ=10.37 g/cm3) 0.302 Zirconium Oxide (ZrO2) (room temp) 0.324—0.337 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991) ©2001 CRC Press LLC Shackelford & Alexander 1693 15.3 sel Mechanical Page 1694 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 419. SELECTING POISSON ’S RATIOS OF GLASS (SHEET 1 OF 2) Glass SiO2–PbO glass (38.4% mol PbO) SiO2 glass SiO2–PbO glass (30.0% mol PbO) SiO2–Na2O glass (15% mol Na2O) SiO2–Na2O glass (20% mol Na2O) SiO2–Na2O glass (25% mol Na2O) Temperature (˚C) room temp. room temp. 0.203 0.219 0.219 0.222 room temp. room temp. room temp. 0.236 0.248 0.249 0.249 SiO2–PbO glass (55.0% mol PbO) SiO2–Na2O glass (35% mol Na2O) SiO2–Na2O glass (33% mol Na2O) SiO2–PbO glass (24.6% mol PbO) SiO2–PbO glass (35.7% mol PbO) SiO2–PbO glass (50.0% mol PbO) B2O3–Na2O glass (15.4% mol Na2O) B2O3–Na2O glass (25% mol Na2O) 15 B2O3–Na2O glass (22.8% mol Na2O) B2O3–Na2O glass (37% mol Na2O) 15 B2O3–Na2O glass (29.8% mol Na2O) B2O3–Na2O glass (10% mol Na2O) 0.150 0.166–0.177 0.174 0.183 room temp. room temp. SiO2–PbO glass (45.0% mol PbO) SiO2–Na2O glass (30% mol Na2O) Poisson’s Ratio 15 0.252 0.259 0.271 0.2713 0.272 0.2739 0.274 0.2740 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1694 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1695 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 419. SELECTING POISSON ’S RATIOS OF GLASS (SHEET 2 OF 2) Glass Temperature (˚C) B2O3–Na2O glass (33.3% mol Na2O) 15 0.2771 0.279 0.281 0.283 15 room temp. 0.2860 0.288–0.309 0.292 B2O3–Na2O glass (5.5% mol Na2O) SiO2–PbO glass (60.0% mol PbO) SiO2–PbO glass (65.0% mol PbO) B2O3–Na2O glass (20% mol Na2O) B2O3 glass B2O3–Na2O glass (37.25% mol Na2O) Poisson’s Ratio Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1695 15.3 sel Mechanical Page 1696 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 420. SELECTING COMPRESSION POISSON ’S RATIOS OF TREATED DUCTILE IRONS Treatment Compression Poisson’s Ratio 60-40-18 120 90-02 65-45-12 80-55-06 0.26 0.27 0.31 0.31 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984). Table 421. SELECTING TORSION POISSON ’S RATIOS OF TREATED DUCTILE IRONS Treatment Torsion Poisson’s Ratio 120 90-02 60-40-18 65-45-12 80-55-06 0.28 0.29 0.29 0.31 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984). ©2001 CRC Press LLC 1696 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1697 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 422. SELECTING ELONGATION OF TOOL STEELS Type Condition Elongation (%) L6 S1 L2 S1 Oil quenched from 845 •C and single tempered at 315 •C Oil quenched from 930 •C and single tempered at 315 •C Oil quenched from 855 •C and single tempered at 205 •C Oil quenched from 930 •C and single tempered at 425 •C 4 4 5 5 S5 S5 S7 L6 Oil quenched from 870 •C and single tempered at 205 •C Oil quenched from 870 •C and single tempered at 315 •C Fan cooled from 940 •C and single tempered at 205 •C Oil quenched from 845 •C and single tempered at 425 •C 5 7 7 8 S1 S5 S7 L2 Oil quenched from 930 •C and single tempered at 540 •C Oil quenched from 870 •C and single tempered at 425 •C Fan cooled from 940 •C and single tempered at 315 •C Oil quenched from 855 •C and single tempered at 315 •C 9 9 9 10 S5 S7 S7 L2 Oil quenched from 870 •C and single tempered at 540 •C Fan cooled from 940 •C and single tempered at 425 •C Fan cooled from 940 •C and single tempered at 540 •C Oil quenched from 855 •C and single tempered at 425 •C 10 10 10 12 L6 S1 S7 L2 Oil quenched from 845 •C and single tempered at 540 •C Oil quenched from 930 •C and single tempered at 650 •C Fan cooled from 940 •C and single tempered at 650 •C Oil quenched from 855 •C and single tempered at 540 •C 12 12 14 15 S5 L6 S1 L2 Oil quenched from 870 •C and single tempered at 650 •C Oil quenched from 845 •C and single tempered at 650 •C Annealed Annealed 15 20 24 25 L2 L6 S5 S7 Oil quenched from 855 •C and single tempered at 650 •C Annealed Annealed Annealed 25 25 25 25 Source: Data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1697 15.3 sel Mechanical Page 1698 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 423. SELECTING ELONGATION OF DUCTILE IRONS Specification Number Grade or Class Elongation (%) ASTM A536-72; MIL-1-11466B(MR) ASTM A476-70(d); SAE AMS5316 ASTM A536-72; MIL-1-11466B(MR) SAE J434c 120-90-02 80-60-03 100-70-03 D7003 2 3 3 3 ASTM A536-72; MIL-1-11466B(MR) SAE J434c MlL-I-24137(Ships) ASTM A536-72; MIL-1-11466B(MR) 80-55-06 D5506 Class B 65-45-12 6 6 7 12 SAE J434c MlL-I-24137(Ships) ASTM A395-76; ASME SA395 ASTM A536-72; MIL-1-11466B(MR) D4512 Class A 60-40-18 60-40-18 12 15 18 18 SAE J434c MlL-I-24137(Ships) D4018 Class C 18 20 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169, (1984). ©2001 CRC Press LLC 1698 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1699 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 424. SELECTING ELONGATION OF MALLEABLE IRON CASTINGS Specification Number Grade or Class Elongation (%) ASTM A220; ANSI C48.2; MIL-I-11444B ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL-I-11444B ASTM A602; SAE J158 90001 M8501(b) 80002 M7002(b) 1 1 2 2 ASTM A220; ANSI C48.2; MIL-I-11444B ASTM A602; SAE J158 ASTM A602; SAE J158 ASTM A220; ANSI C48.2; MIL-I-11444B 70003 M5003(a) M5503(b) 60004 3 3 3 4 ASTM A602; SAE J158 ASTM A197 ASTM A220; ANSI C48.2; MIL-I-11444B ASTM A220; ANSI C48.2; MIL-I-11444B M4504(a) 50005 45006 4 5 5 6 ASTM A220; ANSI C48.2; MIL-I-11444B ASTM A47, A338; ANSI G48.1; FED QQ-I-666c ASTM A220; ANSI C48.2; MIL-I-11444B 45008 32510 40010 8 10 10 ASTM A602; SAE J158 ASTM A47, A338; ANSI G48.1; FED QQ-I-666c M3210 35018 10 18 (a) Air quenched and tempered (b) Liquid quenched and tempered Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p171, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1699 15.3 sel Mechanical Page 1700 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 425. SELECTING TOTAL ELONGATION OF CAST ALUMINUM ALLOYS (SHEET 1 OF 3) Alloy AA No. Temper Elongation (in 2 in.) (%) 242.0 242.0 336.0 336.0 T571 T61 T551 T65 0.5 0.5 0.5 0.5 355.0 A390.0 A390.0 A390.0 T7 F,T5 T6 T7 0.5 <1.0 <1.0 <1.0 A390.0 A390.0 242.0 242.0 T6 T7 T21 T571 <1.0 <1.0 1.0 1.0 355.0 390.0 390.0 A390.0 T61 F T5 F,T5 1.0 1.0 1.0 1.0 355.0 355.0 355.0 242.0 T51 T71 T62 T77 1.5 1.5 1.5 2.0 295.0 308.0 319.0 319.0 T62 F F T6 2.0 2.0 2.0 2.0 355.0 355.0 356.0 356.0 T51 T7 T51 T7 2.0 2.0 2.0 2.0 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 1700 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1701 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 425. SELECTING TOTAL ELONGATION OF CAST ALUMINUM ALLOYS (SHEET 2 OF 3) Alloy AA No. Temper Elongation (in 2 in.) (%) 208.0 319.0 384.0, A384.0 413.0 F F F F 2.5 2.5 2.5 2.5 319.0 355.0 355.0 360.0 T6 T6 T71 F 3.0 3.0 3.0 3.0 380.0 713.0 356.0 356.0 F T5 T6 T71 3.0 3.0 3.5 3.5 383.0 A413.0 355.0 713.0 F F T6 T5 3.5 3.5 4.0 4.0 201.0 296.0 295.0 296.0 T7 T7 T6 T6 4.5 4.5 5.0 5.0 356.0 A360.0 712.0 518.0 T6 F F F 5.0 5.0 5.0 5.0—8.0 359.0 354.0 356.0 359.0 T62 T61 T7 T61 5.5 6.0 6.0 6.0 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1701 15.3 sel Mechanical Page 1702 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 425. SELECTING TOTAL ELONGATION OF CAST ALUMINUM ALLOYS (SHEET 3 OF 3) Alloy AA No. Temper Elongation (in 2 in.) (%) 201.0 357.0, A357.0 443.0 295.0 T6 T62 F T4 7 8.0 8.0 8.5 296.0 C443.0 514.0 771.0 T4 F F T6 9.0 9.0 9.0 9.0 B443.0 850.0 206.0, A206.0 535.0 F T5 T7 F 10.0 10.0 11.7 13 520.0 201.0 T4 T4 16 20 Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC 1702 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1703 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 426. SELECTING TOTAL ELONGATION OF POLYMERS (SHEET 1 OF 4) Polymer Elongation (in 2 in.), (ASTM D638) (%) Polycarbonate (40% glass fiber reinforced) Phenolic, Molded, Very high shock: glass fiber filled Reinforced polyester moldings: High strength (glass fibers) Phenolic, Molded, High shock: chopped fabric or cord filled 0—5 0.2 0.3—0.5 0.37—0.57 Phenolic, Molded, General: woodflour and flock filled Styrene acrylonitrile (SAN) Melamine, Molded: Cellulose electrical Rubber phenolic—woodflour or flock filled 0.4—0.8 0.5—4.5 0.6 0.75—2.25 Polymide: Glass reinforced Polymide: Unreinforced Ureas; Molded: Alpha—cellulose filled (ASTM Type l) Polystyrenes, Molded: General purpose <1 <1—1.2 1 1.0—2.3 Polyvinyl Chloride & Copolymers: Rigid—normal impact Polyester, Thermoplastic Moldings: Glass reinforced grades Polystyrenes, Molded: Glass fiber -30% reinforced Glass fiber (30%) reinforced Styrene acrylonitrile (SAN) 1—10 1—5 1.1 1.4—1.6 Epoxy, Standard: Cast flexible Polyester, Thermoset Cast: Rigid 6/6 Nylon, Molded, Extruded: Glass fiber reinforced 6/10 Nylon: Glass fiber (30%) reinforced 1.5-60 1.7—2.6 1.8—2.2 1.9 Polypropylene: Glass reinforced Epoxy, High performance: Cast, rigid Acrylic Cast Resin Sheets, Rods: General purpose, type I Acrylic Cast Resin Sheets, Rods: General purpose, type II 2—4 2—5 2—7 2—7 Nylon, Type 6: Glass fiber (30%) reinforced Epoxy novolacs: Glass cloth laminate Silicones: Fibrous (glass) reinforced silicones Silicone: Granular (silica) reinforced 2.2—3.6 2.2—4.8 <3 (ASTM D651) <3 (ASTM D651) Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1703 15.3 sel Mechanical Page 1704 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 426. SELECTING TOTAL ELONGATION OF POLYMERS (SHEET 2 OF 4) Polymer Elongation (in 2 in.), (ASTM D638) (%) 6/6 Nylon: Glass fiber Molybdenum disulfide filled Polyacetal Copolymer: 25% glass reinforced Polyphenylene sulfide: Standard Polystyrenes, Molded: Medium impact 3 3 3 3.0—40 Polypropylene: Flame retardant Polypropylene: Asbestos filled Acrylic Moldings: Grades 5, 6, 8 Polyphenylene sulfide: 40% glass reinforced 3—15 3—20 3—5 3—9 Phenylene Oxides: Glass fiber reinforced Epoxy, Standard: Cast rigid Polyester, Thermoplastic Moldings: Glass reinforced grade Polyester, Thermoplastic Moldings: Asbestos—filled grade 4—6 4.4 <5 <5 Polyester, Thermoplastic: Glass reinforced self extinguishing ABS Resins: Medium impact ABS Resins: High impact Polyacetal Homopolymer: 20% glass reinforced 5 5—20 5—50 7 Ceramic reinforced (PTFE) Polyacetal Homopolymer: 22% TFE reinforced Polyvinyl Chloride & Copolymers: Vinylidene chloride Polyarylsulfone 10—200 12 15—30 15—40 6/6 Nylon: General purpose molding ABS Resins: Heat resistant Nylon, Molded, Extruded Type 6: Cast Olefin Copolymers, Molded: Ethylene butene 15—60, 300 20 20 20 ABS Resins: Very high impact Polyacetal Homopolymer: Standard Acrylic Moldings: High impact grade Polyester, Thermoset Cast: Flexible 20—50 25 >25 25—300 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1704 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1705 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 426. SELECTING TOTAL ELONGATION OF POLYMERS (SHEET 3 OF 4) Polymer Elongation (in 2 in.), (ASTM D638) (%) Nylon, Molded, Extruded Type 6: General purpose ABS Resins: Low temperature impact Polypropylene: High impact Polyacetal Copolymer: High flow 30—100 30—200 30—>200 40 Phenylene Oxides: SE—100 Phenylene oxides (Noryl): Standard Polyethylene, Type III: Melt Melt index 0.l—12.0 Phenylene Oxides: SE—1 50 50—100 50—l,000 60 Polyacetal Copolymer: Standard Polyethylene, Type I: Melt index 200 6/10 Nylon: General purpose 6/6 Nylon: General purpose extrusion 60—75 80—100 (ASTM D412) 85—220 90—240 PVC–Acrylic Alloy: sheet Nylon, Type 11 Polypropylene: General purpose Polyethylene, Type III: Melt index 1.5—15 >100 100—120 100—600 100—700 Polycarbonate ABS–Polycarbonate Alloy Nylon, Type 12 Polytrifluoro chloroethylene (PTFCE) 110 110 120—350 125—175 Polyethylene, Type I: Melt index 6—26 Chlorinated polyether PVC–Acrylic Alloy: injection molded Polyethylene, Type II: Melt index 20 125—675 (ASTM D412) 130 150 200 Polyvinylidene— fluoride (PVDF) Nylon, Molded, Extruded Type 6: Flexible copolymers Polyethylene, Type II: Melt index l.0—1.9 Polyvinyl Chloride & Copolymers: Nonrigid—general 200—300 200—320 200—425 200—450 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1705 15.3 sel Mechanical Page 1706 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 426. SELECTING TOTAL ELONGATION OF POLYMERS (SHEET 4 OF 4) Polymer Elongation (in 2 in.), (ASTM D638) (%) Polyvinyl Chloride & Copolymers: Nonrigid—electrical Polyester, Thermoplastic Moldings: General purpose grade Fluorinated ethylene propylene (FEP) Polytetrafluoroethylene (PTFE) 220—360 250 250—330 250—350 Polyester, Thermoplastic Moldings: General purpose grade Olefin Copolymers, Molded: Polyallomer Nylon, Type 8 Polyethylene, Type III: High molecular weight 300 300—400 400 400 Olefin Copolymers, Molded: Ionomer Polyethylene, Type I: Melt index 0.3—3.6 Olefin Copolymers, Molded: EEA (ethylene ethyl acrylate) 450 500—725 (ASTM D412) 650 Olefin Copolymers, Molded: EVA (ethylene vinyl acetate) Polyethylene, Type III: Melt index 0.2—0.9 650 700—1,000 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1706 CRC Handbook of Materials Science & Engineering 15.3 sel Mechanical Page 1707 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 427. SELECTING ELONGATION AT YIELD OF POLYMERS Polymer Elongation at Yield, (ASTM D638) (%) Polystyrene: General purpose Polystyrene: Glass fiber -30% reinforced Polystyrene: Medium impact Polyphenylene sulfide: 40% glass reinforced 1.0—2.3 1.1 1.2—3.0 1.25 Polystyrene: Glass fiber (30%) reinforced SAN Polystyrene: High impact Polyphenylene sulfide: Standard Phenylene oxides (Noryl): Glass fiber reinforced 1.4—1.6 1.5—2.0 1.6 2—1.6 Polyacetal Copolymer: 25% glass reinforced Polycarbonate Nylon, Type 6: Cast Polypropylene: Asbestos filled 3 5 5 5 6/6 Nylon: General purpose molding 6/6 Nylon: General purpose extrusion 6/10 Nylon: General purpose Phenylene oxides (Noryl): Standard 5—25 5—30 5—30 5.6 Nylon, Type 12 Polyarylsulfone Polypropylene: High impact Polypropylene: General purpose 5.8 6.5—13 7—13 9—15 Polyacetal Homopolymer: Standard Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow Chlorinated polyether 12 12 12 15 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1707 15.3 sel Mechanical Page 1708 Wednesday, December 31, 1969 17:00 Selecting Mechanical Properties Table 428. SELECTING AREA REDUCTION OF TOOL STEELS Type Condition Area Reduction (%) L6 S1 L2 S1 Oil quenched from 845 •C and single tempered at 315 •C Oil quenched from 930 •C and single tempered at 315 •C Oil quenched from 855 •C and single tempered at 205 •C Oil quenched from 930 •C and single tempered at 425 •C 9 12 15 17 L6 S5 S7 S1 Oil quenched from 845 •C and single tempered at 425 •C Oil quenched from 870 •C and single tempered at 205 •C Fan cooled from 940 •C and single tempered at 205 •C Oil quenched from 930 •C and single tempered at 540 •C 20 20 20 23 S5 S7 S5 S7 Oil quenched from 870 •C and single tempered at 315 •C Fan cooled from 940 •C and single tempered at 315 •C Oil quenched from 870 •C and single tempered at 425 •C Fan cooled from 940 •C and single tempered at 425 •C 24 25 28 29 L2 L6 S5 S7 Oil quenched from 855 •C and single tempered at 315 •C Oil quenched from 845 •C and single tempered at 540 •C Oil quenched from 870 •C and single tempered at 540 •C Fan cooled from 940 •C and single tempered at 540 •C 30 30 30 33 L2 S1 S5 L2 Oil quenched from 855 •C and single tempered at 425 •C Oil quenched from 930 •C and single tempered at 650 •C Oil quenched from 870 •C and single tempered at 650 •C Oil quenched from 855 •C and single tempered at 540 •C 35 37 40 45 S7 L6 L2 S5 Fan cooled from 940 •C and single tempered at 650 •C Oil quenched from 845 •C and single tempered at 650 •C Annealed Annealed 45 48 50 50 S1 L2 L6 S7 Annealed Oil quenched from 855 •C and single tempered at 650 •C Annealed Annealed 52 55 55 55 Area Reduction in 50 mm or 2 in. Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p241, (1984). ©2001 CRC Press LLC 1708 CRC Handbook of Materials Science & Engineering Shackelford, James F. & Alexander, W. “Selecting Electrical Properties” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001 16.0 sel Electrical Page 1709 Wednesday, December 31, 1969 17:00 CHAPTER 14 List of Tables Selecting Electrical Properties Resistivity Selecting Electrical Resistivity of Alloy Cast Irons Selecting Resistivity of Ceramics Selecting Volume Resistivity of Glass Selecting Volume Resistivity of Polymers Critical Temperature Selecting Critical Temperature of Superconductive Elements Dissipation Factor Selecting Dissipation Factor for Polymers at 60 Hz Selecting Dissipation Factor for Polymers at 1 MHz Dielectric Selecting Dielectric Strength of Polymers Selecting Dielectric Constants of Polymers at 60 Hz Selecting Dielectric Constants of Polymers at 1 MHz Tangent Loss Selecting Tangent Loss in Glass Selecting Tangent Loss in Glass by Temperature Selecting Tangent Loss in Glass by Frequency (continued) ©2001 CRC Press LLC 1709 16.0 sel Electrical Page 1710 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties List of Tables (Continued) Permittivity Selecting Electrical Permittivity of Glass Selecting Electrical Permittivity of Glass by Frequency Arc Resistance Selecting Arc Resistance of Polymers ©2001 CRC Press LLC 1710 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1711 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 429. SELECTING ELECTRICAL RESISTIVITY OF ALLOY CAST IRONS a Description Electrical Resistivity (µΩ • m) Corrosion–Resistant High– Silicon iron Abrasion–Resistant Low–C White Iron Heat–Resistant Medium–silicon Ductile Iron 0.50 0.53 0.58 to 0.87 Abrasion–Resistant Martensitic nickel–chromium White Iron Corrosion–Resistant High–nickel gray iron 0.80 Corrosion–Resistant High–nickel ductile iron 1.0a Heat–Resistant High–nickel Ductile Iron (23 Ni) Heat–Resistant High–nickel Ductile Iron (20 Ni) Heat–Resistant Gray High–nickel Iron 1.0a 1.02 1.4 to 1.7 Heat–Resistant Nickel–chromium–silicon Gray Iron Heat–Resistant High–aluminum Gray Iron 1.5 to 1.7 2.4 1.0a Estimated. Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, (1984). ©2001 CRC Press LLC Shackelford & Alexander 1711 16.1 sel Electrical Page 1712 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 430. SELECTING RESISTIVITY OF (SHEET 1 OF 5) CERAMICS Temperature Range of Validity Ceramic Boron Carbide (B4C) Titanium Monocarbide (TiC) Zircoium Oxide (ZrO2) (stabilized) Zircoium Oxide (ZrO2) (stabilized) Silicon Carbide (SiC) (with 1 wt% Al additive) Zircoium Oxide (ZrO2) (stabilized) Resistivity (Ω–cm) 0.3–0.8 0.3–0.8 2200˚C 2000˚C 0.37 0.59 0.8 Zircoium Oxide (ZrO2) (stabilized) 1700˚C 1300˚C 1200˚C 1.6 9.4 77 Silicon Carbide (SiC) 20˚C 102 –1012 Magnesium Oxide (MgO) Zircoium Oxide (ZrO2) (stabilized) 1727˚C 4x102 700˚C 900˚C 2300 Zircoium Oxide (ZrO2) (stabilized) ) (ρ=2.3g/cm3) Cordierite (2MgO 2Al2O3 5SiO2 1.9x104 2x104 Silicon Carbide (SiC) (with 1 wt% B additive) Boron Nitride (BN) 1000˚C 3.1x104 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) 700˚C 8.0x104 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) 900˚C 3.5x105 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3) 900˚C 7.0x105 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) 500˚C 7.7x105 Zirconium Diboride (ZrB2) liquid air temperature 1000˚C 1.8x106 2x106 Aluminum Oxide (Al2O3) Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991). ©2001 CRC Press LLC 1712 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1713 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 430. SELECTING RESISTIVITY OF (SHEET 2 OF 5) CERAMICS Ceramic Temperature Range of Validity Resistivity (Ω–cm) Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) 700˚C 3.0x106 Titanium Diboride (TiB2) (polycrystalline) liquid air temp. 3.7x106 Zirconium Mononitirde (TiN) liquid air 3.97x106 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3) 700˚C 4.7x106 room temp. 6.6±0.2x106 (crystal length 1.5 cm, 16.5 deg. and 90 deg. orientation with respect to growth axis) room temp. 6.7±0.2x106 Tantalum Monocarbide (TaC) (80% dense) 4.2K 8x106 Titanium Mononitirde (TiN) Titanium Diboride (TiB2) (polycrystalline) liquid air 8.13x106 (100% dense, extrapolated) room temp. 8.7–14.1x106 (polycrystalline) (85% dense) Zirconium Diboride (ZrB2) room temp. 20 ˚C 9.0x106 9.2x106 Tantalum Monocarbide (TaC) (80% dense) 80K 10x106 Hafnium Diboride (HfB2) room temp. 10–12 x 106 Titanium Mononitirde (TiN) room temp. 11.07–130x106 Zirconium Mononitirde (TiN) room temp. 11.52–160x106 Tantalum Monocarbide (TaC) (80% dense) 160K 15x106 (100% dense, extrapolated) Titanium Diboride (TiB2) (monocrystalline) (crystal length 5 cm, 39 deg. and 59 deg. orientation with respect to growth axis) Titanium Diboride (TiB2) (monocrystalline) Titanium Diboride (TiB2) Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991). ©2001 CRC Press LLC Shackelford & Alexander 1713 16.1 sel Electrical Page 1714 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 430. SELECTING RESISTIVITY OF (SHEET 3 OF 5) CERAMICS Ceramic Temperature Range of Validity Resistivity (Ω–cm) Molybdenum Disilicide (MoSi2) –80˚C 18.9x106 Magnesium Oxide (MgO) 1000˚C 0.2–1x108 Tantalum Monocarbide (TaC) (80% dense) 240K 20x106 21x106 Chromium Diboride (CrB2) Molybdenum Disilicide (MoSi2) 22˚C 21.5x106 Tantalum Monocarbide (TaC) (80% dense) Titanium Diboride (TiB2) 300K 25x106 (polycrystalline) (85% dense) room temp. 26.5–28.4x106 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) 300˚C 3.3x107 33.4–54.9x106 Tungsten Disilicide (WSi2) Hafnium Monocarbide (HfC) 4.2K 41x106 Hafnium Monocarbide (HfC) 80K 41x106 Zirconium Monocarbide (ZrC) 4.2K 41x106 Hafnium Monocarbide (HfC) 160K 45x106 Zirconium Monocarbide (ZrC) 80K 45x106 Zirconium Monocarbide (ZrC) 160K 47x106 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3) 500˚C 4.9x107 Hafnium Monocarbide (HfC) 240K 49x106 Zirconium Monocarbide (ZrC) 240K 53x106 Hafnium Monocarbide (HfC) 300K 60x106 Zirconium Monocarbide (ZrC) 300K 61–64x106 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991). ©2001 CRC Press LLC 1714 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1715 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 430. SELECTING RESISTIVITY OF (SHEET 4 OF 5) CERAMICS Temperature Range of Validity Ceramic Resistivity (Ω–cm) 68 x106 Tantalum Diboride (TaB2) 1600˚C 75–80x106 500˚C 9.0x107 Zirconium Monocarbide (ZrC) 773K 97x106 Mullite (3Al2O3 2SiO2) 500˚C 108 Zirconium Monocarbide (ZrC) 1273K 137x106 Zirconium Mononitirde (TiN) melting temp. 320x106 Titanium Mononitirde (TiN) melting temp. 340x106 Aluminum Oxide (Al2O3) 700˚C 5.0x108 300˚C 3.0x109 Boron Nitride (BN) (90% humidity) 25˚C 5.0x109 Mullite (3Al2O3 2SiO2) 300˚C 1010 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) 300˚C 2.0x1010 Boron Nitride (BN) 480˚C 2.3x1010 Aluminum Oxide (Al2O3) 500˚C 6.3x1010 Boron Nitride (BN) (50% humidity) 25˚C 7.0x1010 room temp. 1x1011 2x1011–1013 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm ) 100˚C 2.5x1011 Boron Nitride (BN) (20% humidity) 25˚C 1.0x1012 Molybdenum Disilicide (MoSi2) Cordierite (2MgO 2Al2O3 5SiO2 ) (ρ=2.1g/cm3) Cordierite (2MgO 2Al2O3 5SiO2 ) (ρ=1.8g/cm3) Silicon Carbide (SiC) (with 2.0 wt% BN additive) Aluminum Nitride (AlN) 3 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991). ©2001 CRC Press LLC Shackelford & Alexander 1715 16.1 sel Electrical Page 1716 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 430. SELECTING RESISTIVITY OF (SHEET 5 OF 5) CERAMICS Ceramic Temperature Range of Validity Resistivity (Ω–cm) Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3) 100˚C 1.0x1013 Aluminum Oxide (Al2O3) 300˚C 1x1013 >1013 Silicon Carbide (SiC) (with 1.6 wt% BeO additive) Trisilicon tetranitride (Si3N4) >1013 Boron Nitride (BN) 25˚C 1.7x1013 Aluminum Oxide (Al2O3) 100˚C 2x1013 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) 100˚C 3.0x1013 Silicon Carbide (SiC) (with 1 wt% Be additive) 3x1013 Silicon Carbide (SiC) (with 3.2 wt% BeO additive) 4x1013 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=1.8g/cm3) 25˚C 1.0x1014 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.3g/cm3) 25˚C 1x1014 Mullite (3Al2O3 2SiO2) 25˚C >1014 Cordierite (2MgO 2Al2O3 5SiO2) (ρ=2.1g/cm3) 25˚C >1x1014 Beryllium Oxide (BeO) 500˚C 1–5x1015 Beryllium Oxide (BeO) 300˚C >1015 Aluminum Oxide (Al2O3) 25˚C >10x1014 Magnesium Oxide (MgO) 27˚C 1.3x1015 Beryllium Oxide (BeO) 700˚C 1.5–2x1015 Beryllium Oxide (BeO) 1000˚C 4–7x1015 Beryllium Oxide (BeO) 25˚C >1017 Silicon Dioxide (SiO2) room temp. 1018 Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986–1991). ©2001 CRC Press LLC 1716 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1717 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 431. SELECTING VOLUME RESISTIVITY OF GLASS (SHEET 1 OF 13) Temperature (˚C) Resistivity (log Ω cm) SiO2–Na2O glass (57.5% mol Na2O) SiO2–Na2O glass (49.3% mol Na2O) SiO2–Na2O glass (57.5% mol Na2O) SiO2–Na2O glass (49.3% mol Na2O) 1300 1300 –0.67 –0.61 1200 –0.61 1200 –0.56 SiO2–Na2O glass (44.5% mol Na2O) 1300 –0.52 SiO2–Na2O glass (57.5% mol Na2O) 1100 –0.52 SiO2–Na2O glass (49.3% mol Na2O) 1100 –0.47 SiO2–Na2O glass (44.5% mol Na2O) 1200 –0.46 SiO2–Na2O glass (39.5% mol Na2O) 1400 –0.45 SiO2–Na2O glass (39.5% mol Na2O) 1300 –0.39 SiO2–Na2O glass (44.5% mol Na2O) 1100 –0.38 SiO2–Na2O glass (34.7% mol Na2O) 1400 –0.33 SiO2–Na2O glass (39.5% mol Na2O) 1200 –0.32 SiO2–Na2O glass (34.7% mol Na2O) 1300 –0.27 SiO2–Na2O glass (39.5% mol Na2O) 1100 –0.24 SiO2–Na2O glass (34.7% mol Na2O) 1200 –0.20 SiO2–Na2O glass (29.7% mol Na2O) 1400 –0.16 SiO2–Na2O glass (39.5% mol Na2O) 1000 –0.13 SiO2–Na2O glass (34.7% mol Na2O) 1100 –0.11 SiO2–Na2O glass (29.7% mol Na2O) 1300 –0.10 SiO2–Na2O glass (29.7% mol Na2O) 1200 –0.02 SiO2–Na2O glass (34.7% mol Na2O) 1000 0.00 SiO2–Na2O glass (39.5% mol Na2O) 900 0.00 SiO2–Na2O glass (29.7% mol Na2O) 1100 0.08 Glass Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1717 16.1 sel Electrical Page 1718 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 431. SELECTING VOLUME RESISTIVITY OF GLASS (SHEET 2 OF 13) Glass Temperature (˚C) Resistivity (log Ω cm) SiO2–Na2O glass (34.7% mol Na2O) 900 0.12 SiO2–Na2O glass (39.5% mol Na2O) 800 0.13 SiO2–Na2O glass (24.8% mol Na2O) 1200 0.17 SiO2–Na2O glass (29.7% mol Na2O) 1000 0.20 SiO2–Na2O glass (24.8% mol Na2O) 1100 0.26 SiO2–PbO glass (66.7% mol PbO) 1000 0.26 SiO2–Na2O glass (19.9% mol Na2O) 1300 0.30 SiO2–Na2O glass (39.5% mol Na2O) 700 0.33 SiO2–Na2O glass (29.7% mol Na2O) 900 0.34 SiO2–CaO glass (55.2% mol CaO) 1600 0.34 SiO2–Na2O glass (19.9% mol Na2O) 1200 0.38 SiO2–Na2O glass (24.8% mol Na2O) 1000 0.38 SiO2–CaO glass (51.4% mol CaO) 1618 0.38 SiO2–PbO glass (60% mol PbO) 1000 0.40 B2O3–Na2O glass (32.8% mol Na2O) 900 0.40 SiO2–CaO glass (55.2% mol CaO) 1550 0.42–0.43 SiO2–CaO glass (51.4% mol CaO) 1560 0.47 SiO2–Na2O glass (19.9% mol Na2O) 1100 0.48 SiO2–CaO glass (51.4% mol CaO) 1500 0.48–0.49 SiO2–PbO glass (66.7% mol PbO) 900 0.50 SiO2–CaO glass (55.2% mol CaO) 1499 0.51–0.53 SiO2–Na2O glass (24.8% mol Na2O) 900 0.52 SiO2–Na2O glass (29.7% mol Na2O) 800 0.52 SiO2–CaO glass (45.4% mol CaO) 1622 0.52 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1718 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1719 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 431. SELECTING VOLUME RESISTIVITY OF GLASS (SHEET 3 OF 13) Glass Temperature (˚C) Resistivity (log Ω cm) SiO2–PbO glass (51.6% mol PbO) 1200 0.54 SiO2–Na2O glass (15% mol Na2O) 1500 0.56 SiO2–CaO glass (45.4% mol CaO) 1585 0.58–0.59 SiO2–PbO glass (50.0% mol PbO) 1200 0.60 B2O3–Na2O glass (32.8% mol Na2O) 800 0.60 SiO2–Na2O glass (15% mol Na2O) 1400 0.61 SiO2–Na2O glass (19.9% mol Na2O) 1000 0.61 SiO2–CaO glass (45.4% mol CaO) 1550 0.65 B2O3–Na2O glass (21.9% mol Na2O) 1000 0.65 SiO2–Na2O glass (39.5% mol Na2O) 600 0.67 SiO2–CaO glass (41.3% mol CaO) 1600 0.67–0.68 SiO2–PbO glass (51.6% mol PbO) 1100 0.70 B2O3–Na2O glass (27.5% mol Na2O) 900 0.70 B2O3–CaO glass (40.0% mol CaO) 1250 0.75 SiO2–Na2O glass (19.9% mol Na2O) 900 0.76 SiO2–PbO glass (60% mol PbO) 900 0.76 SiO2–CaO glass (41.3% mol CaO) 1550 0.76 SiO2–Na2O glass (29.7% mol Na2O) 700 0.78 SiO2–CaO glass (33.6% mol CaO) 1600 0.79–0.80 SiO2–PbO glass (50.0% mol PbO) 1100 0.80 SiO2–PbO glass (44.7% mol PbO) 1300 0.82 SiO2–PbO glass (66.7% mol PbO) 800 0.82 SiO2–CaO glass (41.3% mol CaO) 1519 0.82 B2O3–CaO glass (33.3% mol CaO) 1250 0.85 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1719 16.1 sel Electrical Page 1720 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 431. SELECTING VOLUME RESISTIVITY OF GLASS (SHEET 4 OF 13) Glass Temperature (˚C) Resistivity (log Ω cm) B2O3–Na2O glass (17.3% mol Na2O) 1000 0.89 SiO2–Na2O glass (39.5% mol Na2O) 550 0.91 SiO2–Na2O glass (10% mol Na2O) 1600 0.92 SiO2–PbO glass (51.6% mol PbO) 1000 0.92 SiO2–CaO glass (33.6% mol CaO) 1560 0.93–0.94 B2O3–Na2O glass (21.9% mol Na2O) 900 0.94 SiO2–Na2O glass (19.9% mol Na2O) 800 0.96 SiO2–CaO glass (33.6% mol CaO) 1500 0.97 SiO2–PbO glass (44.7% mol PbO) 1200 0.98 B2O3–CaO glass (40.0% mol CaO) 1150 0.98 B2O3–Na2O glass (27.5% mol Na2O) 800 1.00 SiO2–PbO glass (50.0% mol PbO) 1000 1.02 B2O3–Na2O glass (32.8% mol Na2O) 700 1.02 SiO2–Na2O glass (10% mol Na2O) 1500 1.03 SiO2–PbO glass (38.5% mol PbO) 1300 1.04 SiO2–PbO glass (60% mol PbO) 800 1.07 B2O3–CaO glass (33.3% mol CaO) 1150 1.10 SiO2–PbO glass (44.7% mol PbO) 1100 1.15 SiO2–Na2O glass (29.7% mol Na2O) 600 1.16 B2O3–Na2O glass (17.3% mol Na2O) 900 1.18 SiO2–PbO glass (51.6% mol PbO) 900 1.20 B2O3–CaO glass (55.4% mol CaO) 1150 1.22 SiO2–PbO glass (38.5% mol PbO) 1200 1.26 B2O3–Na2O glass (21.9% mol Na2O) 800 1.29 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1720 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1721 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 431. SELECTING VOLUME RESISTIVITY OF GLASS (SHEET 5 OF 13) Glass Temperature (˚C) Resistivity (log Ω cm) SiO2–Na2O glass (29.7% mol Na2O) 550 1.31 SiO2–PbO glass (66.7% mol PbO) 700 1.32 SiO2–Na2O glass (19.9% mol Na2O) 700 1.34 SiO2–PbO glass (50.0% mol PbO) 900 1.36 B2O3–Na2O glass (17.3% mol Na2O) 850 1.39 SiO2–PbO glass (44.7% mol PbO) 1000 1.40 B2O3–CaO glass (40.0% mol CaO) 1050 1.40 B2O3–Na2O glass (12.1% mol Na2O) 900 1.48 B2O3–CaO glass (33.3% mol CaO) 1050 1.52 SiO2–PbO glass (38.5% mol PbO) 1100 1.56 SiO2–PbO glass (51.6% mol PbO) 800 1.62 SiO2–Na2O glass (19.9% mol Na2O) 600 1.68 B2O3–CaO glass (55.4% mol CaO) 1050 1.70 SiO2–PbO glass (60% mol PbO) 650 1.72 SiO2–PbO glass (60% mol PbO) 700 1.74 SiO2–PbO glass (44.7% mol PbO) 900 1.82 B2O3–Na2O glass (12.1% mol Na2O) 800 1.89 SiO2–PbO glass (50.0% mol PbO) 800 1.90 SiO2–PbO glass (38.5% mol PbO) 1000 1.94 B2O3–Na2O glass (3.63% mol Na2O) 1000 2.00 B2O3–CaO glass (40.0% mol CaO) 950 2.06 B2O3–CaO glass (33.3% mol CaO) 950 2.25 SiO2 glass (0.5 atm Ar pressure) 2100 2.30 B2O3–Na2O glass (3.63% mol Na2O) 900 2.30 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1721 16.1 sel Electrical Page 1722 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 431. SELECTING VOLUME RESISTIVITY OF GLASS (SHEET 6 OF 13) Glass Temperature (˚C) Resistivity (log Ω cm) SiO2–Na2O glass (45% mol Na2O) 350 2.35 SiO2–PbO glass (44.7% mol PbO) 800 2.38 B2O3–Na2O glass (12.1% mol Na2O) 700 2.43 B2O3–CaO glass (55.4% mol CaO) 950 2.46 SiO2–PbO glass (38.5% mol PbO) 900 2.47 SiO2–Na2O glass (48% mol Na2O) 300 2.58 SiO2–Na2O glass (40% mol Na2O) 350 2.66 SiO2–Na2O glass (45% mol Na2O) 300 2.69 SiO2 glass (0.5 atm Ar pressure) 2000 2.70 B2O3–Na2O glass (3.63% mol Na2O) 800 2.70 SiO2–Na2O glass (35% mol Na2O) 350 2.92 SiO2–Na2O glass (40% mol Na2O) 300 2.97 B2O3–CaO glass (40.0% mol CaO) 850 2.97 SiO2 glass (0.5 atm Ar pressure) 1900 3.00 B2O3–CaO glass (33.3% mol CaO) 850 3.10 SiO2–PbO glass (38.5% mol PbO) 800 3.20 SiO2–Al2O3 glass (5.51% wt Al2O3) 1900 3.20 SiO2–Al2O3 glass (10.86% wt Al2O3) 1900 3.20 SiO2–Na2O glass (36% mol Na2O) 300 3.22 SiO2–Al2O3 glass (2.83% wt Al2O3) 1900 3.28 SiO2–Na2O glass (45% mol Na2O) 250 3.30 SiO2–Na2O glass (33.3% mol Na2O) 300 3.34 SiO2–Al2O3 glass (10.86% wt Al2O3) 1700 3.34 SiO2–Al2O3 glass (5.51% wt Al2O3) 1700 3.36 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1722 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1723 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 431. SELECTING VOLUME RESISTIVITY OF GLASS (SHEET 7 OF 13) Glass Temperature (˚C) Resistivity (log Ω cm) SiO2–Na2O glass (30% mol Na2O) 350 3.46 SiO2–Al2O3 glass (2.83% wt Al2O3) 1700 3.46 SiO2 glass (0.5 atm Ar pressure) 1800 3.48 SiO2–Na2O glass (25% mol Na2O) 350 3.52 SiO2–Al2O3 glass (10.86% wt Al2O3) 1500 3.52 SiO2–B2O3 glass (2.74% wt B2O3) 1900 3.56 SiO2–Al2O3 glass (5.51% wt Al2O3) 1500 3.56 SiO2–Na2O glass (40% mol Na2O) 250 3.59 SiO2–Na2O glass (30% mol Na2O) 300 3.64–3.78 SiO2–Al2O3 glass (2.83% wt Al2O3) 1500 3.67 SiO2–Al2O3 glass (10.86% wt Al2O3) 1300 3.74 SiO2–B2O3 glass (2.74% wt B2O3) 1700 3.76 SiO2–Al2O3 glass (5.51% wt Al2O3) 1300 3.76 SiO2–Na2O glass (20% mol Na2O) 350 3.80 SiO2–B2O3 glass (19.37% wt B2O3) 1900 3.84 SiO2–Na2O glass (35% mol Na2O) 250 3.85 B2O3–CaO glass (55.4% mol CaO) 850 3.86 SiO2–Na2O glass (27% mol Na2O) 300 3.94 SiO2–B2O3 glass (5.48% wt B2O3) 1900 3.94 SiO2–Al2O3 glass (2.83% wt Al2O3) 1300 3.94 SiO2–B2O3 glass (10.75% wt B2O3) 1900 3.98 SiO2 glass (0.5 atm Ar pressure) 1700 4.00 SiO2–B2O3 glass (19.37% wt B2O3) 1700 4.00 SiO2–B2O3 glass (2.74% wt B2O3) 1500 4.02 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1723 16.1 sel Electrical Page 1724 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 431. SELECTING VOLUME RESISTIVITY OF GLASS (SHEET 8 OF 13) Glass Temperature (˚C) Resistivity (log Ω cm) SiO2–Al2O3 glass (10.86% wt Al2O3) 1100 4.02 SiO2–Na2O glass (25% mol Na2O) 300 4.03 SiO2–Na2O glass (48% mol Na2O) 150 4.09 SiO2–B2O3 glass (5.48% wt B2O3) 1700 4.10 SiO2–Al2O3 glass (5.51% wt Al2O3) 1100 4.15 SiO2–B2O3 glass (10.75% wt B2O3) 1700 4.16 SiO2–B2O3 glass (19.37% wt B2O3) 1500 4.22 SiO2–Al2O3 glass (2.83% wt Al2O3) 1100 4.29 SiO2–B2O3 glass (5.48% wt B2O3) 1500 4.30 SiO2–Na2O glass (15% mol Na2O) 350 4.32 SiO2–Na2O glass (45% mol Na2O) 150 4.33 SiO2–Na2O glass (20% mol Na2O) 300 4.36–4.64 SiO2 glass (0.5 atm Ar pressure) 1600 4.40 SiO2–PbO glass (38.5% mol PbO) 700 4.40 SiO2–B2O3 glass (2.74% wt B2O3) 1300 4.40 SiO2–B2O3 glass (10.75% wt B2O3) 1500 4.40 SiO2–Na2O glass (30% mol Na2O) 250 4.42 SiO2–B2O3 glass (19.37% wt B2O3) 1300 4.48 SiO2–Na2O glass (25% mol Na2O) 250 4.50 SiO2–Al2O3 glass (10.86% wt Al2O3) 900 4.54 SiO2–B2O3 glass (5.48% wt B2O3) 1300 4.56 SiO2–Na2O glass (40% mol Na2O) 150 4.58 SiO2–Al2O3 glass (5.51% wt Al2O3) 900 4.65 SiO2 glass (0.5 atm Ar pressure) 1500 4.66 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1724 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1725 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 431. SELECTING VOLUME RESISTIVITY OF GLASS (SHEET 9 OF 13) Glass Temperature (˚C) Resistivity (log Ω cm) SiO2–B2O3 glass (10.75% wt B2O3) 1300 4.69 SiO2–B2O3 glass (2.74% wt B2O3) 1100 4.72 SiO2–Na2O glass (13% mol Na2O) 300 4.77–4.79 SiO2–B2O3 glass (19.37% wt B2O3) 1100 4.82 SiO2–Al2O3 glass (2.83% wt Al2O3) 900 4.82 SiO2–Na2O glass (20% mol Na2O) 250 4.85 SiO2–Na2O glass (36% mol Na2O) 150 4.89 SiO2 glass 1500 4.90 SiO2–Na2O glass (10% mol Na2O) 350 4.96 SiO2 glass 1400 5.00 SiO2–Na2O glass (33.3% mol Na2O) 150 5.06 SiO2–B2O3 glass (10.75% wt B2O3) 1100 5.08 SiO2 glass 1300 5.15 SiO2–Na2O glass (44.2% mol Na2O) SiO2–B2O3 glass (5.48% wt B2O3) SiO2–Na2O glass (10% mol Na2O) 100 1100 300 5.15 5.16 5.18 SiO2 glass 1200 5.30 SiO2–Na2O glass (7.5% mol Na2O) 300 5.30 SiO2–B2O3 glass (2.74% wt B2O3) 900 5.30 SiO2–Al2O3 glass (5.51% wt Al2O3) 700 5.34 SiO2–Al2O3 glass (10.86% wt Al2O3) 700 5.38 SiO2–Na2O glass (15% mol Na2O) 250 5.44 SiO2 glass 1100 5.46 SiO2–Na2O glass (30% mol Na2O) 150 5.48–5.75 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1725 16.1 sel Electrical Page 1726 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 431. SELECTING VOLUME RESISTIVITY OF GLASS (SHEET 10 OF 13) Glass Temperature (˚C) Resistivity (log Ω cm) B2O3 glass 840 5.5 SiO2–B2O3 glass (5.48% wt B2O3) 900 5.64 SiO2–B2O3 glass (19.37% wt B2O3) 900 5.65 SiO2 glass 1000 5.66 SiO2–B2O3 glass (10.75% wt B2O3) 900 5.74 SiO2–Al2O3 glass (2.83% wt Al2O3) 700 5.74 B2O3 glass 780 5.8 SiO2–Na2O glass (27% mol Na2O) 150 5.87 SiO2 glass 900 5.90 SiO2–Na2O glass (25% mol Na2O) 150 6.05 B2O3–CaO glass (55.4% mol CaO) 750 6.13 SiO2–Na2O glass (10% mol Na2O) 250 6.14 B2O3 glass 730 6.2 SiO2 glass 800 6.20 SiO2–Na2O glass (5% mol Na2O) 350 6.37 SiO2–Na2O glass (20% mol Na2O) 150 6.45–6.80 SiO2 glass 700 6.56 SiO2–Na2O glass (30.2% mol Na2O) B2O3 glass B2O3 glass 100 680 640 6.58 6.6 6.9 SiO2–Na2O glass (13% mol Na2O) 150 6.90–6.96 SiO2 glass 600 7.00 B2O3 glass 600 7.3 SiO2–Na2O glass (5% mol Na2O) 300 7.33–8.25 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1726 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1727 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 431. SELECTING VOLUME RESISTIVITY OF GLASS (SHEET 11 OF 13) Glass Temperature (˚C) Resistivity (log Ω cm) SiO2–Na2O glass (10% mol Na2O) 150 7.35 SiO2–Na2O glass (7.5% mol Na2O) 150 7.59 B2O3 glass 560 7.6 SiO2–Na2O glass (5% mol Na2O) 250 7.63 SiO2 glass 500 7.80 SiO2–PbO glass (65% mol PbO) 300 7.81 SiO2–PbO glass (60% mol PbO) 300 8.11 SiO2–Na2O glass (15.1% mol Na2O) 100 8.15 B2O3–Na2O glass (40% mol Na2O) 100 8.46 SiO2 glass 400 8.5–10.80 SiO2–CaO glass (50% mol CaO) 400 8.70 SiO2–PbO glass (50% mol PbO) 300 8.80–9.2 B2O3–Na2O glass (30% mol Na2O) 100 8.82 B2O3–Na2O glass (40% mol Na2O) 80 9.08 B2O3–Na2O glass (30% mol Na2O) 80 9.43 SiO2–PbO glass (40% mol PbO) 300 9.48 B2O3–Na2O glass (40% mol Na2O) 60 9.73 SiO2–PbO glass (65% mol PbO) 200 9.76 SiO2–Na2O glass (7.8% mol Na2O) SiO2–PbO glass (35% mol PbO) 100 300 9.89 9.89 SiO2–PbO glass (60% mol PbO) 200 10.04 SiO2–PbO glass (57.1% mol PbO) 172 10.14 B2O3–Na2O glass (30% mol Na2O) 60 10.14 SiO2–PbO glass (63.2% mol PbO) 159 10.34 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1727 16.1 sel Electrical Page 1728 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 431. SELECTING VOLUME RESISTIVITY OF GLASS (SHEET 12 OF 13) Glass Temperature (˚C) Resistivity (log Ω cm) SiO2–PbO glass (30% mol PbO) 300 10.44 SiO2–Na2O glass (5% mol Na2O) 150 10.45–11.71 B2O3–Na2O glass (40% mol Na2O) 40 10.48 SiO2–PbO glass (50% mol PbO) 200 10.69 SiO2 glass 250 11.0–13.6 B2O3–Na2O glass (20% mol Na2O) 100 11.28 SiO2–PbO glass (40% mol PbO) 200 11.54 SiO2–PbO glass (51.4% mol PbO) 139 11.59 B2O3–Na2O glass (10% mol Na2O) 100 11.61 SiO2–PbO glass (40.2% mol PbO) 175 11.70 SiO2–PbO glass (47.3% mol PbO) 149 11.74 B2O3–Na2O glass (30% mol Na2O) 40 11.90 B2O3–Na2O glass (20% mol Na2O) 80 12.05 SiO2–PbO glass (35% mol PbO) 200 12.10 SiO2–CaO glass (50% mol CaO) 300 12.2 B2O3–Na2O glass (10% mol Na2O) 80 12.40 B2O3–Na2O glass (20% mol Na2O) 60 12.91 SiO2–PbO glass (30% mol PbO) 200 12.94 B2O3–CaO glass (33.3% mol CaO) 300 13.16 B2O3–Na2O glass (10% mol Na2O) 60 13.21 B2O3–CaO glass (33.3% mol CaO) 250 13.50 B2O3–Na2O glass (16% mol Na2O) 100 13.58 SiO2–PbO glass (33.8% mol PbO) 135 13.68 SiO2–PbO glass (57.1% mol PbO) 77 13.70 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC 1728 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1729 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 431. SELECTING VOLUME RESISTIVITY OF GLASS (SHEET 13 OF 13) Glass Temperature (˚C) Resistivity (log Ω cm) B2O3–Na2O glass (20% mol Na2O) 40 13.86 B2O3–CaO glass (33.3% mol CaO) 200 13.92 B2O3–Na2O glass (10% mol Na2O) 40 14.20 SiO2–PbO glass (63.2% mol PbO) 57 14.29 B2O3–Na2O glass (16% mol Na2O) 80 14.32 B2O3–CaO glass (33.3% mol CaO) 150 14.40 SiO2–PbO glass (47.3% mol PbO) 79 14.48 SiO2–PbO glass (51.4% mol PbO) 65 14.52 SiO2–PbO glass (40.2% mol PbO) 78 14.85 B2O3–Na2O glass (16% mol Na2O) 60 15.08 B2O3–Na2O glass (16% mol Na2O) 40 15.89 SiO2–PbO glass (33.8% mol PbO) 66 16.14 Source: data compiled by J. S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983 ©2001 CRC Press LLC Shackelford & Alexander 1729 16.1 sel Electrical Page 1730 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 432. SELECTING VOLUME RESISTIVITY OF POLYMERS (SHEET 1 OF 6) Volume Resistivity (ASTM D257) (Ω • cm) Polymer Diallyl Phthalates; Molded: Orlon Filled 102—2.5 x 104 102—5 x 103 104—5 x 104 6 x 104—6 x 106 Standard Epoxies: Cast Flexible 9.1 x 105—6.7 x 109 Standard Epoxies; Reinforced: High Strength Laminate 6.6 x 107—109 Molded Rubber Phenolic—Woodflour or Flock Filled 108—1011 Phenolics; Molded: General: Woodflour and Flock Filled 109—1013 Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1 1010—1013 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 1010—1013 Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 1010—1013 Cellulose Acetate; ASTM Grade: MH—1, MH—2 1010—1013 Cellulose Acetate; ASTM Grade: MS—1, MS—2 1010—1013 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 1010—1013 Phenolics; Molded: High Shock: Chopped Fabric or Cord Filled >1010 Phenolics; Molded: Very High Shock: Glass Fiber Filled 1010—1011 Phenolics: Molded: Arc Resistant—Mineral Filled 1010—1012 Ureas; Molded: Cellulose Filled (ASTM Type 2) 5—8 x 1010 Cellulose Acetate Butyrate; ASTM Grade: H4 1011—1014 Cellulose Acetate Butyrate; ASTM Grade: MH 1011—1014 Diallyl Phthalates; Molded: Dacron Filled Diallyl Phthalates; Molded: Asbestos Filled Diallyl Phthalates; Molded: Glass Fiber Filled Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1730 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1731 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 432. SELECTING VOLUME RESISTIVITY OF POLYMERS (SHEET 2 OF 6) Polymer Volume Resistivity (ASTM D257) (Ω • cm) Cellulose Acetate Butyrate; ASTM Grade: S2 1011—1014 Cellusose Acetate Propionate; ASTM Grade: 1 1011—1014 Cellusose Acetate Propionate; ASTM Grade: 3 1011—1014 Cellusose Acetate Propionate; ASTM Grade: 6 1011—1014 Phenolics: Molded: Rubber Phenolic—Chopped Fabric Filled 1011 Phenolics: Molded: Rubber Phenolic—Asbestos Filled 1011 Ureas; Molded: Alpha—Cellulose filled (ASTM Type l) 0.5—5 x 1011 Melamines; Molded: Glass Fiber Filled 1—7 x 1011 Phenolics; Molded: Shock: Paper, Flock, or Pulp Filled 1—50 x 1011 Nylons: Type 8 1.5 x 1011 Polyvinyl Chloride & Copolymers: Nonrigid—Electrical 4—300 x 1011 Melamines; Molded: Alpha Cellulose And Mineral Filled 1012 Polyesters, Thermosets; Cast polyyester: Flexible 1012 Melamines; Molded: Cellulose Electrical Filled 1012—1013 Reinforced Polyester: High Strength (Glass Fibers) 1 x 1012 —1 x 1013 Reinforced Polyester: Heat & Chemical Resistant (Asbestos) 1 x 1012 —1 x 1013 Polyvinyl Chloride & Copolymers: Nonrigid—General 1—700 x 1012 Polyesters, Thermosets; Cast polyyester: Rigid 1013 PVC–Acrylic Alloy: PVC–Acrylic Sheet 1—5 x 1013 Nylons: Type 11 2 x 1013 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1731 16.1 sel Electrical Page 1732 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 432. SELECTING VOLUME RESISTIVITY OF POLYMERS (SHEET 3 OF 6) Polymer Volume Resistivity (ASTM D257) (Ω • cm) Nylons; Molded, Extruded; Type 6: General purpose 4.5 x 1013 Alkyds; Molded: Putty (Encapsulating) 1014 Alkyds; Molded: Rope (General Purpose) 1014 Alkyds; Molded: Glass reinforced (heavy duty parts) 1014 Acrylics; Moldings: Grades 5, 6, 8 >1014 Alkyds; Molded: Granular (high speed molding) 1014 — 1015 Nylons: Type 12 1014 —1015 6/6 Nylon: General purpose molding 1014—1015 Polyacetal Copolymer: Standard 1 x 1014 Polyacetal Copolymer: High Flow 1.0 x 1014 Polyacetal Copolymer: 25% Glass Reinforced 1.2 x 1014 High Performance Epoxies: Molded 1.4—5.5 x 1014 Woven Glass Fabric/ Silicone Laminate 2—5 x 1014 High Performance Epoxies: Cast, rigid 2.10 x 1014 Nylons; Type 6: Cast 2.6 x 1014 Nylons; Type 6: Glass fiber (30%) Reinforced 2.8 x 1014—1.5 x 1015 Polyester; Thermoplastic Moldings: Asbestos—Filled Grade 3 x 1014 Thermoset Carbonate: Allyl Diglycol Carbonate 4 x 1014 Polyphenylene sulfide: 40% Glass Reinforced 4.5 x 1014 Polyvinylidene— fluoride (PVDF) 5 x 1014 Polyacetal Homopolymer: 20% Glass Reinforced 5 x 1014 Granular (Silica) Reinforced Silicones 5 x 1014 Fibrous (Glass) Reinforced Silicones 9 x 1014 Polyvinyl Chloride & Copolymers: Rigid—Normal Impact 1014—1016 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1732 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1733 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 432. SELECTING VOLUME RESISTIVITY OF POLYMERS (SHEET 4 OF 6) Polymer Volume Resistivity (ASTM D257) (Ω • cm) Vinylidene chloride 1014—1016 Ceramic Reinforced (PTFE) 1015 6/6 Nylon: General Purpose Extrusion 1015 6/10 Nylon: General purpose 1015 Acrylics; Cast Resin Sheets, Rods: General purpose, type II >1015 Acrylics; Cast Resin Sheets, Rods: General purpose, type I >1015 Polyethylenes; Molded, Extruded; Type II: Melt Index 20 >1015 Polyethylenes; Molded, Extruded; Type II: Melt Index l.0—1.9 >1015 Polyethylenes; Molded, Extruded; Type III: Melt Index 0.2—0.9 >1015 Polyethylenes; Type III: Melt Melt Index 0.l—12.0 >1015 Polyethylenes; Molded, Extruded; Type III: Melt Index 1.5—15 >1015 Polyethylenes; Molded, Extruded; Type III: High Molecular Weight >1015 Olefin Copolymers; Molded: EVA (ethylene vinyl acetate) 0.15 x 1015 Chlorinated Polyvinyl Chloride 1 x 1015—2 x 1016 Standard Epoxies: Molded 1—5 x 1015 Polyacetal Homopolymer: Standard 1 x 1015 ABS Resins; Molded, Extruded: High impact 1—4 x 1015 ABS Resins; Molded, Extruded: Very high impact 1—4 x 1015 ABS Resins; Molded, Extruded: Low temperature impact 1—4 x 1015 ABS Resins; Molded, Extruded: Heat resistant 1—5 x 1015 Polycarbonate (40% Glass Fiber Reinforced) 1.4 x 1015 Polypropylene: Asbestos Filled 1.5 x 1015 Polyester; Thermoplastic Moldings: General Purpose Grade 2 x 1015 ABS Resins; Molded, Extruded: Medium impact 2—4 x 1015 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1733 16.1 sel Electrical Page 1734 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 432. SELECTING VOLUME RESISTIVITY OF POLYMERS (SHEET 5 OF 6) Polymer Volume Resistivity (ASTM D257) (Ω • cm) Olefin Copolymers; Molded: EEA (ethylene ethyl acrylate) 2.4 x 1015 6/6 Nylon; Molded, Extruded: Glass Fiber Reinforced 2.6—5.5 x 1015 Polymides: Unreinforced 4 x 1015 PVC–Acrylic Alloy: PVC–Acrylic Injection Molded 5 x 1015 Standard Epoxies: Cast Rigid 6.1 x 1015 Reinforced Polyester Sheet Molding, General Purpose 6.4 x 1015 —2.2 x 1016 Polymides: Glass Reinforced 9.2 x 1015 Olefin Copolymers; Molded: Ionomer 10 x 1015 Styrene Acrylonitrile (SAN) >1016 Epoxy Novolacs: Cast, rigid >1016 Olefin Copolymers; Molded: Polyallomer >1016 Polystyrenes; Molded: General Purpose >1016 Polystyrenes; Molded: Medium Impact >1016 Polystyrenes; Molded: High Impact >1016 Polyester; Thermoplastic Moldings: General Purpose Grade 1—4 x 1016 Chlorinated Polyether 1.5 x 1016 Polypropylene: Glass Reinforced 1.7 x 1016 Acrylics; Moldings: High Impact Grade 2.0 x 1016 Polycarbonate 2.1 x 1016 ABS–Polycarbonate Alloy 2.2 x 1016 Polyester; Thermoplastic Moldings: Glass Reinforced Grades 3.2—3.3 x 1016 Polyarylsulfone 3.2—7.71 x 1016 Polyester Moldings: Glass Reinforced Self Extinguishing 3.4 x 1016 Polystyrenes; Molded: Glass Fiber -30% Reinforced 3.6 x 1016 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1734 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1735 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 432. SELECTING VOLUME RESISTIVITY OF POLYMERS (SHEET 6 OF 6) Polymer Volume Resistivity (ASTM D257) (Ω • cm) Polypropylene: Flame Retardant 4 x 1016—1017 Glass Fiber (30%) Reinforced SAN 4.4 x 1016 Phenylene Oxides (Noryl): Standard 5 x 1016 Phenylene Oxides: SE—100 1017 Phenylene Oxides: SE—1 1017 Phenylene Oxides: Glass Fiber Reinforced 1017 Phenylene Oxides (Noryl): Glass Fiber Reinforced 1017 Polypropylene: High Impact 1017 >1017 Polypropylene: General Purpose Polyethylenes; Molded, Extruded; Type I: Melt Index 0.3—3.6 17—1019 10 Polyethylenes; Molded, Extruded; Type I: Melt Index 6—26 1017—1019 Polyethylenes; Molded, Extruded; Type I: Melt Index 200 1017—1019 Polytrifluoro Chloroethylene (PTFCE), Molded,Extruded 1018 Polytetrafluoroethylene (PTFE), Molded,Extruded >1018 Fluorinated Ethylene Propylene (FEP) >2 x 1018 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1735 16.1 sel Electrical Page 1736 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 433. SELECTING CRITICAL TEMPERATURE OF SUPERCONDUCTIVE ELEMENTS (SHEET 1 OF 2) Element Tc(K) W Be Ir Ti 0.0154 0.026 0.11-0.14 0.39 Ru Cd Zr Zr (ω) 0.493 0.518-0.52 0.53 Os Zn Mo Ga 0.655 0.875 0.916 1.0833 Al Th Pa Re 1.175 1.39 1.4 1.697 Ti Sb In Sn 2.332-2.39 Hg (β) Hg (α) Ta La (α) 3.949 4.154 0.65 2.6-2.7a 3.405 3.721 4.47 4.88 a Metastable. Source: data from Roberts, B. W., Properties of Selected Superconductive Materials - 1974 Supplement, NBS Technical Note 825, National Bureau of Standards, U.S. Government Printing Office, Washington,D.C., 1974, 10. ©2001 CRC Press LLC 1736 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1737 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 433. SELECTING CRITICAL TEMPERATURE OF SUPERCONDUCTIVE ELEMENTS (SHEET 2 OF 2) Element Tc(K) V Ga (β) La (β) Pb 5.43-5.31 Ga (γ) Tc Ga (δ) Nb a 5.90-6.2 6.00 7.23 7.62 7.73-7.78 7.85 9.25 Metastable. Source: data from Roberts, B. W., Properties of Selected Superconductive Materials - 1974 Supplement, NBS Technical Note 825, National Bureau of Standards, U.S. Government Printing Office, Washington,D.C., 1974, 10. ©2001 CRC Press LLC Shackelford & Alexander 1737 16.1 sel Electrical Page 1738 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties . Table 434. SELECTING DISSIPATION FACTOR FOR POLYMERS AT 60 HZ (SHEET 1 OF 5) Polymer Dissipation Factor (ASTM D150) @ 60 Hz Polystyrenes; Molded: General purpose Fluorocarbons; Molded,Extruded: Polytetrafluoroethylene (PTFE) Fluorocarbons; Molded,Extruded: Fluorinated ethylene propylene (FEP) Polystyrenes; Molded: Medium impact 0.0001–0.0003 0.0002 0.0003 0.0004–0.002 Polystyrenes; Molded: High impact Polyethylenes; Molded, Extruded: Type I: Melt index 0.3—3.6 Polyethylenes; Molded, Extruded: Type I: Melt index 6—26 Polyethylenes; Molded, Extruded: Type I: Melt index 200 0.0004–0.002 <0.0005 <0.0005 <0.0005 Polyethylenes; Molded, Extruded: Type II: Melt index 20 Polyethylenes; Molded, Extruded: Type II: Melt index l.0—1.9 Polyethylenes; Molded, Extruded: Type III: Melt index 0.2—0.9 Polyethylenes; Molded, Extruded: Type III: Melt Melt index 0.l—12.0 <0.0005 <0.0005 <0.0005 <0.0005 Polyethylenes; Molded, Extruded: Type III: Melt index 1.5—15 Polyethylenes; Molded, Extruded: Type III: High molecular weight Olefin Copolymers; Molded: Polyallomer Polypropylene: General purpose <0.0005 <0.0005 >0.0005 0.0005–0.0007 Fluorocarbons; Molded,Extruded: Ceramic reinforced (PTFE) Phenylene Oxides: SE—100 Phenylene Oxides: SE—1 Polypropylene: Flame retardant 0.0005–0.0015 0.0007 0.0007 0.0007–0.017 Phenylene oxides (Noryl): Standard Polycarbonate Phenylene Oxides: Glass fiber reinforced Olefin Copolymers; Molded: EEA (ethylene ethyl acrylate) 0.0008 0.0009 0.0009 0.001 Epoxy novolacs: Cast, rigid Polypropylene: High impact Polyarylsulfone Phenylene oxides (Noryl): Glass fiber reinforced 0.001—0.007 <0.0016 0.0017—0.003 0.0019 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1738 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1739 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 434. SELECTING DISSIPATION FACTOR FOR POLYMERS AT 60 HZ (SHEET 2 OF 5) Polymer Dissipation Factor (ASTM D150) @ 60 Hz Polypropylene: Glass reinforced Silicones; Molded, Laminated: Granular (silica) reinforced silicones ABS–Polycarbonate Alloy Polymides: Unreinforced 0.002 0.002—0.004 0.0026 0.003 Olefin Copolymers; Molded: EVA (ethylene vinyl acetate) Olefin Copolymers; Molded: Ionomer ABS Resins; Molded, Extruded: Medium impact Polyester;: Thermosets: Cast Rigid 0.003 0.003 0.003—0.006 0.003—0.04 Polymides: Glass Reinforced Standard Epoxies: General Purpose Glass Cloth Laminate Diallyl Phthalates; Molded: Glass Fiber Filled Diallyl Phthalates; Molded: Dacron Filled 0.0034 0.004-0.006 0.004—0.015 (Dry) 0.004—0.016 (Dry) Polyacetal Homopolymer: 20% glass reinforced Polyacetal Homopolymer: Standard Standard Epoxies: Cast Flexible Polystyrenes; Molded: Glass fiber -30% reinforced 0.0047 0.0048 0.0048-0.0380 0.005 Polystyrenes; Molded: Glass fiber (30%) reinforced SAN ABS Resins; Molded, Extruded: High impact ABS Resins; Molded, Extruded: Low temperature impact ABS Resins; Molded, Extruded: Very high impact 0.005 0.005—0.007 0.005—0.01 0.005—0.010 Epoxies; High Performance Resins: Cast, Rigid Polycarbonate (40% glass fiber reinforced) Polystyrenes; Molded: Styrene acrylonitrile (SAN) Polypropylene: Asbestos filled 0.0055—0.0074 0.006 >0.006 0.007 Nylons; Molded, Extruded; Type 6: Flexible Copolymers Epoxies; High Performance Resins: Molded Standard Epoxies: Cast Rigid Reinforced Polyester Sheet molding compounds, general purpose 0.007—0.010 0.0071—0.025 0.0074 0.0087—0.04 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1739 16.1 sel Electrical Page 1740 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 434. SELECTING DISSIPATION FACTOR FOR POLYMERS AT 60 HZ (SHEET 3 OF 5) Polymer Dissipation Factor (ASTM D150) @ 60 Hz Silicones; Molded, Laminated: Fibrous (glass) reinforced silicones Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2 0.01 0.01—0.04 0.01—0.04 0.01—0.04 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 0.01—0.04 0.01—0.04 0.01—0.04 0.01—0.06 Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: MH—1, MH—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: MS—1, MS—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 0.01—0.06 0.01—0.06 0.01—0.06 0.01—0.06 Polyester;: Thermosets: Flexible Chlorinated polyether Standard Epoxies: Molded Nylons; Molded, Extruded; 6/6 Nylon: General purpose molding 0.01—0.18 0.011 0.011-0.018 0.014—0.04 Nylons; Type 6: Cast Nylons; Molded, Extruded; 6/6 Nylon: Glass fiber reinforced Chlorinated polyvinyl chloride Alkyds; Molded: Rope (general purpose) 0.015 0.018—0.009 0.0189—0.0208 0.019 Fluorocarbons; Molded,Extruded: Polytrifluoro chloroethylene (PTFCE) Silicones; Molded, Laminated: Woven glass fabric/ silicone laminate Polyvinyl Chloride & Copolymers: Rigid—normal impact Alkyds; Molded: Glass reinforced (heavy duty parts) 0.02 0.02 0.020—0.03 0.02—0.03 Phenolics; Molded; Very High Shock: Glass Fiber Filled Nylons; Molded, Extruded; Type 6: Glass fiber (30%) reinforced Diallyl Phthalates; Molded: Orlon Filled Melamines; Molded: Cellulose Electrical Filled 0.02—0.03 0.022—0.008 0.023—0.015 (Dry) 0.026—0.192 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1740 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1741 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 434. SELECTING DISSIPATION FACTOR FOR POLYMERS AT 60 HZ (SHEET 4 OF 5) Polymer Dissipation Factor (ASTM D150) @ 60 Hz Nylons; Molded, Extruded: Type 11 ABS Resins; Molded, Extruded: Heat resistant Alkyds; Molded: Granular (high speed molding) Alkyds; Molded: Putty (encapsulating) 0.03 0.030—0.040 0.030—0.040 0.030—0.045 Acrylics; Moldings: High impact grade Thermoset Carbonate: Allyl diglycol carbonate Polyvinyl Chloride & Copolymers: Vinylidene chloride Ureas; Molded: Woodflour filled 0.03—0.04 0.03—0.04 0.03—0.15 0.035—0.040 Ureas; Molded: Alpha—cellulose filled (ASTM Type l) PVC–Acrylic Injection Molded Nylons; Molded, Extruded; 6/10 Nylon: General purpose Acrylics; Moldings: Grades 5, 6, 8 0.035—0.043 0.037 0.04 0.04—0.06 Ureas; Molded: Cellulose filled (ASTM Type 2) Melamines; Molded: Unfilled Fluorocarbons; Molded,Extruded: Polyvinylidene—fluoride (PVDF) Diallyl Phthalates; Molded: Asbestos Filled 0.042—0.044 0.048—0.162 0.05 0.05—0.03 (Dry) Acrylics; Cast Resin Sheets, Rods: General Purpose, Type I Acrylics; Cast Resin Sheets, Rods: General Purpose, Type II Polyvinyl Chloride & Copolymers; Molded, Extruded: Nonrigid—general Phenolics; Molded; General: Woodflour & Flock Filled 0.05—0.06 0.05—0.06 0.05—0.15 0.05—0.30 Nylons; Molded, Extruded; Type 6: General Purpose PVC–Acrylic Sheet Polyvinyl Chloride & Copolymers: Nonrigid—electrical Phenolics; Molded; Shock: Paper, Flock, or Pulp Filled 0.06—0.014 0.076 0.08—0.11 0.08—0.35 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1741 16.1 sel Electrical Page 1742 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 434. SELECTING DISSIPATION FACTOR FOR POLYMERS AT 60 HZ (SHEET 5 OF 5) Polymer Dissipation Factor (ASTM D150) @ 60 Hz Phenolics; Molded; High Shock: Chopped Fabric or Cord Filled Phenolics: Molded: Arc resistant—Mineral Filled Melamines; Molded: Glass Fiber Filled Rubber Phenolic—Asbestos Filled 0.08—0.45 0.13—0.16 0.14—0.23 0.15 Phenolics: Molded: Rubber Phenolic—Woodflour or Flock Filled Nylons; Molded, Extruded: Type 8 Rubber Phenolic—Chopped Fabric Filled 0.15—0.60 0.19 0.5 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1742 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1743 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 435. SELECTING DISSIPATION FACTOR FOR POLYMERS AT 1 MHZ (SHEET 1 OF 4) Polymer Dissipation Factor (ASTM D150) @ 106 Hz Polystyrenes; Molded: General purpose Fluorocarbons; Molded,Extruded: Polytetrafluoroethylene (PTFE) Polypropylene: General purpose Polypropylene: High impact 0.0001–0.0005 0.0002 0.0002–0.0003 0.0002—0.0003 Molded,Extruded Fluorinated ethylene propylene (FEP) Polystyrenes; Molded: Medium impact Polystyrenes; Molded: High impact Fluorocarbons; Molded,Extruded: Ceramic reinforced (PTFE) 0.0003 0.0004–0.002 0.0004–0.002 0.0005–0.0015 Polypropylene: Flame retardant Polyphenylene sulfide: Standard Silicones; Molded, Laminated: Granular (silica) reinforced silicones Polyphenylene sulfide: 40% glass reinforced 0.0006–0.003 0.0007 0.001—0.004 0.0014—0.0041 Phenylene Oxides: Glass fiber reinforced Polypropylene: Asbestos filled Polystyrenes; Molded: Glass fiber -30% reinforced Silicones; Molded, Laminated: Woven glass fabric/ silicone laminate 0.0015 0.002 0.002 0.002 Phenylene Oxides: SE—100 Phenylene Oxides: SE—1 Polypropylene: Glass reinforced Phenylene oxides (Noryl): Standard 0.0024 0.0024 0.003 0.0034 Polyacetal Homopolymer: 20% glass reinforced Silicones; Molded, Laminated: Fibrous (glass) reinforced silicones Polyacetal Homopolymer: Standard Phenylene oxides (Noryl): Glass fiber reinforced 0.0036 0.004 0.0048 0.0049 ABS Resins; Molded, Extruded: Heat resistant Polymides: Glass Reinforced Polyarylsulfone ABS–Polycarbonate Alloy 0.005—0.015 0.0055 0.0056—0.012 0.0059 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1743 16.1 sel Electrical Page 1744 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 435. SELECTING DISSIPATION FACTOR FOR POLYMERS AT 1 MHZ (SHEET 2 OF 4) Polymer Dissipation Factor (ASTM D150) @ 106 Hz Polyester;: Thermosets: Cast Rigid Polycarbonate (40% glass fiber reinforced) Polystyrenes; Molded: Styrene acrylonitrile (SAN) Fluorocarbons; Molded,Extruded: Polytrifluoro chloroethylene (PTFCE) 0.006—0.04 0.007 0.007–0.010 0.007—0.010 ABS Resins; Molded, Extruded: High impact ABS Resins; Molded, Extruded: Medium impact ABS Resins; Molded, Extruded: Very high impact ABS Resins; Molded, Extruded: Low temperature impact 0.007—0.015 0.008—0.009 0.008—0.016 0.008—0.016 Reinforced Polyester Sheet molding compounds, general purpose Polystyrenes; Molded: Glass fiber (30%) reinforced SAN Diallyl Phthalates; Molded: Dacron Filled Polycarbonate 0.0086—0.022 0.009 0.009—0.017 (Wet) 0.01 Standard Epoxies: High Strength Laminate Nylons; Molded, Extruded; Type 6: Flexible Copolymers Acrylics; Moldings: High impact grade Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 0.010-0.017 0.010—0.015 0.01—0.02 0.01—0.10 Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: MH—1, MH—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: MS—1, MS—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 0.01—0.10 0.01—0.10 0.01—0.10 0.01—0.10 Chlorinated polyether Polymides: Unreinforced Diallyl Phthalates; Molded: Glass Fiber Filled Standard Epoxies: Molded 0.011 0.011 0.012—0.020 (Wet) 0.013—0.020 Alkyds; Molded: Glass reinforced (heavy duty parts) Epoxies; High Performance Resins: Glass Cloth Laminate Alkyds; Molded: Putty (encapsulating) Nylons; Molded, Extruded; 6/6 Nylon: Glass fiber reinforced 0.015—0.022 0.0158 0.016—0.020 0.017—0.018 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1744 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1745 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 435. SELECTING DISSIPATION FACTOR FOR POLYMERS AT 1 MHZ (SHEET 3 OF 4) Polymer Dissipation Factor (ASTM D150) @ 106 Hz Alkyds; Molded: Granular (high speed molding) Nylons; Molded, Extruded; Type 6: Glass fiber (30%) reinforced Chlorinated polyvinyl chloride Nylons; Molded, Extruded: Type 11 0.017—0.020 0.019—0.015 0.02 0.02 Phenolics; Molded; Very High Shock: Glass Fiber Filled Melamines; Molded: Glass Fiber Filled Acrylics; Cast Resin Sheets, Rods: General Purpose, Type I Acrylics; Cast Resin Sheets, Rods: General Purpose, Type II 0.02 0.020—0.03 0.02—0.03 0.02—0.03 Acrylics; Moldings: Grades 5, 6, 8 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2 0.02—0.03 0.02—0.05 0.02—0.05 0.02—0.05 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 Polyester;: Thermosets: Flexible 0.02—0.05 0.02—0.05 0.02—0.05 0.02—0.06 Alkyds; Molded: Rope (general purpose) Standard Epoxies: General Purpose Glass Cloth Laminate Ureas; Molded: Cellulose filled (ASTM Type 2) Melamines; Molded: Alpha Cellulose Filled 0.023 0.024—0.026 0.027—0.029 0.028 Ureas; Molded: Alpha—cellulose filled (ASTM Type l) Ureas; Molded: Woodflour filled Epoxies; High Performance Resins: Cast, Rigid Melamines; Molded: Alpha Cellulose Mineral Filled 0.028—0.032 0.028—0.032 0.029—0.028 0.030 Nylons; Molded, Extruded; Type 6: General Purpose Phenolics; Molded; General: Woodflour & Flock Filled Phenolics; Molded; Shock: Paper, Flock, or Pulp Filled Phenolics; Molded; High Shock: Chopped Fabric or Cord Filled 0.03—0.04 0.03—0.07 0.03—0.07 0.03—0.09 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1745 16.1 sel Electrical Page 1746 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 435. SELECTING DISSIPATION FACTOR FOR POLYMERS AT 1 MHZ (SHEET 4 OF 4) Polymer Dissipation Factor (ASTM D150) @ 106 Hz PVC–Acrylic Injection Molded Melamines; Molded: Unfilled Standard Epoxies: Cast Rigid Melamines; Molded: Cellulose Electrical Filled 0.031 0.031—0.040 0.032 0.032—0.12 Standard Epoxies: Cast Flexible Nylons; Molded, Extruded; 6/6 Nylon: General purpose molding Diallyl Phthalates; Molded: Orlon Filled Nylons; Type 6: Cast 0.0369-0.0622 0.04 0.045—0.040 (Wet) 0.05 Nylons; Molded, Extruded: Type 8 Rubber Phenolic—Chopped Fabric Filled PVC–Acrylic Sheet Phenolics: Molded: Arc resistant—Mineral Filled 0.08 0.09 0.094 0.1 Thermoset Carbonate: Allyl diglycol carbonate Phenolics: Molded: Rubber Phenolic—Woodflour or Flock Filled Rubber Phenolic—Asbestos Filled 0.1—0.2 0.1—0.2 0.13 Diallyl Phthalates; Molded: Asbestos Filled Fluorocarbons; Molded,Extruded: Polyvinylidene—fluoride (PVDF) 0.154—0.050 (Wet) 0.184 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1746 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1747 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 436. SELECTING DIELECTRIC STRENGTH OF POLYMERS (SHEET 1 OF 5) Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) Polyvinyl Chloride & Copolymers: Nonrigid–electrical Phenolics; Molded: High shock: chopped fabric or cord filled Reinforced polyester moldings: High strength (glass fibers) Phenolics; Molded: General: woodflour and flock filled 24—500 200—350 200—400 200—425 Phenolics; Molded: Rubber phenolic—chopped fabric filled Melamines; Molded: Glass fiber filled Phenolics; Molded: Shock: paper, flock, or pulp filled Phenolics; Molded: Rubber phenolic—woodflour or flock filled 250 250 —300 250—350 250—375 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2 Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1 250—400 250—400 250—400 250—600 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 Cellulose Acetate; ASTM Grade: MH—1, MH—2 Cellulose Acetate; ASTM Grade: MS—1, MS—2 250—600 250—600 250—600 250—600 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 Polyvinylidene— fluoride (PVDF): Molded,Extruded Silicones: Fibrous (glass) reinforced silicones Epoxies; High performance resins: Molded 250—600 260 280 (in oil) 280—400 (step) Polymides: Glass reinforced Resins; Molded, Extruded: Very high impact Ceramic reinforced (PTFE): Molded,Extruded 6/6 Nylon: Glass fiber Molybdenum disulfide filled 300—310 300—375 300—400 300—400 Polyesters: Cast Thermosets: Rigid Polyesters: Cast Thermosets: Flexible Ureas; Molded: Alpha–cellulose filled (ASTM Type l) Ureas; Molded: Woodflour filled 300—400 300—400 300—400 300—400 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1747 16.1 sel Electrical Page 1748 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 436. SELECTING DIELECTRIC STRENGTH OF POLYMERS (SHEET 2 OF 5) Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) Diallyl Phthalates; Molded: Asbestos filled Resins; Molded, Extruded: Low temperature impact Diallyl Phthalates; Molded: Glass fiber filled Cellusose Acetate Propionate; Molded, Extruded’ ASTM Grade: 1 300—400 (wet) 300—415 300—420 (wet) 300—450 Cellusose Acetate Propionate; Molded, Extruded’ ASTM Grade: 3 Cellusose Acetate Propionate; Molded, Extruded’ ASTM Grade: 6 Polystyrenes; Molded: High impact Polypropylene: Glass reinforced 300—450 300—450 300—650 317—475 Nylons; Molded, Extruded: Type 8 Ureas; Molded: Cellulose filled (ASTM Type 2) Phenolics; Molded: Rubber phenolic—asbestos filled Reinforced polyester moldings: Heat & chemical resistant (asbestos) 340 340—370 350 350 Polyarylsulfone Melamines; Molded: Cellulose electrical Phenolics; Molded: Arc resistant—mineral filled Diallyl Phthalates; Molded: Glass fiber filled 350—383 350—400 350—425 350—430 (dry) Resins; Molded, Extruded: High impact Diallyl Phthalates; Molded: Asbestos filled Diallyl Phthalates; Molded: Dacron filled Resins; Molded, Extruded: Heat resistant 350—440 350—450 (dry) 360—391 (wet) 360—400 Melamines; Molded: Alpha cellulose and mineral filled Diallyl Phthalates; Molded: Orlon filled Phenolics; Molded: Very high shock: glass fiber filled Diallyl Phthalates; Molded: Dacron filled 375 375 (wet) 375—425 376—400 (dry) Nylons; Molded, Extruded; Type 6: Cast Silicones: Granular (silica) reinforced silicones ABS Resins; Molded, Extruded: Medium impact 6/6 Nylon: General purpose molding 380 380 (in oil) 385 385 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1748 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1749 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 436. SELECTING DIELECTRIC STRENGTH OF POLYMERS (SHEET 3 OF 5) Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) Nylons; Molded, Extruded; Type 6: General purpose Polystyrenes; Molded: Glass fiber -30% reinforced Acrylics; Moldings: Grades 5, 6, 8 Chlorinated polyether 385—400 396 400 400 Polycarbonate PVC–Acrylic Alloy: PVC–acrylic injection molded Phenylene Oxides: SE—100 Diallyl Phthalates; Molded: Orlon filled 400 400 400 (1/8 in.) 400 (dry) Reinforced polyester: Sheet molding compounds, general purpose Nylons; Molded, Extruded; Type 6: Glass fiber (30%) reinforced 6/6 Nylon; Molded, Extruded: Glass fiber reinforced Acrylics; Moldings: High impact grade 400—440 400—450 400—480 400—500 Styrene acrylonitrile (SAN) Polyester; Thermoplastic Moldings: General purpose grade Nylons; Molded, Extruded: Type 11 Phenylene oxides (Noryl): Standard 400—500 420—540 425 425 Polystyrenes; Molded: Medium impact PVC–Acrylic Alloy: PVC–acrylic sheet Nylons; Molded, Extruded; Type 6: Flexible copolymers Epoxy novolacs: Cast, rigid >425 >429 440 444 Polypropylene: Asbestos filled Acrylics; Cast Resin Sheets, Rods: General purpose, type II Acrylics; Cast Resin Sheets, Rods: General purpose, type I Polyphenylene sulfide: Standard 450 450—500 450—530 450—595 Polypropylene: High impact 6/10 Nylon: General purpose extrusion Polycarbonate (40% glass fiber reinforced) Phenylene oxides (Noryl): Glass fiber reinforced 450—650 470 475 480 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1749 16.1 sel Electrical Page 1750 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 436. SELECTING DIELECTRIC STRENGTH OF POLYMERS (SHEET 4 OF 5) Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) Polyethylenes; Molded, Extruded; Type I: Melt index 0.3—3.6 Polyethylenes; Molded, Extruded; Type I: Melt index 6—26 Polyethylenes; Molded, Extruded; Type I: Melt index 200 Polyethylenes; Molded, Extruded; Type II: Melt index 20 480 480 480 480 Polyethylenes; Molded, Extruded; Type II: Melt index l.0—1.9 Polyethylenes; Molded, Extruded; Type III: Melt index 0.2—0.9 Polyethylenes; Molded, Extruded; Type III: Melt Melt index 0.l—12.0 Polyethylenes; Molded, Extruded; Type III: Melt index 1.5—15 480 480 480 480 Polyethylenes; Molded, Extruded; Type III: High molecular weight Polypropylene: Flame retardant Polyphenylene sulfide: 40% glass reinforced ABS–Polycarbonate Alloy 480 485—700 490 500 Polyacetal Homopolymer: Standard Polyacetal Homopolymer: 20% glass reinforced Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow 500 500 500 500 Phenylene Oxides: SE—1 Polystyrenes; Molded: General purpose Olefin Copolymers; Molded: Polyallomer Glass fiber (30%) reinforced SAN 500 (1/8 in.) >500 500—650 515 Olefin Copolymers; Molded: EVA (ethylene vinyl acetate) Polytrifluoro chloroethylene (PTFCE): Molded,Extruded Olefin Copolymers; Molded: EEA (ethylene ethyl acrylate) Polyester; Thermoplastic Moldings: Glass reinforced grades 525 530—600 550 560—750 Polyacetal Copolymer: 25% glass reinforced Polyester; Thermoplastic Moldings: Asbestos—filled grade Polyester; Thermoplastic Moldings: General purpose grade Polypropylene: General purpose 580 580 590 650 (125 mil) Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1750 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1751 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 436. SELECTING DIELECTRIC STRENGTH OF POLYMERS (SHEET 5 OF 5) Polymer Dielectric Strength (Short Time, ASTM D149) (V / mil) Silicones: Woven glass fabric/ silicone laminate Polyvinyl Chloride & Copolymers: Rigid–normal impact Polyester; Thermoplastic Moldings: Glass reinforced self extinguishing Nylons; Molded, Extruded: Type 12 725 725—1,400 750 840 Olefin Copolymers; Molded: Ionomer Polytetrafluoroethylene (PTFE): Molded,Extruded Phenylene Oxides: Glass fiber reinforced 1,000 1,000—2,000 1,020 (1/32 in.) Chlorinated polyvinyl chloride Fluorinated ethylene propylene(FEP): Molded,Extruded 1,250—1,550 2,100 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1751 16.1 sel Electrical Page 1752 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 437. SELECTING DIELECTRIC CONSTANTS OF POLYMERS AT 60 HZ (SHEET 1 OF 5) Polymer Dielectric Constant (ASTM D150) 60 Hz Polytetrafluoroethylene (PTFE) (0.01 in thickness) Fluorinated ethylene propylene(FEP) (0.01 in thickness) Polypropylene: General purpose Polypropylene: High impact 2.1 2.1 2.20—2.28 2.20—2.28 Polyethylenes; Molded, Extruded; Type I: Melt index 0.3—3.6 Polyethylenes; Molded, Extruded; Type I: Melt index 6—26 Polyethylenes; Molded, Extruded; Type I: Melt index 200 Polyethylenes; Molded, Extruded; Type II: Melt index 20 2.3 2.3 2.3 2.3 Polyethylenes; Molded, Extruded; Type II: Melt index l.0—1.9 Polyethylenes; Molded, Extruded; Type III: Melt index 0.2—0.9 Polyethylenes; Molded, Extruded; Type III: Melt Melt index 0.l—12.0 Polyethylenes; Molded, Extruded; Type III: Melt index 1.5—15 2.3 2.3 2.3 2.3 Polyethylenes; Molded, Extruded; Type III: High molecular weight Polyallomer Polypropylene: Glass reinforced Polyvinyl Chloride & Copolymers: Rigid—normal impact 2.3 2.3 2.3—2.5 2.3—3.7 Olefin Copolymers; Molded: Ionomer Polystyrenes; Molded: General purpose Polystyrenes; Molded: Medium impact Polystyrenes; Molded: High impact 2.4 2.45—2.65 2.45—4.75 2.45—4.75 Polypropylene: Flame retardant ABS Resins; Molded, Extruded: Low temperature impact Polytrifluoro chloroethylene (PTFCE) Styrene acrylonitrile (SAN) 2.46—2.79 2.5—3.5 2.6—2.7 2.6—3.4 Phenylene Oxides: SE—100 Phenylene Oxides: SE—1 ABS Resins; Molded, Extruded: Heat resistant ABS–Polycarbonate Alloy 2.65 2.69 2.7—3.5 2.74 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1752 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1753 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 437. SELECTING DIELECTRIC CONSTANTS OF POLYMERS AT 60 HZ (SHEET 2 OF 5) Polymer Dielectric Constant (ASTM D150) 60 Hz Polypropylene: Asbestos filled Olefin Copolymers; Molded: EEA (ethylene ethyl acrylate) ABS Resins; Molded, Extruded: Medium impact ABS Resins; Molded, Extruded: High impact 2.75 2.8 2.8—3.2 2.8—3.2 ABS Resins; Molded, Extruded: Very high impact Polyesters Cast Thermosets: Rigid Ceramic reinforced (PTFE) Phenylene Oxides: Glass fiber reinforced 2.8—3.5 2.8—4.4 2.9—3.6 2.93 Polyvinyl Chloride & Copolymers: Vinylidene chloride Phenylene oxides (Noryl): Standard Chlorinated polyvinyl chloride Chlorinated polyether 3—5 3.06—3.15 3.08 3.1 Polystyrenes; Molded: Glass fiber -30% reinforced Polyester; Thermoplastic Moldings: General purpose grade Polyester; Thermoplastic Moldings: General purpose grade Olefin Copolymers; Molded: EVA (ethylene vinyl acetate) 3.1 3.1—3.3 3.16 3.16 Polycarbonate Polyesters Cast Thermosets: Flexible Nylons; Molded, Extruded Type 6: Flexible copolymers Nylons: Type 11 3.17 3.18—7.0 3.2—4.0 3.3 (103 Hz) Diallyl Phthalates; Molded: Orlon filled Epoxy novolacs: Cast, rigid Glass fiber (30%) reinforced Styrene acrylonitrile (SAN) Diallyl Phthalates; Molded: Dacron filled 3.3—3.9 (Dry) 3.34—3.39 3.5 3.5—3.8 (Dry) Acrylics; Moldings: Grades 5, 6, 8 Acrylics; Moldings: High impact grade Polyester; Thermoplastic Moldings: Asbestos—filled grade Acrylics; Cast Resin Sheets, Rods: General purpose, type I 3.5—3.9 3.5—3.9 3.5—4.2 3.5—4.5 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1753 16.1 sel Electrical Page 1754 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 437. SELECTING DIELECTRIC CONSTANTS OF POLYMERS AT 60 HZ (SHEET 3 OF 5) Polymer Dielectric Constant (ASTM D150) 60 Hz Acrylics; Cast Resin Sheets, Rods: General purpose, type II Diallyl Phthalates; Molded: Glass fiber filled Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH 3.5—4.5 3.5—4.5 (Dry) 3.5—6.4 3.5—6.4 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2 Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 3.5—64 3.5—7.5 3.5—7.5 3.5—7.5 Cellulose Acetate; Molded, Extruded; ASTM Grade: MH—1, MH—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: MS—1, MS—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 Polyarylsulfone 3.5—7.5 3.5—7.5 3.5—7.5 3.51—3.94 Phenylene oxides (Noryl): Glass fiber reinforced Nylons: Type 12 Polyacetal Homopolymer: Standard Polyacetal Copolymer: Standard 3.55 3.6 (103 Hz) 3.7 3.7 (100 Hz) Polyacetal Copolymer: High flow Polyester Moldings: Glass reinforced self extinguishing Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3 3.7 (100 Hz) 3.7—3.8 3.7—4.0 3.7—4.0 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 Polyester; Thermoplastic Moldings: Glass reinforced grades Polycarbonate (40% glass fiber reinforced) PVC–Acrylic Alloy: PVC–acrylic sheet 3.7—4.0 3.7—4.2 3.8 3.86 6/10 Nylon: General purpose Polyacetal Copolymer: 25% glass reinforced Silicones; Molded, Laminated: Woven glass fabric/ silicone laminate High performance Epoxies: Cast, rigid 3.9 3.9 (100 Hz) 3.9—4.2 3.96—4.02 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1754 CRC Handbook of Materials Science & Engineering 16.1 sel Electrical Page 1755 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 437. SELECTING DIELECTRIC CONSTANTS OF POLYMERS AT 60 HZ (SHEET 4 OF 5) Polymer Dielectric Constant (ASTM D150) 60 Hz Nylons; Type 6: Cast 6/6 Nylon: General purpose molding PVC–Acrylic Alloy: PVC–acrylic injection molded Polyacetal Homopolymer: 20% glass reinforced 4 4 4 4 Nylons; Molded, Extruded Type 6: General purpose Standard Epoxies: Cast rigid Silicones; Molded, Laminated: Granular (silica) reinforced silicones Polymides: Unreinforced 4.0—5.3 4.02 4.1—4.5 4.12 Silicones; Molded, Laminated: Fibrous (glass) reinforced silicones Thermoset Carbonate: Allyl diglycol carbonate Standard Epoxies: Molded Epoxy novolacs: Glass cloth laminate 4.34 4.4 4.4-5.4 4.41—4.43 Standard Epoxies: Cast flexible Diallyl Phthalates; Molded: Asbestos filled Nylons; Molded, Extruded Type 6: Glass fiber (30%) reinforced Polyester Thermosets: Sheet molding compounds, general purpose 4.43-4.79 4.5—5.2 (Dry) 4.6—5.6 4.62—5.0 High performance Epoxies: Molded Polymides: Glass reinforced Phenolics; Molded; General: woodflour and flock filled Alkyds; Molded: Glass reinforced (heavy duty parts) 4.7—5.7 4.84 5.0—9.0 5.2—6.0 Standard Epoxies: General purpose glass cloth laminate Alkyds; Molded: Putty (encapsulating) Polyvinyl Chloride & Copolymers: Nonrigid—general Phenolics; Molded; Shock: paper, flock, or pulp filled 5.3-5.4 5.4—5.9 5.5—9.1 5.6—11.0 Alkyds; Molded: Granular (high speed molding) Polyvinyl Chloride & Copolymers: Nonrigid—electrical Melamines; Molded: Cellulose electrical Phenolics; Molded; High shock: chopped fabric or cord filled 5.7—6.3 6.0—8.0 6.2—7.7 6.5—15.0 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1755 16.1 sel Electrical Page 1756 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 437. SELECTING DIELECTRIC CONSTANTS OF POLYMERS AT 60 HZ (SHEET 5 OF 5) Polymer Dielectric Constant (ASTM D150) 60 Hz Melamines; Molded: Glass fiber filled Ureas; Molded: Alpha—cellulose filled (ASTM Type l) Ureas; Molded: Woodflour filled Phenolics; Molded; Very high shock: glass fiber filled 7.0—11.1 7.0—9.5 7.0—9.5 7.1—7.2 Ureas; Molded: Cellulose filled (ASTM Type 2) Alkyds; Molded: Rope (general purpose) Phenolics; Molded: Arc resistant—mineral Melamines; Molded: Unfilled 7.2—7.3 7.4 7.4 7.9—11.0 Phenolics; Molded: Rubber phenolic—woodflour or flock Nylons: Type 8 Polyvinylidene— fluoride (PVDF) (0.125 in thickness) 9—16 9.3 10 Rubber phenolic—chopped fabric Rubber phenolic—asbestos 6/6 Nylon; Molded, Extruded:Glass fiber reinforced 15 15 40—44 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1756 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1757 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 438. SELECTING DIELECTRIC CONSTANTS OF POLYMERS AT 1 MHZ (SHEET 1 OF 4) Polymer Dielectric Constant (ASTM D150) 106 Hz Polypropylene: Glass reinforced Polypropylene: General purpose Polypropylene: High impact ABS Resins; Molded, Extruded: Very high impact 2—2.25 2.23—2.24 2.23—2.27 2.4—3.0 ABS Resins; Molded, Extruded: Low temperature impact Polystyrenes; Molded: Medium impact Polystyrenes; Molded: General purpose Polypropylene: Flame retardant 2.4—3.0 2.4—3.8 2.45—2.65 2.45—2.70 Acrylics; Moldings: High impact grade Polystyrenes; Molded: High impact Styrene acrylonitrile (SAN) Polypropylene: Asbestos filled 2.5—3.0 2.5—4.0 2.6—3.02 2.6—3.17 Phenylene Oxides: SE—100 Phenylene Oxides: SE—1 ABS–Polycarbonate Alloy Acrylics; Moldings: Grades 5, 6, 8 2.64 2.68 2.69 2.7—2.9 ABS Resins; Molded, Extruded: High impact Acrylics; Cast Resin Sheets, Rods: General purpose, type I Acrylics; Cast Resin Sheets, Rods: General purpose, type II ABS Resins; Molded, Extruded: Medium impact 2.7—3.0 2.7—3.2 2.7—3.2 2.75—3.0 Standard Epoxies: Cast flexible ABS Resins; Molded, Extruded: Heat resistant Polyesters Cast Thermosets: Rigid Chlorinated polyether 2.78-3.52 2.8—3.2 2.8—4.4 2.92 Phenylene Oxides: Glass fiber reinforced Polycarbonate Polystyrenes; Molded: Glass fiber -30% reinforced Nylons; Molded, Extruded Type 6: Flexible copolymers 2.92 2.96 3 3.0—3.6 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1757 16.2 sel Electrical Page 1758 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 438. SELECTING DIELECTRIC CONSTANTS OF POLYMERS AT 1 MHZ (SHEET 2 OF 4) Polymer Dielectric Constant (ASTM D150) 106 Hz Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow Polyacetal Copolymer: 25% glass reinforced Phenylene oxides (Noryl): Standard 3—7 3—7 3—9 3.03—3.10 Chlorinated polyvinyl chloride Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2 3.2—3.6 3.2—6.2 3.2—6.2 3.2—6.2 Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: MH—1, MH— 2 3.2—7.0 3.2—7.0 3.2—7.0 3.2—7.0 Cellulose Acetate; Molded, Extruded; ASTM Grade: MS—1, MS—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 Polyphenylene sulfide: Standard Nylons; Type 6: Cast 3.2—7.0 3.2—7.0 3.22—3.8 3.3 PVC–Acrylic Alloy: PVC–acrylic injection molded Silicones; Molded, Laminated: Granular (silica) reinforced silicones Glass fiber (30%) reinforced Styrene acrylonitrile (SAN) Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1 3.4 3.4 —4.3 3.4—3.6 3.4—3.7 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3 Phenylene oxides (Noryl): Glass fiber reinforced Standard Epoxies: Cast rigid PVC–Acrylic Alloy: PVC–acrylic sheet 3.4—3.7 3.41 3.42 3.44 6/10 Nylon: General purpose Thermoset Carbonate: Allyl diglycol carbonate 6/6 Nylon; Molded, Extruded:Glass fiber reinforced High performance Epoxies: Cast, rigid 3.5 3.5—3.8 3.5—4.1 3.53—3.58 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1758 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1759 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 438. SELECTING DIELECTRIC CONSTANTS OF POLYMERS AT 1 MHZ (SHEET 3 OF 4) Polymer Dielectric Constant (ASTM D150) 106 Hz Polyarylsulfone Polycarbonate (40% glass fiber reinforced) 6/6 Nylon: General purpose molding Nylons; Molded, Extruded Type 6: General purpose 3.54—3.7 3.58 3.6 3.6—3.8 Polyacetal Homopolymer: Standard Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 Diallyl Phthalates; Molded: Dacron filled Polyesters Cast Thermosets: Flexible 3.7 3.7—3.4 3.7—3.9 (Wet) 3.7—6.1 Silicones; Molded, Laminated: Woven glass fabric/ silicone laminate Polyphenylene sulfide: 40% glass reinforced Nylons; Molded, Extruded Type 6: Glass fiber (30%) reinforced Polymides: Unreinforced 3.8—397 3.88 3.9—5.4 3.96 Nylons: Type 8 Phenolics; Molded; General: woodflour and flock filled Polyacetal Homopolymer: 20% glass reinforced Standard Epoxies: Molded 4 4.0—7.0 4—0 4.1-4.6 Diallyl Phthalates; Molded: Orlon filled Silicones; Molded, Laminated: Fibrous (glass) reinforced silicones High performance Epoxies: Molded Diallyl Phthalates; Molded: Glass fiber filled 4.1—3.4 (Wet) 4.28 4.3—4.8 4.4—4.6 (Wet) Alkyds; Molded: Putty (encapsulating) Alkyds; Molded: Glass reinforced (heavy duty parts) Phenolics; Molded; Shock: paper, flock, or pulp filled Phenolics; Molded; High shock: chopped fabric or cord filled 4.5—4.7 4.5—5.0 4.5—7.0 4.5—7.0 Polyester Thermosets: Sheet molding compounds, general purpose Phenolics; Molded; Very high shock: glass fiber filled Standard Epoxies: General purpose glass cloth laminate Polymides: Glass reinforced 4.55—4.75 4.6—6.6 4.7-4.8 4.74 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1759 16.2 sel Electrical Page 1760 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 438. SELECTING DIELECTRIC CONSTANTS OF POLYMERS AT 1 MHZ (SHEET 4 OF 4) Polymer Dielectric Constant (ASTM D150) 106 Hz Standard Epoxies: High strength laminate Alkyds; Molded: Granular (high speed molding) Diallyl Phthalates; Molded: Asbestos filled Phenolics; Molded: Arc resistant—mineral 4.8-5.2 4.8—5.1 4.8—6.5 (Wet) 5 Phenolics; Molded: Rubber phenolic—woodflour or flock Rubber phenolic—chopped fabric Rubber phenolic—asbestos High performance Epoxies: Glass cloth laminate 5 5 5 5.1 Melamines; Molded: Cellulose electrical Melamines; Molded: Alpha cellulose mineral filled Melamines; Molded: Glass fiber filled Melamines; Molded: Unfilled 5.2—6.0 5.6 6.0—7.9 6.3—7.3 Ureas; Molded: Cellulose filled (ASTM Type 2) Ureas; Molded: Alpha—cellulose filled (ASTM Type l) Ureas; Molded: Woodflour filled 6.4—6.5 6.4—6.9 6.4—6.9 Melamines; Molded: Alpha cellulose filled Alkyds; Molded: Rope (general purpose) 6.4—8.1 6.8 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1760 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1761 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 439. SELECTING TANGENT LOSS IN GLASS (SHEET 1 OF 5) Glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass B2O3 glass B2O3 glass SiO2 glass B2O3 glass B2O3-Na2O glass (10% mol Na2O) B2O3 glass B2O3 glass B2O3-Na2O glass (12.5% mol Na2O) SiO2 glass B2O3 glass SiO2 glass B2O3 glass B2O3 glass B2O3-Na2O glass (10% mol Na2O) B2O3-Na2O glass (20% mol Na2O) B2O3-CaO glass (33.3% mol CaO) B2O3 glass SiO2-B2O3 glass (46.3% mol B2O3) SiO2 glass B2O3-Na2O glass (15% mol Na2O) Frequency (Hz) Temperature Tangent Loss (tan δ) 100 Hz 25˚C 0.00002 1 kHz 10 kHz 10 kHz 25˚C 25˚C 200˚C 0.00002 0.00002 0.00004 32 kHz 32 kHz 1 kHz 32 kHz 50K 100K 200˚C 300K 0.00005 0.00011 0.00012 0.0003 1 kHz 1 MHz 1 MHz 1 kHz 134.5˚C 100˚C 200˚C 134.5˚C 0.0003 0.0004 0.0005 0.0005 100 Hz 32 kHz 10 kHz 32 kHz 200˚C 150K 300˚C 250K 0.00052 0.0007 0.00072 0.0008 1 MHz 1 kHz 1 kHz 2 MHz 300˚C 214˚C 16˚C 25˚C 0.0009 0.0009 0.0009 0.001 32 kHz 10 GHz 9.4 GHz 1 kHz 200K 0.0010 0.0014 0.0015 0.0015 20˚C 134.5˚C Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1761 16.2 sel Electrical Page 1762 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 439. SELECTING TANGENT LOSS IN GLASS (SHEET 2 OF 5) Glass SiO2 glass SiO2 glass B2O3-CaO glass (33.3% mol CaO) SiO2-Al2O3 glass (0.5% mol Al2O3) B2O3-Na2O glass (10% mol Na2O) B2O3-Na2O glass (12.5% mol Na2O) B2O3-Na2O glass (25% mol Na2O) SiO2-Al2O3 glass (0.5% mol Al2O3) B2O3-Na2O glass (8% mol Na2O) B2O3-CaO glass (33.3% mol CaO) SiO2-Al2O3 glass (0.5% mol Al2O3) B2O3-Na2O glass (20% mol Na2O) SiO2 glass B2O3-Na2O glass (16% mol Na2O) B2O3-CaO glass (33.3% mol CaO) B2O3-Na2O glass (10% mol Na2O) B2O3-CaO glass (33.3% mol CaO) SiO2 glass SiO2-PbO glass (40% mol PbO) B2O3-CaO glass (33.3% mol CaO) SiO2-Na2O glass (16% mol Na2O) B2O3-Na2O glass (25% mol Na2O) B2O3-Na2O glass (15% mol Na2O) B2O3-Na2O glass (10% mol Na2O) Frequency (Hz) Temperature Tangent Loss (tan δ) 9.4 GHz 9.4 GHz 2 MHz 100 K 200˚C 400˚C 100˚C 100 K 0.0018 0.002 0.002 0.0021 1MHz 1 kHz 1 kHz 50 K room temp. 214˚C 16˚C 50 K 0.0022 0.0022 0.0022 0.0025 1MHz 2 MHz 150 K 1 kHz room temp. 200˚C 150 K 90.5˚C 0.0025 0.0025 0.0026 0.0026 9.4 GHz 1MHz 2 MHz 1 kHz 600˚C room temp. 300˚C 277˚C 0.0029 0.0031 0.0035 0.0038 2 MHz 9.4 GHz 100 GHz 2 MHz 400˚C 800˚C room temp. 500˚C 0.0045 0.0048 0.005 0.0055 4.5x108 Hz 1MHz 1 kHz 1 kHz 20˚C room temp. 214˚C 298˚C 0.0058 0.0063 0.0064 0.0066 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1762 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1763 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 439. SELECTING TANGENT LOSS IN GLASS (SHEET 3 OF 5) Glass B2O3-CaO glass (33.3% mol CaO) SiO2 glass SiO2-Na2O glass (20% mol Na2O) SiO2-Na2O glass (22.2% mol Na2O) B2O3-Na2O glass (28% mol Na2O) B2O3-Na2O glass (12.5% mol Na2O) SiO2-Na2O glass (28.6% mol Na2O) SiO2 glass B2O3-Na2O glass (20% mol Na2O) Frequency (Hz) 2 MHz 1 kHz 4.5x108 Hz 4.5x108 Hz 1MHz 1 kHz 4.5x108 Hz 9.4 GHz Temperature Tangent Loss (tan δ) 550˚C 300˚C 20˚C 20˚C 0.007 0.0072 0.0073 0.0081 room temp. 277˚C 20˚C 1000˚C 0.0081 0.0100 0.0102 0.011 0.0149 0.015 0.0150 0.0162 B2O3-Na2O glass (25% mol Na2O) 1 kHz 32 GHz 1 kHz SiO2-Na2O glass (36% mol Na2O) 4.5x108 Hz 157˚C -150˚C 90.5˚C 20˚C B2O3-Na2O glass (12.5% mol Na2O) 1 kHz 32 GHz 32 GHz 10 kHz 298˚C -100˚C -50˚C 400˚C 0.0170 0.018 0.020 0.022 32 GHz 32 GHz 9.4 GHz 300 kHz 0˚C 50˚C 1200˚C room temp. 0.022 0.024 0.025 0.0295 1 kHz 100 kHz 300 kHz 50 kHz 277˚C room temp. room temp. room temp. 0.0296 0.0364 0.0369 0.0428 SiO2-PbO glass (40% mol PbO) SiO2-PbO glass (40% mol PbO) SiO2-PbO glass (40% mol PbO) SiO2 glass SiO2-PbO glass (40% mol PbO) SiO2-PbO glass (40% mol PbO) SiO2 glass SiO2-Na2O glass (19.5% mol Na2O) B2O3-Na2O glass (15% mol Na2O) SiO2-Na2O glass (19.5% mol Na2O) SiO2-Na2O glass (24.4% mol Na2O) SiO2-Na2O glass (19.5% mol Na2O) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1763 16.2 sel Electrical Page 1764 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 439. SELECTING TANGENT LOSS IN GLASS (SHEET 4 OF 5) Glass SiO2-Na2O glass (24.4% mol Na2O) SiO2 glass B2O3-Na2O glass (15% mol Na2O) SiO2-Na2O glass (19.5% mol Na2O) SiO2-PbO glass (40% mol PbO) SiO2-Na2O glass (24.4% mol Na2O) SiO2-Na2O glass (29.4% mol Na2O) SiO2-Na2O glass (24.4% mol Na2O) SiO2-Na2O glass (19.5% mol Na2O) SiO2-Na2O glass (29.4% mol Na2O) SiO2 glass SiO2-Na2O glass (19.5% mol Na2O) B2O3-Na2O glass (20% mol Na2O) SiO2-Na2O glass (24.4% mol Na2O) SiO2-Na2O glass (34.3% mol Na2O) SiO2-Na2O glass (29.4% mol Na2O) SiO2-Na2O glass (19.5% mol Na2O) SiO2-Na2O glass (34.3% mol Na2O) B2O3-Na2O glass (25% mol Na2O) SiO2-Na2O glass (29.4% mol Na2O) SiO2-Na2O glass (24.4% mol Na2O) SiO2-Na2O glass (34.3% mol Na2O) SiO2-Na2O glass (39.3% mol Na2O) SiO2-Na2O glass (19.5% mol Na2O) Frequency (Hz) Temperature Tangent Loss (tan δ) 100 kHz 9.4 GHz 1 kHz 30 kHz room temp. 1400˚C 298˚C room temp. 0.0456 0.046 0.0477 0.0492 1000 GHz 50 kHz 300 kHz 30 kHz room temp. room temp. room temp. room temp. 0.050 0.0563 0.0568 0.0652 10 kHz 100 kHz 100 Hz 5 kHz room temp. room temp. 300˚C room temp. 0.0656 0.0758 0.080 0.0832 1 kHz 10 kHz 300 kHz 50 kHz 219˚C room temp. room temp. room temp. 0.0890 0.0916 0.0936 0.0972 3 kHz 1kHz 1 kHz 30 kHz room temp. room temp. 157˚C room temp. 0.0984 0.10324 0.1080 0.1172 5 kHz 100 kHz 300 kHz 1kHz room temp. room temp. room temp. room temp. 0.1194 0.1388 0.1402 0.144 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1764 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1765 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 439. SELECTING TANGENT LOSS IN GLASS (SHEET 5 OF 5) Glass SiO2-Na2O glass (24.4% mol Na2O) SiO2-Na2O glass (29.4% mol Na2O) SiO2-Na2O glass (34.3% mol Na2O) SiO2 glass SiO2-Na2O glass (39.3% mol Na2O) SiO2-Na2O glass (24.4% mol Na2O) SiO2-Na2O glass (34.3% mol Na2O) SiO2-Na2O glass (29.4% mol Na2O) B2O3-Na2O glass (20% mol Na2O) SiO2-Na2O glass (29.4% mol Na2O) SiO2-Na2O glass (39.3% mol Na2O) SiO2-Na2O glass (34.3% mol Na2O) SiO2-Na2O glass (39.3% mol Na2O) SiO2-Na2O glass (29.4% mol Na2O) SiO2-Na2O glass (34.3% mol Na2O) SiO2-Na2O glass (39.3% mol Na2O) SiO2-Na2O glass (34.3% mol Na2O) SiO2 glass Frequency (Hz) Temperature Tangent Loss (tan δ) 3 kHz 10 kHz 50 kHz 1 kHz room temp. room temp. room temp. 400˚C 0.1455 0.1764 0.1864 0.2 100 kHz 1kHz 30 kHz 5 kHz room temp. room temp. room temp. room temp. 0.2144 0.2207 0.2314 0.2426 1 kHz 3 kHz 50 kHz 10 kHz 274˚C room temp. room temp. room temp. 0.2480 0.3027 0.3032 0.3752 30 kHz 1kHz 5 kHz room temp. room temp. room temp. 0.3835 0.4923 0.5280 10 kHz 3 kHz 100 Hz room temp. room temp. 400˚C 0.6338 0.6520 1.0 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1765 16.2 sel Electrical Page 1766 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 440. SELECTING TANGENT LOSS IN GLASS BY TEMPERATURE (SHEET 1 OF 5) Frequency Glass (Ηz) Tangent Loss Temperature -100˚C 0˚C SiO2-PbO glass (40% mol PbO) SiO2-PbO glass (40% mol PbO) SiO2-PbO glass (40% mol PbO) SiO2-PbO glass (40% mol PbO) 32 GHz 32 GHz 32 GHz 32 GHz 0.018 0.015 0.020 0.022 16˚C B2O3-Na2O glass (20% mol Na2O) 16˚C B2O3-Na2O glass (25% mol Na2O) 1 kHz 1 kHz 0.0009 0.0022 0.0015 0.0022 0.0025 0.0031 0.005 0.0058 0.0063 0.0073 -150˚C -50˚C 20˚C SiO2 glass 20˚C B2O3-Na2O glass (10% mol Na2O) (tan δ) 20˚C B2O3-Na2O glass (8% mol Na2O) 20˚C B2O3-Na2O glass (16% mol Na2O) 9.4 GHz 1MHz 1MHz 1MHz 20˚C SiO2-PbO glass (40% mol PbO) 100 GHz 20˚C SiO2-Na2O glass (16% mol Na2O) 4.5x108 Hz 20˚C B2O3-Na2O glass (25% mol Na2O) 1MHz 20˚C SiO2-Na2O glass (20% mol Na2O) 4.5x108 Hz 20˚C B2O3-Na2O glass (28% mol Na2O) 1MHz 20˚C SiO2-Na2O glass (22.2% mol Na2O) 4.5x108 Hz 20˚C SiO2-Na2O glass (28.6% mol Na2O) 20˚C SiO2-Na2O glass (36% mol Na2O) 4.5x108 Hz 4.5x108 Hz 0.0081 0.0081 0.0102 0.0162 20˚C SiO2-Na2O glass (19.5% mol Na2O) 20˚C SiO2-Na2O glass (19.5% mol Na2O) 20˚C SiO2-Na2O glass (24.4% mol Na2O) 20˚C SiO2-Na2O glass (19.5% mol Na2O) 300 kHz 100 kHz 300 kHz 50 kHz 0.0295 0.0364 0.0369 0.0428 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1766 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1767 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 440. SELECTING TANGENT LOSS IN GLASS BY TEMPERATURE (SHEET 2 OF 5) Frequency Glass (Ηz) Tangent Loss Temperature 20˚C SiO2-Na2O glass (24.4% mol Na2O) 20˚C SiO2-Na2O glass (19.5% mol Na2O) 20˚C SiO2-PbO glass (40% mol PbO) 20˚C SiO2-Na2O glass (24.4% mol Na2O) 100 kHz 30 kHz 1000 GHz 50 kHz 0.0456 0.0492 0.050 0.0563 20˚C SiO2-Na2O glass (29.4% mol Na2O) 20˚C SiO2-Na2O glass (24.4% mol Na2O) 20˚C SiO2-Na2O glass (19.5% mol Na2O) 20˚C SiO2-Na2O glass (29.4% mol Na2O) 300 kHz 30 kHz 10 kHz 100 kHz 0.0568 0.0652 0.0656 0.0758 20˚C SiO2-Na2O glass (19.5% mol Na2O) 20˚C SiO2-Na2O glass (24.4% mol Na2O) 20˚C SiO2-Na2O glass (34.3% mol Na2O) 20˚C SiO2-Na2O glass (29.4% mol Na2O) 5 kHz 10 kHz 300 kHz 50 kHz 0.0832 0.0916 0.0936 0.0972 20˚C SiO2-Na2O glass (19.5% mol Na2O) 20˚C SiO2-Na2O glass (34.3% mol Na2O) 20˚C SiO2-Na2O glass (29.4% mol Na2O) 20˚C SiO2-Na2O glass (24.4% mol Na2O) 3 kHz 1kHz 30 kHz 5 kHz 0.0984 0.10324 0.1172 0.1194 20˚C SiO2-Na2O glass (34.3% mol Na2O) 20˚C SiO2-Na2O glass (39.3% mol Na2O) 20˚C SiO2-Na2O glass (19.5% mol Na2O) 20˚C SiO2-Na2O glass (24.4% mol Na2O) 100 kHz 300 kHz 1kHz 3 kHz 0.1388 0.1402 0.144 0.1455 20˚C SiO2-Na2O glass (29.4% mol Na2O) 20˚C SiO2-Na2O glass (34.3% mol Na2O) 10 kHz 50 kHz 100 kHz 1kHz 0.1764 0.1864 0.2144 0.2207 20˚C SiO2-Na2O glass (39.3% mol Na2O) 20˚C SiO2-Na2O glass (24.4% mol Na2O) (tan δ) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1767 16.2 sel Electrical Page 1768 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 440. SELECTING TANGENT LOSS IN GLASS BY TEMPERATURE (SHEET 3 OF 5) Frequency Glass (Ηz) Tangent Loss Temperature 20˚C SiO2-Na2O glass (34.3% mol Na2O) 20˚C SiO2-Na2O glass (29.4% mol Na2O) 20˚C SiO2-Na2O glass (29.4% mol Na2O) 20˚C SiO2-Na2O glass (39.3% mol Na2O) 30 kHz 5 kHz 3 kHz 50 kHz 0.2314 0.2426 0.3027 0.3032 20˚C SiO2-Na2O glass (34.3% mol Na2O) 20˚C SiO2-Na2O glass (39.3% mol Na2O) 20˚C SiO2-Na2O glass (29.4% mol Na2O) 10 kHz 30 kHz 1kHz 0.3752 0.3835 0.4923 20˚C SiO2-Na2O glass (34.3% mol Na2O) 20˚C SiO2-Na2O glass (39.3% mol Na2O) 20˚C SiO2-Na2O glass (34.3% mol Na2O) 5 kHz 10 kHz 3 kHz 0.5280 0.6338 0.6520 25˚C SiO2 glass 25˚C SiO2 glass 100 Hz 1 kHz 10 kHz 2 MHz 0.00002 0.00002 0.00002 0.001 32 GHz 1 kHz 1 kHz 0.024 0.0026 0.0150 1 MHz 2 MHz 0.0004 0.002 1 kHz 1 kHz 1 kHz 0.0003 0.0005 0.0015 1 kHz 1 kHz 0.0149 0.1080 25˚C SiO2 glass 25˚C B2O3-CaO glass (33.3% mol CaO) 50˚C SiO2-PbO glass (40% mol PbO) 90.5˚C B2O3-Na2O glass (20% mol Na2O) 90.5˚C B2O3-Na2O glass (25% mol Na2O) 100˚C B2O3 glass 100˚C B2O3-CaO glass (33.3% mol CaO) 134.5˚C B2O3-Na2O glass (10% mol Na2O) 134.5˚C B2O3-Na2O glass (12.5% mol Na2O) 134.5˚C B2O3-Na2O glass (15% mol Na2O) 157˚C B2O3-Na2O glass (20% mol Na2O) 157˚C B2O3-Na2O glass (25% mol Na2O) (tan δ) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1768 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1769 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 440. SELECTING TANGENT LOSS IN GLASS BY TEMPERATURE (SHEET 4 OF 5) Frequency Glass (Ηz) Tangent Loss Temperature 200˚C SiO2 glass 10 kHz 1 kHz 1 MHz 100 Hz 9.4 GHz 2 MHz 0.00004 0.00012 0.0005 0.00052 0.0018 0.0025 1 kHz 1 kHz 1 kHz 0.0009 0.0022 0.0064 1 kHz 1 kHz 0.0890 0.2480 1 kHz 1 kHz 1 kHz 0.0038 0.0100 0.0296 1 kHz 1 kHz 1 kHz 0.0066 0.0170 0.0477 10 kHz 1 MHz 2 MHz 1 kHz 100 Hz 0.00072 0.0009 0.0035 0.0072 0.080 200˚C SiO2 glass 200˚C B2O3 glass 200˚C SiO2 glass 200˚C SiO2 glass 200˚C B2O3-CaO glass (33.3% mol CaO) 214˚C B2O3-Na2O glass (10% mol Na2O) 214˚C B2O3-Na2O glass (12.5% mol Na2O) 214˚C B2O3-Na2O glass (15% mol Na2O) 219˚C B2O3-Na2O glass (20% mol Na2O) 274˚C B2O3-Na2O glass (20% mol Na2O) 277˚C B2O3-Na2O glass (10% mol Na2O) 277˚C B2O3-Na2O glass (12.5% mol Na2O) 277˚C B2O3-Na2O glass (15% mol Na2O) 298˚C B2O3-Na2O glass (10% mol Na2O) 298˚C B2O3-Na2O glass (12.5% mol Na2O) 298˚C B2O3-Na2O glass (15% mol Na2O) 300˚C SiO2 glass 300˚C B2O3 glass 300˚C B2O3-CaO glass (33.3% mol CaO) 300˚C SiO2 glass 300˚C SiO2 glass (tan δ) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1769 16.2 sel Electrical Page 1770 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 440. SELECTING TANGENT LOSS IN GLASS BY TEMPERATURE (SHEET 5 OF 5) Frequency Glass (Ηz) Tangent Loss Temperature 323˚C B2O3 glass 32 kHz 32 kHz 100 K 50 K 0.00005 0.00011 0.0021 0.0025 9.4 GHz 2 MHz 10 kHz 0.002 0.0045 0.022 1 kHz 100 Hz 0.2 1.0 150 K 32 kHz 32 kHz 0.0026 0.0007 0.0010 2 MHz 32 kHz 2 MHz 32 kHz 0.0055 0.0008 0.007 0.0003 9.4 GHz 9.4 GHz 0.0029 0.0048 9.4 GHz 9.4 GHz 9.4 GHz 0.011 0.025 0.046 373˚C B2O3 glass 373˚C SiO2-Al2O3 glass (0.5% mol Al2O3) 323˚C SiO2-Al2O3 glass (0.5% mol Al2O3) 400˚C SiO2 glass 400˚C B2O3-CaO glass (33.3% mol CaO) 400˚C SiO2 glass 400˚C SiO2 glass 400˚C SiO2 glass 423˚C SiO2-Al2O3 glass (0.5% mol Al2O3) 423˚C B2O3 glass 473˚C B2O3 glass 500˚C B2O3-CaO glass (33.3% mol CaO) 523˚C B2O3 glass 550˚C B2O3-CaO glass (33.3% mol CaO) 573˚C B2O3 glass 600˚C SiO2 glass 800˚C SiO2 glass 1000˚C SiO2 glass 1200˚C SiO2 glass 1400˚C SiO2 glass (tan δ) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1770 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1771 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 441. SELECTING TANGENT LOSS IN GLASS BY FREQUENCY (SHEET 1 OF 5) Frequency (Ηz) Glass Temperature Tangent Loss (tan δ) 100 Hz SiO2 glass SiO2 glass SiO2 glass SiO2 glass 25˚C 200˚C 300˚C 400˚C 0.00002 0.00052 0.080 1.0 1 kHz SiO2 glass 1 kHz SiO2 glass 25˚C 200˚C 134.5˚C 134.5˚C 0.00002 0.00012 0.0003 0.0005 214˚C 16˚C 134.5˚C 214˚C 0.0009 0.0009 0.0015 0.0022 16˚C 90.5˚C 277˚C 214˚C 0.0022 0.0026 0.0038 0.0064 298˚C 300˚C 277˚C 157˚C 0.0066 0.0072 0.0100 0.0149 90.5˚C 298˚C 277˚C 298˚C 0.0150 0.0170 0.0296 0.0477 100 Hz 100 Hz 100 Hz 1 kHz B2O3-Na2O glass (10% mol Na2O) 1 kHz B2O3-Na2O glass (12.5% mol Na2O) 1 kHz B2O3-Na2O glass (10% mol Na2O) 1 kHz B2O3-Na2O glass (20% mol Na2O) 1 kHz B2O3-Na2O glass (15% mol Na2O) 1 kHz B2O3-Na2O glass (12.5% mol Na2O) 1 kHz B2O3-Na2O glass (25% mol Na2O) 1 kHz B2O3-Na2O glass (20% mol Na2O) 1 kHz B2O3-Na2O glass (10% mol Na2O) 1 kHz B2O3-Na2O glass (15% mol Na2O) 1 kHz B2O3-Na2O glass (10% mol Na2O) 1 kHz SiO2 glass 1 kHz B2O3-Na2O glass (12.5% mol Na2O) 1 kHz B2O3-Na2O glass (20% mol Na2O) 1 kHz B2O3-Na2O glass (25% mol Na2O) 1 kHz B2O3-Na2O glass (12.5% mol Na2O) 1 kHz B2O3-Na2O glass (15% mol Na2O) 1 kHz B2O3-Na2O glass (15% mol Na2O) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1771 16.2 sel Electrical Page 1772 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 441. SELECTING TANGENT LOSS IN GLASS BY FREQUENCY (SHEET 2 OF 5) Frequency (Ηz) Glass Temperature Tangent Loss (tan δ) 1 kHz B2O3-Na2O glass (20% mol Na2O) 1 kHz SiO2-Na2O glass (34.3% mol Na2O) 219˚C room temp. 157˚C room temp. 0.0890 0.10324 0.1080 0.144 400˚C room temp. 274˚C room temp. 0.2 0.2207 0.2480 0.4923 room temp. room temp. room temp. room temp. 0.0984 0.1455 0.3027 0.6520 room temp. room temp. room temp. room temp. 0.0832 0.1194 0.2426 0.5280 25˚C 200˚C 300˚C 0.00002 0.00004 0.00072 400˚C room temp. room temp. 0.022 0.0656 0.0916 room temp. room temp. room temp. 0.1764 0.3752 0.6338 1 kHz B2O3-Na2O glass (25% mol Na2O) 1 kHz SiO2-Na2O glass (19.5% mol Na2O) 1 kHz SiO2 glass 1 kHz SiO2-Na2O glass (24.4% mol Na2O) 1 kHz B2O3-Na2O glass (20% mol Na2O) 1 kHz SiO2-Na2O glass (29.4% mol Na2O) 3 kHz SiO2-Na2O glass (19.5% mol Na2O) 3 kHz SiO2-Na2O glass (24.4% mol Na2O) 3 kHz SiO2-Na2O glass (29.4% mol Na2O) 3 kHz SiO2-Na2O glass (34.3% mol Na2O) 5 kHz SiO2-Na2O glass (19.5% mol Na2O) 5 kHz SiO2-Na2O glass (24.4% mol Na2O) 5 kHz SiO2-Na2O glass (29.4% mol Na2O) 5 kHz SiO2-Na2O glass (34.3% mol Na2O) 10 kHz SiO2 glass 10 kHz SiO2 glass 10 kHz SiO2 glass 10 kHz SiO2 glass 10 kHz SiO2-Na2O glass (19.5% mol Na2O) 10 kHz SiO2-Na2O glass (24.4% mol Na2O) 10 kHz SiO2-Na2O glass (29.4% mol Na2O) 10 kHz SiO2-Na2O glass (34.3% mol Na2O) 10 kHz SiO2-Na2O glass (39.3% mol Na2O) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1772 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1773 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 441. SELECTING TANGENT LOSS IN GLASS BY FREQUENCY (SHEET 3 OF 5) Frequency (Ηz) Glass Temperature Tangent Loss (tan δ) 30 kHz SiO2-Na2O glass (19.5% mol Na2O) 30 kHz SiO2-Na2O glass (24.4% mol Na2O) 30 kHz SiO2-Na2O glass (29.4% mol Na2O) room temp. room temp. room temp. 0.0492 0.0652 0.1172 30 kHz SiO2-Na2O glass (34.3% mol Na2O) 30 kHz SiO2-Na2O glass (39.3% mol Na2O) room temp. room temp. 0.2314 0.3835 50K 100K 300K 0.00005 0.00011 0.0003 150K 250K 200K 0.0007 0.0008 0.0010 room temp. room temp. room temp. 0.0428 0.0563 0.0972 room temp. room temp. 0.1864 0.3032 room temp. room temp. room temp. 0.0364 0.0456 0.0758 room temp. room temp. 0.1388 0.2144 room temp. room temp. room temp. 0.0295 0.0369 0.0568 32 kHz B2O3 glass 32 kHz B2O3 glass 32 kHz B2O3 glass 32 kHz B2O3 glass 32 kHz B2O3 glass 32 kHz B2O3 glass 50 kHz SiO2-Na2O glass (19.5% mol Na2O) 50 kHz SiO2-Na2O glass (24.4% mol Na2O) 50 kHz SiO2-Na2O glass (29.4% mol Na2O) 50 kHz SiO2-Na2O glass (34.3% mol Na2O) 50 kHz SiO2-Na2O glass (39.3% mol Na2O) 100 kHz SiO2-Na2O glass (19.5% mol Na2O) 100 kHz SiO2-Na2O glass (24.4% mol Na2O) 100 kHz SiO2-Na2O glass (29.4% mol Na2O) 100 kHz SiO2-Na2O glass (34.3% mol Na2O) 100 kHz SiO2-Na2O glass (39.3% mol Na2O) 300 kHz SiO2-Na2O glass (19.5% mol Na2O) 300 kHz SiO2-Na2O glass (24.4% mol Na2O) 300 kHz SiO2-Na2O glass (29.4% mol Na2O) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1773 16.2 sel Electrical Page 1774 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 441. SELECTING TANGENT LOSS IN GLASS BY FREQUENCY (SHEET 4 OF 5) Frequency (Ηz) Glass Temperature Tangent Loss (tan δ) 300 kHz SiO2-Na2O glass (34.3% mol Na2O) 300 kHz SiO2-Na2O glass (39.3% mol Na2O) room temp. room temp. 0.0936 0.1402 1 MHz B2O3 glass 1 MHz B2O3 glass 100˚C 200˚C 300˚C room temp. 0.0004 0.0005 0.0009 0.0022 room temp. room temp. room temp. room temp. 0.0025 0.0031 0.0063 0.0081 25˚C 100˚C 200˚C 300˚C 0.001 0.002 0.0025 0.0035 0.0045 0.0055 0.007 1 MHz B2O3 glass 1 MHz B2O3-Na2O glass (10% mol Na2O) 1 MHz B2O3-Na2O glass (8% mol Na2O) 1 MHz B2O3-Na2O glass (16% mol Na2O) 1 MHz B2O3-Na2O glass (25% mol Na2O) 1 MHz B2O3-Na2O glass (28% mol Na2O) 2 MHz B2O3-CaO glass (33.3% mol CaO) 2 MHz B2O3-CaO glass (33.3% mol CaO) 2 MHz B2O3-CaO glass (33.3% mol CaO) 2 MHz B2O3-CaO glass (33.3% mol CaO) 2 MHz B2O3-CaO glass (33.3% mol CaO) 2 MHz B2O3-CaO glass (33.3% mol CaO) 2 MHz B2O3-CaO glass (33.3% mol CaO) 400˚C 500˚C 550˚C 4.5x108 Hz SiO2-Na2O glass (16% mol Na2O) SiO2-Na2O glass (20% mol Na2O) SiO2-Na2O glass (22.2% mol Na2O) 20˚C 20˚C 20˚C 0.0058 0.0073 0.0081 SiO2-Na2O glass (28.6% mol Na2O) SiO2-Na2O glass (36% mol Na2O) 20˚C 20˚C 0.0102 0.0162 4.5x108 Hz 4.5x108 Hz 4.5x108 Hz 4.5x108 Hz Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1774 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1775 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 441. SELECTING TANGENT LOSS IN GLASS BY FREQUENCY (SHEET 5 OF 5) Frequency (Ηz) Glass Temperature Tangent Loss (tan δ) 9.4 GHz SiO2 glass 9.4 GHz SiO2 glass 9.4 GHz SiO2 glass 9.4 GHz SiO2 glass 20˚C 200˚C 400˚C 600˚C 0.0015 0.0018 0.002 0.0029 9.4 GHz SiO2 glass 9.4 GHz SiO2 glass 9.4 GHz SiO2 glass 9.4 GHz SiO2 glass 800˚C 1000˚C 1200˚C 1400˚C 0.0048 0.011 0.025 0.046 10 GHz SiO2-B2O3 glass (46.3% mol B2O3) 32 GHz SiO2-PbO glass (40% mol PbO) 32 GHz SiO2-PbO glass (40% mol PbO) 32 GHz SiO2-PbO glass (40% mol PbO) 32 GHz SiO2-PbO glass (40% mol PbO) 32 GHz SiO2-PbO glass (40% mol PbO) 100 GHz SiO2-PbO glass (40% mol PbO) 1000 GHz SiO2-PbO glass (40% mol PbO) 0.0014 -150˚C -100˚C -50˚C 0.015 0.018 0.020 0˚C 50˚C 0.022 0.024 room temp. room temp. 0.005 0.050 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1775 16.2 sel Electrical Page 1776 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 442. SELECTING ELECTRICAL PERMITTIVITY OF GLASS (SHEET 1 OF 6) Temperature Electrical (˚C) Permittivity 50 kHz 50 kHz 50 kHz 50 kHz 800 620 750 700 3.04 3.05 3.06 3.09 50 kHz 50 kHz 50 kHz 50 kHz 500 650 580 550 3.10 3.10 3.115 3.12 10 kHz 10 kHz 10 kHz 3 kHz 500 550 580 500 3.13 3.14 3.145 3.15 10 kHz 10 kHz 10 kHz 1 kHz 620 650 700 500 3.15 3.15 3.16 3.17 3 kHz 3 kHz 1 kHz 3 kHz 550 580 550 620 3.17 3.18 3.21 3.21 3 kHz 1 kHz 10 GHz 56.8 MHz 650 580 3.25 3.27 3.55 3.72 Frequency Glass (Ηz) B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass B2O3 glass SiO2–Al2O3 glass (46.3% mol B2O3) B2O3–Na2O glass (4.08% mol Na2O) room temp. Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1776 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1777 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 442. SELECTING ELECTRICAL PERMITTIVITY OF GLASS (SHEET 2 OF 6) Temperature Electrical (˚C) Permittivity 9.4 GHz 10 GHz 10 GHz 9.4 GHz 20 20 220 200 3.81 3.82 3.82 3.83 9.4 GHz 9.4 GHz 9.4 GHz 9.4 GHz 400 600 800 1000 3.84 3.86 3.88 3.91 10 GHz 9.4 GHz 9.4 GHz 10 GHz 888 1200 1400 1170 3.91 3.93 3.96 3.98 100 Hz 100 Hz 100 Hz 1 kHz 25 200 300 25 4.0 4.0 4.0 4.0 1 kHz 1 kHz 10 kHz 10 kHz 200 300 25 200 4.0 4.0 4.0 4.0 10 kHz 10 kHz 10 GHz 10 GHz 300 400 1764 1335 4.0 4.0 4.04 4.05 Frequency Glass (Ηz) SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1777 16.2 sel Electrical Page 1778 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 442. SELECTING ELECTRICAL PERMITTIVITY OF GLASS (SHEET 3 OF 6) Temperature Electrical (˚C) Permittivity 10 GHz 10 GHz 10 GHz 1 kHz 1764 1420 1480 400 4.05 4.07 4.09 4.1 10 GHz 10 GHz 10 GHz 10 GHz 1526 1584 1647 1602 4.11 4.12 4.12 4.15 56.8 MHz 32 GHz 32 GHz 32 GHz room temp. –150 –100 –50 4.20 4.25 4.30 4.40 32 GHz 56.8 MHz 32 GHz 1 kHz 0 room temp. 50 73 4.45 4.94 5.00 5.00 1 kHz 1 kHz 56.8 MHz 1 kHz 134.5 214 room temp. 277 5.05 5.15 5.27 5.45 1 kHz 100 Hz 1 kHz 1 kHz 73 400 298 134.5 5.45 5.5 5.60 5.60 Frequency Glass (Ηz) SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass B2O3–Na2O glass (7.35% mol Na2O) SiO2–PbO glass (40% mol PbO) SiO2–PbO glass (40% mol PbO) SiO2–PbO glass (40% mol PbO) SiO2–PbO glass (40% mol PbO) B2O3–Na2O glass (14.15% mol Na2O) SiO2–PbO glass (40% mol PbO) B2O3–Na2O glass (10% mol Na2O) B2O3–Na2O glass (10% mol Na2O) B2O3–Na2O glass (10% mol Na2O) B2O3–Na2O glass (17.31% mol Na2O) B2O3–Na2O glass (10% mol Na2O) B2O3–Na2O glass (12.5% mol Na2O) SiO2 glass B2O3–Na2O glass (10% mol Na2O) B2O3–Na2O glass (12.5% mol Na2O) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1778 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1779 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 442. SELECTING ELECTRICAL PERMITTIVITY OF GLASS (SHEET 4 OF 6) Temperature Electrical (˚C) Permittivity 4.5x108 Hz 214 73 134.5 20 5.75 5.80 6.00 6.01 1 kHz 56.8 MHz 1 kHz 1 kHz 16 room temp. 277 90.5 6.15 6.24 6.30 6.43 B2O3–Na2O glass (12.5% mol Na2O) 4.5x108 Hz 1 kHz 1 kHz SiO2–Na2O glass (22.2% mol Na2O) 4.5x108 Hz 20 214 298 20 6.48 6.50 6.65 6.85 B2O3–Na2O glass (31.98% mol Na2O) 56.8 MHz 1 kHz 1 kHz 300 kHz room temp. 157 16 room temp. 7.03 7.45 7.50 7.62 4.5x108 Hz 100 kHz 1 kHz 50 kHz 20 room temp. 277 room temp. 7.62 7.74 7.80 7.88 30 kHz 10 kHz 5 kHz 1 kHz room temp. room temp. room temp. 298 8.00 8.26 8.56 8.60 Frequency Glass (Ηz) B2O3–Na2O glass (12.5% mol Na2O) B2O3–Na2O glass (15% mol Na2O) 1 kHz 1 kHz 1 kHz SiO2–Na2O glass (16% mol Na2O) B2O3–Na2O glass (20% mol Na2O) B2O3–Na2O glass (15% mol Na2O) B2O3–Na2O glass (24.77% mol Na2O) B2O3–Na2O glass (12.5% mol Na2O) B2O3–Na2O glass (20% mol Na2O) SiO2–Na2O glass (20% mol Na2O) B2O3–Na2O glass (15% mol Na2O) B2O3–Na2O glass (20% mol Na2O) B2O3–Na2O glass (25% mol Na2O) SiO2–Na2O glass (19.5% mol Na2O) SiO2–Na2O glass (28.6% mol Na2O) SiO2–Na2O glass (19.5% mol Na2O) B2O3–Na2O glass (15% mol Na2O) SiO2–Na2O glass (19.5% mol Na2O) SiO2–Na2O glass (19.5% mol Na2O) SiO2–Na2O glass (19.5% mol Na2O) SiO2–Na2O glass (19.5% mol Na2O) B2O3–Na2O glass (15% mol Na2O) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1779 16.2 sel Electrical Page 1780 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 442. SELECTING ELECTRICAL PERMITTIVITY OF GLASS (SHEET 5 OF 6) Temperature Electrical (˚C) Permittivity 300 kHz 1 kHz 100 kHz 3 kHz room temp. 90.5 room temp. room temp. 8.75 8.90 8.91 8.97 SiO2–Na2O glass (19.5% mol Na2O) 50 kHz 30 kHz 1kHz SiO2–Na2O glass (36% mol Na2O) 4.5x108 Hz room temp. room temp. room temp. 20 9.14 9.30 9.40 9.40 SiO2–Na2O glass (24.4% mol Na2O) 10 kHz 300 kHz 5 kHz 100 kHz room temp. room temp. room temp. room temp. 9.74 10.15 10.21 10.47 3 kHz 50 kHz 300 kHz 30 kHz room temp. room temp. room temp. room temp. 10.61 10.86 11.14 11.21 1kHz 100 kHz 1 kHz 10 kHz room temp. room temp. 219 room temp. 11.62 11.78 11.85 12.08 300 kHz 50 kHz 5 kHz 30 kHz room temp. room temp. room temp. room temp. 12.43 12.57 13.19 13.28 Frequency Glass (Ηz) SiO2–Na2O glass (24.4% mol Na2O) B2O3–Na2O glass (25% mol Na2O) SiO2–Na2O glass (24.4% mol Na2O) SiO2–Na2O glass (19.5% mol Na2O) SiO2–Na2O glass (24.4% mol Na2O) SiO2–Na2O glass (24.4% mol Na2O) SiO2–Na2O glass (29.4% mol Na2O) SiO2–Na2O glass (24.4% mol Na2O) SiO2–Na2O glass (29.4% mol Na2O) SiO2–Na2O glass (24.4% mol Na2O) SiO2–Na2O glass (29.4% mol Na2O) SiO2–Na2O glass (34.3% mol Na2O) SiO2–Na2O glass (29.4% mol Na2O) SiO2–Na2O glass (24.4% mol Na2O) SiO2–Na2O glass (34.3% mol Na2O) B2O3–Na2O glass (20% mol Na2O) SiO2–Na2O glass (29.4% mol Na2O) SiO2–Na2O glass (39.3% mol Na2O) SiO2–Na2O glass (34.3% mol Na2O) SiO2–Na2O glass (29.4% mol Na2O) SiO2–Na2O glass (34.3% mol Na2O) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1780 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1781 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 442. SELECTING ELECTRICAL PERMITTIVITY OF GLASS (SHEET 6 OF 6) Temperature Electrical (˚C) Permittivity 100 kHz 3 kHz 50 kHz 10 kHz room temp. room temp. room temp. room temp. 13.55 14.23 15.06 15.22 30 kHz 1 kHz 1kHz 5 kHz room temp. 157 room temp. room temp. 16.56 17.30 17.52 18.13 3 kHz 10 kHz 1 kHz 1kHz room temp. room temp. 274 room temp. 21.30 22.08 31.00 38.61 Frequency Glass (Ηz) SiO2–Na2O glass (39.3% mol Na2O) SiO2–Na2O glass (29.4% mol Na2O) SiO2–Na2O glass (39.3% mol Na2O) SiO2–Na2O glass (34.3% mol Na2O) SiO2–Na2O glass (39.3% mol Na2O) B2O3–Na2O glass (25% mol Na2O) SiO2–Na2O glass (29.4% mol Na2O) SiO2–Na2O glass (34.3% mol Na2O) SiO2–Na2O glass (34.3% mol Na2O) SiO2–Na2O glass (39.3% mol Na2O) B2O3–Na2O glass (20% mol Na2O) SiO2–Na2O glass (34.3% mol Na2O) Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1781 16.2 sel Electrical Page 1782 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 443. SELECTING ELECTRICAL PERMITTIVITY OF GLASS BY FREQUENCY (SHEET 1 OF 6) Frequency (Hz) Glass 100 Hz 100 Hz SiO2 glass SiO2 glass 100 Hz SiO2 glass 100 Hz SiO2 glass 1 kHz B2O3 glass 1 kHz B2O3 glass 1 kHz B2O3 glass 1 kHz SiO2 glass 1 kHz SiO2 glass 1 kHz SiO2 glass 1 kHz SiO2 glass 1 kHz B2O3–Na2O glass (10% mol Na2O) 1 kHz B2O3–Na2O glass (10% mol Na2O) 1 kHz B2O3–Na2O glass (10% mol Na2O) 1 kHz B2O3–Na2O glass (10% mol Na2O) 1 kHz B2O3–Na2O glass (12.5% mol Na2O) 1 kHz B2O3–Na2O glass (10% mol Na2O) 1 kHz B2O3–Na2O glass (12.5% mol Na2O) 1 kHz B2O3–Na2O glass (12.5% mol Na2O) 1 kHz B2O3–Na2O glass (15% mol Na2O) 1 kHz B2O3–Na2O glass (15% mol Na2O) 1 kHz B2O3–Na2O glass (20% mol Na2O) 1 kHz B2O3–Na2O glass (12.5% mol Na2O) 1 kHz B2O3–Na2O glass (20% mol Na2O) Temperature (˚C) Electrical Permittivity 25 4.0 200 300 400 4.0 4.0 5.5 500 550 580 25 3.17 3.21 3.27 4.0 200 300 400 73 4.0 4.0 4.1 5.00 134.5 214 277 73 5.05 5.15 5.45 5.45 298 134.5 214 73 5.60 5.60 5.75 5.80 134.5 16 277 90.5 6.00 6.15 6.30 6.43 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1782 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1783 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 443. SELECTING ELECTRICAL PERMITTIVITY OF GLASS BY FREQUENCY (SHEET 2 OF 6) Frequency (Hz) Glass 1 kHz B2O3–Na2O glass (15% mol Na2O) 1 kHz B2O3–Na2O glass (12.5% mol Na2O) 1 kHz B2O3–Na2O glass (20% mol Na2O) 1 kHz B2O3–Na2O glass (25% mol Na2O) 1 kHz B2O3–Na2O glass (15% mol Na2O) 1 kHz B2O3–Na2O glass (15% mol Na2O) 1 kHz B2O3–Na2O glass (25% mol Na2O) 1 kHz SiO2–Na2O glass (19.5% mol Na2O) 1 kHz SiO2–Na2O glass (24.4% mol Na2O) 1 kHz B2O3–Na2O glass (20% mol Na2O) 1 kHz B2O3–Na2O glass (25% mol Na2O) 1 kHz SiO2–Na2O glass (29.4% mol Na2O) 1 kHz B2O3–Na2O glass (20% mol Na2O) 1 kHz SiO2–Na2O glass (34.3% mol Na2O) 3 kHz B2O3 glass 3 kHz B2O3 glass 3 kHz B2O3 glass 3 kHz B2O3 glass 3 kHz B2O3 glass 3 kHz SiO2–Na2O glass (19.5% mol Na2O) 3 kHz SiO2–Na2O glass (24.4% mol Na2O) 3 kHz SiO2–Na2O glass (29.4% mol Na2O) 3 kHz SiO2–Na2O glass (34.3% mol Na2O) Temperature (˚C) Electrical Permittivity 214 298 157 16 6.50 6.65 7.45 7.50 277 298 90.5 room temp. 7.80 8.60 8.90 9.40 room temp. 219 157 11.62 11.85 17.30 room temp. 274 room temp. 17.52 31.00 38.61 500 550 580 620 3.15 3.17 3.18 3.21 650 room temp. room temp. 3.25 8.97 10.61 room temp. room temp. 14.23 21.30 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1783 16.2 sel Electrical Page 1784 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 443. SELECTING ELECTRICAL PERMITTIVITY OF GLASS BY FREQUENCY (SHEET 3 OF 6) Frequency (Hz) Glass 5 kHz SiO2–Na2O glass (19.5% mol Na2O) 5 kHz SiO2–Na2O glass (24.4% mol Na2O) 5 kHz SiO2–Na2O glass (29.4% mol Na2O) 5 kHz SiO2–Na2O glass (34.3% mol Na2O) 10 kHz B2O3 glass 10 kHz B2O3 glass 10 kHz B2O3 glass 10 kHz B2O3 glass 10 kHz B2O3 glass 10 kHz B2O3 glass 10 kHz SiO2 glass 10 kHz SiO2 glass 10 kHz SiO2 glass 10 kHz SiO2 glass 10 kHz SiO2–Na2O glass (19.5% mol Na2O) 10 kHz SiO2–Na2O glass (24.4% mol Na2O) 10 kHz SiO2–Na2O glass (29.4% mol Na2O) 10 kHz SiO2–Na2O glass (34.3% mol Na2O) 10 kHz SiO2–Na2O glass (39.3% mol Na2O) 30 kHz SiO2–Na2O glass (19.5% mol Na2O) 30 kHz SiO2–Na2O glass (24.4% mol Na2O) 30 kHz SiO2–Na2O glass (29.4% mol Na2O) 30 kHz SiO2–Na2O glass (34.3% mol Na2O) 30 kHz SiO2–Na2O glass (39.3% mol Na2O) Temperature (˚C) Electrical Permittivity room temp. room temp. room temp. room temp. 8.56 10.21 13.19 18.13 500 550 580 620 3.13 3.14 3.145 3.15 650 700 25 200 3.15 3.16 4.0 4.0 300 400 room temp. room temp. 4.0 4.0 8.26 9.74 room temp. room temp. room temp. 12.08 15.22 22.08 room temp. room temp. room temp. 8.00 9.30 11.21 room temp. room temp. 13.28 16.56 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1784 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1785 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 443. SELECTING ELECTRICAL PERMITTIVITY OF GLASS BY FREQUENCY (SHEET 4 OF 6) Frequency (Hz) Glass 50 kHz B2O3 glass 50 kHz B2O3 glass 50 kHz B2O3 glass 50 kHz B2O3 glass 50 kHz B2O3 glass 50 kHz B2O3 glass 50 kHz B2O3 glass 50 kHz B2O3 glass 50 kHz SiO2–Na2O glass (19.5% mol Na2O) 50 kHz SiO2–Na2O glass (24.4% mol Na2O) 50 kHz SiO2–Na2O glass (29.4% mol Na2O) 50 kHz SiO2–Na2O glass (34.3% mol Na2O) 50 kHz SiO2–Na2O glass (39.3% mol Na2O) 100 kHz SiO2–Na2O glass (19.5% mol Na2O) 100 kHz SiO2–Na2O glass (24.4% mol Na2O) 100 kHz SiO2–Na2O glass (29.4% mol Na2O) 100 kHz SiO2–Na2O glass (34.3% mol Na2O) 100 kHz SiO2–Na2O glass (39.3% mol Na2O) 300 kHz SiO2–Na2O glass (19.5% mol Na2O) 300 kHz SiO2–Na2O glass (24.4% mol Na2O) 300 kHz SiO2–Na2O glass (29.4% mol Na2O) 300 kHz SiO2–Na2O glass (34.3% mol Na2O) 300 kHz SiO2–Na2O glass (39.3% mol Na2O) Temperature (˚C) Electrical Permittivity 800 620 750 700 3.04 3.05 3.06 3.09 500 650 580 550 3.10 3.10 3.115 3.12 room temp. room temp. room temp. 7.88 9.14 10.86 room temp. room temp. 12.57 15.06 room temp. room temp. room temp. 7.74 8.91 10.47 room temp. room temp. 11.78 13.55 room temp. room temp. room temp. 7.62 8.75 10.15 room temp. room temp. 11.14 12.43 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1785 16.2 sel Electrical Page 1786 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 443. SELECTING ELECTRICAL PERMITTIVITY OF GLASS BY FREQUENCY (SHEET 5 OF 6) Frequency (Hz) Glass Temperature (˚C) Electrical Permittivity 56.8 MHz 56.8 MHz 56.8 MHz B2O3–Na2O glass (4.08% mol Na2O) room temp. 3.72 B2O3–Na2O glass (7.35% mol Na2O) B2O3–Na2O glass (14.15% mol Na2O) room temp. room temp. 4.20 4.94 56.8 MHz 56.8 MHz 56.8 MHz B2O3–Na2O glass (17.31% mol Na2O) room temp. 5.27 B2O3–Na2O glass (24.77% mol Na2O) B2O3–Na2O glass (31.98% mol Na2O) room temp. room temp. 6.24 7.03 4.5x108 Hz SiO2–Na2O glass (16% mol Na2O) SiO2–Na2O glass (20% mol Na2O) SiO2–Na2O glass (22.2% mol Na2O) 20 20 20 6.01 6.48 6.85 4.5x108 Hz SiO2–Na2O glass (28.6% mol Na2O) SiO2–Na2O glass (36% mol Na2O) 20 20 7.62 9.40 9.4 GHz SiO2 glass 9.4 GHz SiO2 glass 9.4 GHz SiO2 glass 9.4 GHz SiO2 glass 20 200 400 600 3.81 3.83 3.84 3.86 9.4 GHz SiO2 glass 9.4 GHz SiO2 glass 9.4 GHz SiO2 glass 9.4 GHz SiO2 glass 800 1000 1200 1400 3.88 3.91 3.93 3.96 10 GHz SiO2–Al2O3 glass (46.3% mol B2O3) 10 GHz SiO2 glass 10 GHz SiO2 glass 10 GHz SiO2 glass 20 220 888 3.55 3.82 3.82 3.91 4.5x108 Hz 4.5x108 Hz 4.5x108 Hz Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1786 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1787 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 443. SELECTING ELECTRICAL PERMITTIVITY OF GLASS BY FREQUENCY (SHEET 6 OF 6) Frequency (Hz) Glass 10 GHz SiO2 glass 10 GHz SiO2 glass 10 GHz SiO2 glass 10 GHz SiO2 glass 10 GHz SiO2 glass 10 GHz SiO2 glass 10 GHz SiO2 glass 10 GHz SiO2 glass 10 GHz SiO2 glass 10 GHz SiO2 glass 32 GHz SiO2–PbO glass (40% mol PbO) 32 GHz SiO2–PbO glass (40% mol PbO) 32 GHz SiO2–PbO glass (40% mol PbO) 32 GHz SiO2–PbO glass (40% mol PbO) 32 GHz SiO2–PbO glass (40% mol PbO) Temperature (˚C) Electrical Permittivity 1170 1764 1335 1764 3.98 4.04 4.05 4.05 1420 1480 1526 4.07 4.09 4.11 1584 1647 1602 4.12 4.12 4.15 –150 –100 –50 4.25 4.30 4.40 0 50 4.45 5.00 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. ShvaikoShvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1787 16.2 sel Electrical Page 1788 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 444. SELECTING ARC RESISTANCE OF POLYMERS (SHEET 1 OF 3) Polymer Arc Resistance (ASTM D495) (seconds) Rubber phenolic—asbestos filled Phenolics; Molded; General: woodflour and flock filled Phenolics; Molded; Shock: paper, flock, or pulp filled Phenolics; Molded; High shock: chopped fabric or cord filled 5—20 5—60 5—60 5—60 Rubber phenolic—woodflour or flock filled Rubber phenolic—chopped fabric filled Polypropylene: Flame retardant Polystyrenes; Molded: High impact 7—20 10—20 15—40 20—100 Polystyrenes; Molded: Medium impact PVC–Acrylic Alloy: PVC–acrylic injection molded Polystyrenes; Molded: Glass fiber -30% reinforced Polyphenylene sulfide: 40% glass reinforced 20—135 25 28 34 Polymides: Glass reinforced Phenolics; Molded; Very high shock: glass fiber filled Polystyrenes; Molded: General purpose Glass fiber (30%) reinforced SAN 50—180 60 60—135 65 Polyarylsulfone Melamines; Molded: Cellulose electrical filled Polypropylene: Glass reinforced Phenylene Oxides: SE—100 67—81 70—135 73—77 75 Phenylene Oxides: SE—1 Standard Epoxies: Cast flexible PVC–Acrylic Alloy: PVC–acrylic sheet Polyester; Thermoplastic Moldings: Glass reinforced self extinguishing 75 75—98 80 Ureas; Molded: Woodflour filled Ureas; Molded: Cellulose filled (ASTM Type 2) Diallyl Phthalates; Molded: Orlon filled Nylons; Molded, Extruded Type 6: Glass fiber (30%) reinforced 80—110 85—110 85—115 92—81 80 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1788 CRC Handbook of Materials Science & Engineering 16.2 sel Electrical Page 1789 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 444. SELECTING ARC RESISTANCE OF POLYMERS (SHEET 2 OF 3) Polymer Arc Resistance (ASTM D495) (seconds) ABS–Polycarbonate Alloy Standard Epoxies: Cast rigid Ureas; Molded: Alpha—cellulose filled (ASTM Type l) Melamines; Molded: Unfilled 96 100 100—135 100—145 Styrene acrylonitrile (SAN) Diallyl Phthalates; Molded: Dacron filled Polyester; Thermoplastic Moldings: Asbestos—filled grade Phenylene oxides (Noryl): Glass fiber reinforced 100—150 105—125 108 114 Polyesters Cast Thermosets: Rigid Epoxy novolacs: Cast, rigid 6/6 Nylon; Molded, Extruded: General purpose molding 6/6 Nylon; Molded, Extruded: General purpose extrusion 115—135 120 120 120 6/10 Nylon: General purpose Phenylene Oxides: Glass fiber reinforced Polycarbonate (40% glass fiber reinforced) 120 120 120 (tungsten electrode) 120 (tungsten electrode) Polypropylene: Asbestos filled Phenylene oxides (Noryl): Standard Polypropylene: High impact Melamines; Molded: Alpha cellulose and mineral filled 121—125 122 123—140 125 Polyester; Thermoplastic Moldings: General purpose grade Polypropylene: General purpose Diallyl Phthalates; Molded: Asbestos filled Diallyl Phthalates; Molded: Glass fiber filled 125 125—136 125—140 125—140 Polyesters Cast Thermosets: Flexible Polyacetal Homopolymer: Standard Polyester; Thermoplastic Moldings: Glass reinforced grades Reinforced polyester moldings: High strength (glass fibers) 125—145 129 130 130—170 Polycarbonate Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1789 16.2 sel Electrical Page 1790 Wednesday, December 31, 1969 17:00 Selecting Electrical Properties Table 444. SELECTING ARC RESISTANCE OF POLYMERS (SHEET 3 OF 3) Arc Resistance (ASTM D495) (seconds) Polymer Standard Epoxies: General purpose glass cloth laminate Reinforced polyester: Sheet molding compounds, general purpose 6/6 Nylon; Molded, Extruded: Glass fiber Molybdenum disulfide filled Standard Epoxies: Molded 135—190 Polyacetal Copolymer: 25% glass reinforced 6/6 Nylon; Molded, Extruded: Glass fiber reinforced Polymides: Unreinforced Alkyds; Molded: Putty (encapsulating) 136 148—100 152 180 Alkyds; Molded: Rope (general purpose) Alkyds; Molded: Granular (high speed molding) Alkyds; Molded: Glass reinforced (heavy duty parts) Phenolics; Molded: Arc resistant—mineral 180 180 180 180 High performance Epoxies: Molded Melamines; Molded: Glass fiber filled Thermoset Carbonate: Allyl diglycol carbonate Polyacetal Homopolymer: 20% glass reinforced 180—185 180—186 185 188 Polyester; Thermoplastic Moldings: General purpose grade Molded,Extruded Polytetrafluoroethylene (PTFE) Silicones; Molded, Laminated: Woven glass fabric/ silicone laminate Polyacetal Copolymer: Standard 190 >200 Polyacetal Copolymer: High flow Silicones; Molded, Laminated: Fibrous (glass) reinforced silicones Silicones; Molded, Laminated: Granular (silica) reinforced silicones Molded,Extruded Polytrifluoro chloroethylene (PTFCE) Acrylics; Cast Resin Sheets, Rods: General purpose, type I Acrylics; Cast Resin Sheets, Rods: General purpose, type II Acrylic Moldings: Grades 5, 6, 8 Acrylic Moldings: High impact grade 130—180 130—180 135 225—250 240 240 240 250—310 >360 No track No track No track No track Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1790 CRC Handbook of Materials Science & Engineering Shackelford, James F. & Alexander, W. “Selecting Optical Properties” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001 17.0 sel Optical Page 1791 Wednesday, December 31, 1969 17:00 CHAPTER 15 List of Tables Selecting Optical Properties Transmission Range Selecting Transmission Range of Optical Materials Transparency Selecting Transparency of Polymers Refractive Indices Selecting Refractive Indices of Glasses Selecting Refractive Indices of Polymers ©2001 CRC Press LLC 1791 17.1 sel Optical Page 1792 Wednesday, December 31, 1969 17:00 Selecting Optical Properties Table 445. SELECTING TRANSMISSION RANGE OF OPTICAL MATERIALS (SHEET 1 OF 2) Material & Crystal Structure Transmission Region (µm, at 298 K) Magnesium Fluoride (Single Crystal) Silica (High Purity Crystalline) Silica (High Purity Fused) Lithium Fluoride (Single Crystal) 0.1 – 9.7 0.12 – 4.5 0.12 – 4.5 0.12 – 9.0 Ammonium Dihydrogen Phosphate (ADP, Single Crystal) Calcium Fluoride (Single Crystal) Alumina (Sapphire, Single Crystal) Sodium Fluoride (Single Crystal) 0.13 – 1.7 0.13 – 12 0.15 – 6.5 0.19 – 15 Magnesium Fluoride (Film) Calcium Carbonate (Calcite, Single Crystal) Thallium Chloribromide (KRS–6, Mixed Crystal) Magnesium Oxide (Single Crystal) 0.2 – 5.0 0.2 – 5.5 0.21 – 35 0.25 – 8.5 Barium Fluoride (Single Crystal) Potassium Bromide (Single Crystal) Potassium Iodide (Single Crystal) Cesium Iodide (Single Crystal) 0.25 – 15 0.25 – 35 0.25 – 45 0.25 – 80 Cesium Bromide (Single Crystal) Lithium Niobate (Single Crystal) Strontium Titanate (Single Crystal) Silver Chloride (Single Crystal) 0.3 – 55 0.33 – 5.2 0.39 – 6.8 0.4 – 2.8 Cuprous Chloride (Single Crystal) Titanium Dioxide (Rutile, Single Crystal) Silver Bromide (Single Crystal) Cadmium Sulfide (Bulk and Hexagonal Single Crystal) 0.4 – 19 0.43 – 6.2 0.45 – 35 0.5 – 16 Zinc Selenide (Single Crystal, Cubic) Arsenic Trisulfade (Glass) Zinc Sulfide (Single Crystal, Cubic) Thallium Bromoiodide (KRS–5, Mixed Crystal) ~0.5 – 22 0.6 – 13 ~0.6 – 15.6 0.6 – 40 External transmittance ≥ 10% with 2.0 mm thickness. Source: Data compiled by J.S. Park from various sources. ©2001 CRC Press LLC 1792 CRC Handbook of Materials Science & Engineering 17.1 sel Optical Page 1793 Wednesday, December 31, 1969 17:00 Selecting Optical Properties Table 445. SELECTING TRANSMISSION RANGE OF OPTICAL MATERIALS (SHEET 2 OF 2) Material & Crystal Structure Transmission Region (µm, at 298 K) Cadmium Telluride (Hot Pressed Polycrystalline) Gallium Arsenide (Intrinsic Single Crystal) Selenium (Amorphous) Silicon (Single Crystal) 0.9 – 16 1.0 – 15 1.0 – 20 1.2 – 15 Germanium (Intrinsic Single Crystal) Lead Sulfide (Single Crystal) Tellurium (Polycrystalline Film) 1.8 – 23 3.0 – 7.0 3.5 – 8.0 Tellurium (Single Crystal) Indium Arsenide (Single Crystal) 3.5 – 8.0 3.8 – 7.0 External transmittance ≥ 10% with 2.0 mm thickness. Source: Data compiled by J.S. Park from various sources. ©2001 CRC Press LLC Shackelford & Alexander 1793 17.1 sel Optical Page 1794 Wednesday, December 31, 1969 17:00 Selecting Optical Properties Table 446. SELECTING TRANSPARENCY OF POLYMERS (SHEET 1 OF 3) Polymer Transparency (visible light) (ASTM D791) (%) Alkyds; Molded: Putty (encapsulating) Alkyds; Molded: Rope (general purpose) Alkyds; Molded: Granular (high speed molding) Alkyds; Molded: Glass reinforced (heavy duty parts) Opaque Opaque Opaque Opaque Chlorinated polyether Chlorinated polyvinyl chloride Standard Epoxies: General purpose glass cloth laminate Standard Epoxies: High strength laminate Opaque Opaque Opaque Opaque Standard Epoxies: Filament wound composite High performance Epoxies: Molded High performance Epoxies: Glass cloth laminate Epoxy novolacs: Glass cloth laminate Opaque Opaque Opaque Opaque Melamines; Molded: Cellulose electrical 6/6 Nylon; Molded, Extruded: Glass fiber reinforced 6/6 Nylon; Molded, Extruded: Glass fiber Molybdenum disulfide filled 6/6 Nylon; Molded, Extruded: General purpose extrusion Opaque Opaque Opaque Opaque 6/10 Nylon: General purpose 6/10 Nylon: Glass fiber (30%) reinforced ABS–Polycarbonate Alloy PVC–Acrylic Alloy: PVC–acrylic injection molded Opaque Opaque Opaque Opaque Polymides: Unreinforced Polymides: Glass reinforced Reinforced polyester moldings: High strength (glass fibers) Reinforced polyester moldings: Heat & chemical resistsnt (asbestos) Opaque Opaque Opaque Opaque Reinforced polyester: Sheet molding compounds, general purpose Phenylene Oxides: SE—100 Phenylene Oxides: SE—1 Phenylene Oxides: Glass fiber reinforced Opaque Opaque Opaque Opaque Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1794 CRC Handbook of Materials Science & Engineering 17.1 sel Optical Page 1795 Wednesday, December 31, 1969 17:00 Selecting Optical Properties Table 446. SELECTING TRANSPARENCY OF POLYMERS (SHEET 2 OF 3) Polymer Transparency (visible light) (ASTM D791) (%) Phenylene oxides (Noryl): Glass fiber reinforced Polypropylene: Asbestos filled Polypropylene: Glass reinforced Polypropylene: Flame retardant Opaque Opaque Opaque Opaque Polyphenylene sulfide: Standard Polyphenylene sulfide: 40% glass reinforced Polystyrenes; Molded: Medium impact Polystyrenes; Molded: High impact Opaque Opaque Opaque Opaque Polystyrenes; Molded: Glass fiber -30% reinforced Glass fiber (30%) reinforced Styrene acrylonitrile (SAN) Silicones; Molded, Laminated: Fibrous (glass) reinforced silicones Silicones; Molded, Laminated: Granular (silica) reinforced silicones Opaque Opaque Opaque Opaque Silicones; Molded, Laminated: Woven glass fabric/ silicone laminate Ureas; Molded: Cellulose filled (ASTM Type 2) Ureas; Molded: Woodflour filled PVC–Acrylic Alloy: PVC–acrylic sheet Opaque Opaque Opaque Opaque Polypropylene: General purpose Polypropylene: High impact Polycarbonate (40% glass fiber reinforced) 6/6 Nylon; Molded, Extruded: General purpose molding Translucent—opaque Translucent—opaque Translucent Translucent Polystyrenes; Molded: General purpose Styrene acrylonitrile (SAN) Ureas; Molded: Alpha—cellulose filled (ASTM Type 1) Polycarbonate Transparent Transparent 21.8 75—85 Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 75—90 75—90 75—92 80—90 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1795 17.1 sel Optical Page 1796 Wednesday, December 31, 1969 17:00 Selecting Optical Properties Table 446. SELECTING TRANSPARENCY OF POLYMERS (SHEET 3 OF 3) Polymer Transparency (visible light) (ASTM D791) (%) Cellulose Acetate; Molded, Extruded; ASTM Grade: MH—1, MH—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: MS—1, MS—2 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1 80—90 80—90 80—92 80—92 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 Polytrifluoro chloroethylene (PTFCE) Molded, Extruded Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 80—92 80—92 80—92 80—95 Standard Epoxies: Molded Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2 Thermoset Carbonate: Allyl diglycol carbonate Acrylic Moldings: High impact grade 85 85—95 89—92 90 Standard Epoxies: Cast flexible Acrylics; Cast Resin Sheets, Rods: General purpose, type I Acrylics; Cast Resin Sheets, Rods: General purpose, type II Acrylic Moldings: Grades 5, 6, 8 90 91—92 (0.125 in.) 91—92 (0.125 in.) >92 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1796 CRC Handbook of Materials Science & Engineering 17.1 sel Optical Page 1797 Wednesday, December 31, 1969 17:00 Selecting Optical Properties Table 447. SELECTING REFRACTIVE INDICES OF GLASSES (SHEET 1 OF 6) Wavelength Glass (λ) B2O3 glass SiO2 glass B2O3 glass B2O3 glass B2O3 glass SiO2 glass B2O3 glass B2O3 glass SiO2 glass B2O3 glass SiO2 glass B2O3 glass SiO2 glass SiO2 glass B2O3 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2–B2O3 glass (quenched, 13.5% mol B2O3) SiO2–B2O3 glass (annealed, 13.5% mol B2O3) SiO2 glass Temperature Refractive Index (˚C) (nD) 5461 Å 3.245 µm 5461 Å 5461 Å 700 26 650 600 1.4130 1.41353 1.4155 1.4180 5461 Å 3.245 µm 5461 Å 5461 Å 550 828 500 450 1.4210 1.42243 1.4240 1.4270 2.553 µm 5461 Å 2.553 µm 5461 Å 26 400 471 350 1.42949 1.4315 1.43450 1.4365 2.553 µm 1.981 µm 5461 Å 1.660 µm 828 26 300 26 1.43854 1.43863 1.4420 1.44307 1.981 µm 1.470 µm 1.981 µm 1.254 µm 471 26 828 26 1.44361 1.44524 1.44734 1.44772 1.660 µm 1.002439 µm 1.002439 µm 1.470 µm 471 23 23 471 1.44799 1.4485 1.4493 1.45031 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1797 17.1 sel Optical Page 1798 Wednesday, December 31, 1969 17:00 Selecting Optical Properties Table 447. SELECTING REFRACTIVE INDICES OF GLASSES (SHEET 2 OF 6) Wavelength Glass (λ) SiO2 glass B2O3 glass SiO2–B2O3 glass (quenched, 13.5% mol B2O3) SiO2–B2O3 glass (annealed, 13.5% mol B2O3) SiO2 glass SiO2–B2O3 glass (quenched, 13.5% mol B2O3) SiO2 glass SiO2–B2O3 glass (annealed, 13.5% mol B2O3) SiO2 glass SiO2 glass SiO2–B2O3 glass (quenched, 13.5% mol B2O3) SiO2 glass SiO2–B2O3 glass (annealed, 13.5% mol B2O3) SiO2–B2O3 glass (20% mol B2O3) SiO2–B2O3 glass (15% mol B2O3) SiO2–B2O3 glass (30% mol B2O3) SiO2–B2O3 glass (10% mol B2O3) SiO2–Al2O3 glass (1.4% mol Al2O3) SiO2 glass SiO2 glass SiO2–B2O3 glass (50% mol B2O3) B2O3 glass SiO2–B2O3 glass (quenched, 13.5% mol B2O3) SiO2–B2O3 glass (75% mol B2O3) Temperature Refractive Index (˚C) (nD) 1.01398 µm 5461 Å 0.852111 µm 0.852111 µm 26 250 23 23 1.45039 1.4505 1.4507 1.4515 1.660 µm 0.734620 µm 1.254 µm 0.734620 µm 828 23 471 23 1.45174 1.4528 1.45283 1.4537 1.470 µm 1.01398 µm 0.589263 µm 1.254 µm 828 471 23 828 1.45440 1.45562 1.4570 1.45700 0.589263 µm 5145 Å 5145 Å 5145 Å 23 1.4579 1.4582 1.4584 1.4588 5145 Å 589.262 nm 1.01398 µm 0.54607 µm 5145 Å 5461 Å 0.508582 µm 5145 Å 828 26 200 23 1.4592 1.4595 1.45960 1.46028 1.4604 1.4605 1.4606 1.4612 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1798 CRC Handbook of Materials Science & Engineering 17.1 sel Optical Page 1799 Wednesday, December 31, 1969 17:00 Selecting Optical Properties Table 447. SELECTING REFRACTIVE INDICES OF GLASSES (SHEET 3 OF 6) Wavelength Glass (λ) SiO2–B2O3 glass (annealed, 13.5% mol B2O3) 0.508582 µm 5145 Å 5461 Å 589.262 nm SiO2–B2O3 glass (90% mol B2O3) B2O3 glass SiO2–Al2O3 glass (3.1% mol Al2O3) B2O3 glass B2O3 glass SiO2–Al2O3 glass (3.7% mol Al2O3) 5461 Å 5461 Å 589.262 nm SiO2 glass SiO2–B2O3 glass (annealed, 13.5% mol B2O3) B2O3 glass B2O3 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass (˚C) (nD) 23 1.4615 1.4617 1.4625 1.4630 150 100 20 25 0.435833 µm 0.54607 µm 0.435833 µm 5461 Å 23 471 23 0 1.4657 1.46575 1.4665 1.467 5461 Å 0.40466 µm 0.54607 µm 0.40466 µm –100 26 828 471 1.469 1.46978 1.47004 1.47575 0.33415 µm 0.40466 µm 26 828 1.48000 1.48033 1.4822 1.48387 SiO2–Na2O glass (15% mol Na2O) B2O3–Na2O glass (4.4% mol Na2O) SiO2 glass SiO2 glass SiO2 glass SiO2–Na2O glass (20% mol Na2O) Refractive Index 1.4635 1.4650 1.4652–1.4667 1.46536 B2O3–Na2O glass (0.01% mol Na2O) SiO2–B2O3 glass (quenched, 13.5% mol B2O3) Temperature 25 0.33415 µm 0.30215 µm 3.245 µm 471 26 471 1.48633 1.48738 1.4893 1.4906 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1799 17.1 sel Optical Page 1800 Wednesday, December 31, 1969 17:00 Selecting Optical Properties Table 447. SELECTING REFRACTIVE INDICES OF GLASSES (SHEET 4 OF 6) Wavelength Glass (λ) SiO2 glass SiO2 glass SiO2 glass (nD) 0.28936 µm 0.33415 µm 0.30215 µm 26 828 471 25 1.49121 1.49135 1.49407 1.49442 0.27528 µm 26 25 471 1.49615 1.49662 1.49818 1.4983 25 828 25 25 1.49841 1.49942 1.49984 1.50024 25 25 471 828 1.50155 1.50210 1.50327 1.50358 25 25 1.5041 1.50468 1.50500 1.5061 25 26 828 25 1.50806 1.50865 1.50889 1.50979 B2O3–Na2O glass (11.5% mol Na2O) SiO2 glass 0.28936 µm SiO2–Na2O glass (25% mol Na2O) B2O3–Na2O glass (13.7% mol Na2O) SiO2 glass 0.30215 µm B2O3–Na2O glass (16.2% mol Na2O) B2O3–Na2O glass (15.8% mol Na2O) B2O3–Na2O glass (17.4% mol Na2O) B2O3–Na2O glass (18.4% mol Na2O) SiO2 glass SiO2 glass 0.27528 µm 0.28936 µm SiO2–Na2O glass (30% mol Na2O) B2O3–Na2O glass (19.6% mol Na2O) B2O3–Na2O glass (20.0% mol Na2O) SiO2–Na2O glass (33.3% mol Na2O) B2O3–Na2O glass (22.5% mol Na2O) SiO2 glass SiO2 glass B2O3–Na2O glass (23.6% mol Na2O) Refractive Index (˚C) B2O3–Na2O glass (8.7% mol Na2O) SiO2 glass Temperature 0.24827 µm 0.27528 µm Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1800 CRC Handbook of Materials Science & Engineering 17.1 sel Optical Page 1801 Wednesday, December 31, 1969 17:00 Selecting Optical Properties Table 447. SELECTING REFRACTIVE INDICES OF GLASSES (SHEET 5 OF 6) Wavelength Glass (λ) Temperature (˚C) SiO2–Na2O glass (39.3% mol Na2O) SiO2 glass 0.2407 µm 26 SiO2–Na2O glass (45.1% mol Na2O) B2O3–Na2O glass (28.9% mol Na2O) SiO2 glass 25 SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2 glass SiO2–CaO glass (39.0% mol CaO) B2O3–CaO glass (35% mol CaO) SiO2–CaO glass (44.6% mol CaO) SiO2–PbO glass (20.78% mol PbO) SiO2–Al2O3 glass (70.2% mol Al2O3) SiO2–CaO glass (50.0% mol CaO) SiO2–Al2O3 glass (77.0% mol Al2O3) SiO2–CaO glass (52.9% mol CaO) SiO2–CaO glass (57.5% mol CaO) SiO2–PbO glass (24.90% mol PbO) B2O3–CaO glass (64.1% mol CaO) SiO2–PbO glass (29.71% mol PbO) (nD) 1.5099 1.51361 1.5137 1.51611 0.24827 µm 471 0.23021 µm 0.2407 µm 26 471 1.51665 1.517 1.52034 1.52201 0.24827 µm 0.2407 µm 0.23021 µm 0.23021 µm 828 828 471 828 1.52289 1.52832 1.52908 1.53584 SiO2–Na2O glass (50% mol Na2O) SiO2 glass Refractive Index 1.5905 1.6021 1.6120 1.6174 1.629 1.6295 1.634 1.6350 1.6455 1.6509 1.6525 1.6948 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC Shackelford & Alexander 1801 17.1 sel Optical Page 1802 Wednesday, December 31, 1969 17:00 Selecting Optical Properties Table 447. SELECTING REFRACTIVE INDICES OF GLASSES (SHEET 6 OF 6) Wavelength Glass SiO2–Al2O3 glass (84.1% mol Al2O3) SiO2–PbO glass (33.01% mol PbO) SiO2–Al2O3 glass (91.8% mol Al2O3) SiO2–PbO glass (36.64% mol PbO) SiO2–PbO glass (40.80% mol PbO) SiO2–PbO glass (44.07% mol PbO) SiO2–PbO glass (47.83% mol PbO) SiO2–PbO glass (50.50% mol PbO) SiO2–PbO glass (53.46% mol PbO) SiO2–PbO glass (56.43% mol PbO) SiO2–PbO glass (61.38% mol PbO) SiO2–PbO glass (65.97% mol PbO) (λ) Temperature (˚C) Refractive Index (nD) 1.720 1.7270 1.728 1.7632 1.8092 1.8457 1.8865 1.9189 1.9545 1.9894 2.0460–2.0512 2.1030 Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko–Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983. ©2001 CRC Press LLC 1802 CRC Handbook of Materials Science & Engineering 17.1 sel Optical Page 1803 Wednesday, December 31, 1969 17:00 Selecting Optical Properties Table 448. SELECTING REFRACTIVE INDICES OF POLYMERS (SHEET 1 OF 2) Polymer Refractive Index (ASTM D542) (nD) Fluorinated ethylene propylene(FEP) Molded, Extruded Polytetrafluoroethylene (PTFE) Molded, Extruded Polyvinylidene— fluoride (PVDF) Molded, Extruded Polytrifluoro chloroethylene (PTFCE) Molded, Extruded 1.34 1.35 1.42 1.43 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 1.46—1.49 1.46—1.49 1.46—1.49 1.46—1.49 (D543) Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2 Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 1.46—1.49 (D543) 1.46—1.49 (D543) 1.46—1.50 1.46—1.50 Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: MH—1, MH—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: MS—1, MS—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 1.46—1.50 1.46—1.50 1.46—1.50 1.46—1.50 Acrylics; Cast Resin Sheets, Rods: General purpose, type II Acrylics; Cast Resin Sheets, Rods: General purpose, type I Acrylic Moldings: Grades 5, 6, 8 Acrylic Moldings: High impact grade 1.485—1.495 1.485—1.500 1.489—1.493 1.49 Thermoset Carbonate: Allyl diglycol carbonate Polyesters Cast Thermosets: Flexible Polyethylenes; Molded, Extruded; Type I: Melt index 0.3—3.6 Polyethylenes; Molded, Extruded; Type I: Melt index 6—26 1.5 1.50—1.57 1.51 1.51 Polyethylenes; Molded, Extruded; Type I: Melt index 200 Polyethylenes; Molded, Extruded; Type II: Melt index 20 Polyethylenes; Molded, Extruded; Type II: Melt index l.0—1.9 Polyesters Cast Thermosets: Rigid 1.51 1.51 1.51 1.53—1.58 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1803 17.1 sel Optical Page 1804 Wednesday, December 31, 1969 17:00 Selecting Optical Properties Table 448. SELECTING REFRACTIVE INDICES OF POLYMERS (SHEET 2 OF 2) Polymer Refractive Index (ASTM D542) (nD) Polyethylenes; Molded, Extruded; Type III: Melt index 0.2—0.9 Polyethylenes; Molded, Extruded; Type III: Melt Melt index 0.l—12.0 Polyethylenes; Molded, Extruded; Type III: Melt index 1.5—15 Styrene acrylonitrile (SAN) 1.54 1.54 1.54 1.565—1.569 Polycarbonate Polystyrenes; Molded: General purpose Polyvinyl Chloride & Copolymers: Vinylidene chloride Standard Epoxies: Cast flexible 1.586 1.6 1.60—1.63 1.61 Standard Epoxies: Molded Phenylene oxides (Noryl): Standard Polyarylsulfone Polyacetal Homopolymer: Standard 1.61 1.63 1.651 Opaque Polyacetal Homopolymer: 20% glass reinforced Polyacetal Homopolymer: 22% TFE reinforced Polyacetal Copolymer: Standard Polyacetal Copolymer: 25% glass reinforced Opaque Opaque Opaque Opaque Polyacetal Copolymer: High flow Polystyrenes; Molded: Medium impact Polystyrenes; Molded: High impact Opaque Opaque Opaque Polystyrenes; Molded: Glass fiber -30% reinforced Glass fiber (30%) reinforced Styrene acrylonitrile (SAN) Opaque Opaque Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1804 CRC Handbook of Materials Science & Engineering Shackelford, James F. & Alexander, W.“Selecting Chemical Properties” Materials Science and Engineering Handbook Ed. James F. Shackelford & W. Alexander Boca Raton: CRC Press LLC, 2001 18.0 sel Chemical Page 1805 Wednesday, December 31, 1969 17:00 CHAPTER 16 List of Tables Selecting Chemical Properties Water Absorption Selecting Water Absorption of Polymers Corrosion Selecting Iron Alloys in 10% Corrosive Medium Selecting Iron Alloys in 100% Corrosive Medium Selecting Nonferrous Metals for use in a 10% Corrosive Medium Selecting Nonferrous Metals for use in a 100% Corrosive Medium Selecting Corrosion Rates of Metals Selecting Corrosion Rates of Metals in Corrosive Environments Flammability Selecting Flammability of Polymers ©2001 CRC Press LLC 1805 18.1 sel Chemical Page 1806 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 449. SELECTING WATER ABSORPTION OF POLYMERS (SHEET 1 OF 5) Polymer Water Absorption in 24 hr (ASTM D570) (%) Polytrifluoro chloroethylene (PTFCE); Molded, Extruded Alkyds; Molded: Glass reinforced (heavy duty parts) Fluorinated ethylene propylene(FEP) Polyethylenes; Molded, Extruded; Type I: Melt index 0.3—3.6 0 0.007—0.10 <0.01 <0.01 Polyethylenes; Molded, Extruded; Type I: Melt index 6—26 Polyethylenes; Molded, Extruded; Type I: Melt index 200 Polyethylenes; Molded, Extruded; Type II: Melt index 20 Polyethylenes; Molded, Extruded; Type II: Melt index l.0—1.9 <0.01 <0.01 <0.01 <0.01 Polyethylenes; Molded, Extruded; Type III: Melt index 0.2—0.9 Polyethylenes; Molded, Extruded; Type III: Melt Melt index 0.l—12.0 Polyethylenes; Molded, Extruded; Type III: Melt index 1.5—15 Polyethylenes; Molded, Extruded; Type III: High molecular weight <0.01 <0.01 <0.01 <0.01 Polypropylene: High impact Polypropylene: General purpose Chlorinated polyether Polytetrafluoroethylene (PTFE); Molded, Extruded <0.01—0.02 <0.01—0.03 0.01 0.01 Polyvinyl Chloride & Copolymers: Vinylidene chloride Polypropylene: Flame retardant Polypropylene: Asbestos filled Polypropylene: Glass reinforced >0.1 (ASTM D635) 0.02—0.03 0.02—0.04 0.02—0.05 Silicones: Woven glass fabric/ silicone laminate Polyvinylidene— fluoride (PVDF) Polystyrenes; Molded: Medium impact Polyvinyl Chloride & Copolymers: Rigid—normal impact 0.03—0.05 0.03—0.06 0.03—0.09 0.03—0.40 (ASTM D635) High performance Epoxies; Glass cloth laminate Standard Epoxies; High strength laminate Standard Epoxies; General purpose glass cloth laminate Standard Epoxies; Filament wound composite 0.04—0.06 0.05 0.05—0.07 0.05—0.07 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1806 CRC Handbook of Materials Science & Engineering 18.1 sel Chemical Page 1807 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 449. SELECTING WATER ABSORPTION OF POLYMERS (SHEET 2 OF 5) Polymer Water Absorption in 24 hr (ASTM D570) (%) Alkyds; Molded: Rope (general purpose) Polystyrenes; Molded: High impact PVC–Acrylic Alloy: PVC–acrylic sheet Phenylene Oxides: Glass fiber reinforced 0.05—0.08 0.05—0.22 0.06 0.06 Polyester; Thermoplastic Moldings: Glass reinforced grades Polyester; Moldings: Glass reinforced self extinguishing Polyester; Thermoplastic Moldings: Glass reinforced grade Phenylene Oxides: SE—100 0.06—0.07 0.07 0.07 0.07 Phenylene Oxides: SE—1 Polystyrenes; Molded: Glass fiber –30% reinforced Polycarbonate (40% glass fiber reinforced) Polyester; Thermoplastic Moldings: General purpose grade 0.07 0.07 0.08 0.08 Silicones; Molded, Laminated: Granular (silica) reinforced Alkyds; Molded: Granular (high speed molding) Polyester; Thermoplastic Moldings: General purpose grade Melamines; Molded: Glass fiber filled 0.08—0.1 0.08—0.12 0.09 0.09—0.60 Polyester; Thermoplastic Moldings: Asbestos—filled grade Alkyds; Molded: Putty (encapsulating) Rubber phenolic—asbestos filled Silicones; Molded, Laminated: Fibrous (glass) reinforced 0.1 0.10—0.15 0.10—0.50 0.1—0.15 Standard Epoxies; Cast rigid Epoxy novolacs: Cast, rigid Phenolics; Molded; Very high shock: glass fiber filled Chlorinated polyvinyl chloride 0.1—0.2 0.1—0.7 0.1—1.0 0.11 High performance Epoxies; Molded Polyesters: Cast Thermosets: Flexible PVC–Acrylic Alloy: PVC–acrylic injection molded Polycarbonate 0.11—0.2 0.12—2.5 0.13 0.15 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1807 18.1 sel Chemical Page 1808 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 449. SELECTING WATER ABSORPTION OF POLYMERS (SHEET 3 OF 5) Polymer Water Absorption in 24 hr (ASTM D570) (%) Styrene acrylonitrile (SAN): Glass fiber (30%) reinforced Polyester: Sheet molding compounds, general purpose Phenylene oxides (Noryl): Glass fiber reinforced Thermoset Carbonate: Allyl diglycol carbonate 0.15 0.15—0.25 0.18—0.22 0.2 6/10 Nylon: Glass fiber (30%) reinforced Polymides: Glass reinforced Polyacetal Homopolymer: 22% TFE reinforced Ceramic reinforced (PTFE) 0.2 0.2 0.2 >0.2 Styrene acrylonitrile (SAN) Polyesters: Cast Thermosets: Rigid ABS Resins; Molded, Extruded: Medium impact ABS Resins; Molded, Extruded: Heat resistant 0.20—0.35 0.20—0.60 0.2—0.4 0.2—0.4 Acrylics; Cast Resin Sheets, Rods: General purpose, type II Acrylics; Moldings: High impact grade ABS Resins; Molded, Extruded: High impact ABS Resins; Molded, Extruded: Very high impact 0.2—0.4 0.2—0.4 0.2—0.45 0.2—0.45 ABS Resins; Molded, Extruded: Low temperature impact Melamines; Molded: Unfilled Polyvinyl Chloride & Copolymers: Nonrigid—general ABS–Polycarbonate Alloy 0.2—0.45 0.2—0.5 0.2—1.0 (ASTM D635) 0.21 Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow Phenylene oxides (Noryl): Standard Polymides: Unreinforced 0.22 0.22 0.22 0.24—0.47 Nylons; Type 12 Polyacetal Homopolymer: Standard Polyacetal Homopolymer: 20% glass reinforced Ppolyester moldings: Heat & chemical resistant (asbestos) 0.25 0.25 0.25 0.25—0.50 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1808 CRC Handbook of Materials Science & Engineering 18.1 sel Chemical Page 1809 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 449. SELECTING WATER ABSORPTION OF POLYMERS (SHEET 4 OF 5) Polymer Water Absorption in 24 hr (ASTM D570) (%) Melamines; Molded: Cellulose electrical filled Polyacetal Copolymer: 25% glass reinforced Polystyrenes; Molded: General purpose Acrylics; Cast Resin Sheets, Rods: General purpose, type I 0.27—0.80 0.29 0.30—0.2 0.3—0.4 Acrylics; Moldings: Grades 5, 6, 8 Melamines; Molded: Alpha cellulose and mineral filled Standard Epoxies; Molded Phenolics; Molded; General: woodflour and flock filled 0.3—0.4 0.3—0.5 0.3—0.8 0.3—0.8 Nylons; Type 11 6/10 Nylon: General purpose Polyarylsulfone Polyvinyl Chloride & Copolymers: Nonrigid—electrical 0.4 0.4 0.4 0.40—0.75 (ASTM D635) Standard Epoxies; Cast flexible Ureas; Molded: Alpha—cellulose filled (ASTM Type l) Phenolics; Molded; Shock: paper, flock, or pulp filled Phenolics; Molded; High shock: chopped fabric or cord filled 0.4—0.1 0.4—0.8 0.4—1.5 0.4—1.75 Nylons; 6/6 Nylon: Glass fiber Molybdenum disulfide filled Phenolics; Molded; Arc resistant—mineral filled Reinforced polyester moldings: High strength (glass fibers) Rubber phenolic—woodflour or flock filled 0.5—0.7 0.5—0.7 0.5—0.75 0.5—2.0 Rubber phenolic—chopped fabric filled Nylons; Type 6: Cast Nylons; Molded, Extruded; 6/6 Nylon: Glass fiber reinforced Nylons; Molded, Extruded; Type 6: Flexible copolymers 0.5—2.0 0.6 0.8—0.9 0.8—1.4 Nylons; Molded, Extruded; Type 6: Glass fiber (30%) reinforced Cellulose Acetate Butyrate; ASTM Grade: S2 Cellulose Acetate Butyrate; ASTM Grade: MH Cellusose Acetate Propionate; ASTM Grade: 3 0.9—1.2 0.9—1.3 1.3—1.6 1.3—1.8 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1809 18.1 sel Chemical Page 1810 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 449. SELECTING WATER ABSORPTION OF POLYMERS (SHEET 5 OF 5) Polymer Water Absorption in 24 hr (ASTM D570) (%) Nylons; Molded, Extruded; Type 6: General purpose Nylons; Molded, Extruded; 6/6 Nylon: General purpose molding Nylons; Molded, Extruded; 6/6 Nylon: General purpose extrusion Cellusose Acetate Propionate; ASTM Grade: 6 1.3—1.9 1.5 1.5 1.6 Cellusose Acetate Propionate; ASTM Grade: 1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 Cellulose Acetate; ASTM Grade: MH—1, MH—2 1.6—2.0 1.7—2.7 1.7—2.7 1.8—4.0 Cellulose Acetate Butyrate; ASTM Grade: H4 Cellulose Acetate; ASTM Grade: MS—1, MS—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 Nylons; Type 8 2 2.1—4.0 2.3—4.0 9.5 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1810 CRC Handbook of Materials Science & Engineering 18.2 sel Chemical L Page 1811 Wednesday, December 31, 1969 17:00 Table 450. SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 1 OF 16) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride <0.05 >0.05 >0.05 — <0.05 >0.05 >0.05 — — <0.02 <0.02 — — <0.02 <0.02 — — <0.002 <0.02 — — <0.002 <0.02 — — <0.002 <0.002 — <0.002 <0.002 <0.002 <0.002 Acetoacetic Acid Acetone Acrolein Alcohol (Ethyl) >0.05 <0.05 <0.02 <0.02 >0.05 — — <0.02 — — — <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.002 <0.02 <0.002 Alcohol (Methyl) Alcohol (Allyl) <0.02 — <0.02 (30%) >0.05 <0.02 — <0.02 — <0.02 — <0.02 — <0.002 — — — — — >0.05 — <0.02 — <0.02 — <0.002 (30%) <0.02 <0.002 <0.02 <0.002 (30%) <0.02 Allylamine Aluminum Acetate <0.002 (30%) <0.02 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1812 Wednesday, December 31, 1969 17:00 Table 450. SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 2 OF 16) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Aluminum Chlorate Aluminum Chloride Aluminum Fluoride Aluminum Formate — >0.05 <0.02 <0.05 — >0.05 <0.02 — — >0.05 — — — >0.05 >0.05 <0.02 <0.002 >0.05 >0.05 <0.02 <0.002 >0.05 >0.05 <0.02 — <0.05 — <0.02 <0.02 <0.002 >0.05 <0.02 Aluminum Hydroxide Aluminum Nitrate Aluminum Potassium Sulfate Aluminum Sulfate <0.02 >0.05 <0.02 >0.05 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — >0.05 >0.05 >0.05 >0.05 <0.05 <0.02 <0.02 — >0.05 >0.05 <0.02 >0.05 — <0.02 <0.02 <0.002 <0.002 — <0.02 >0.05 <0.002 — <0.02 >0.05 <0.002 <0.002 <0.02 — <0.002 <0.002 <0.02 <0.05 <0.002 <0.002 <0.02 <0.05 <0.002 <0.002 <0.02 <0.05 <0.002 <0.002 <0.02 <0.02 <0.02 <0.002 <0.002 <0.002 Ammonia Ammonium Acetate Ammonium Bicarbonate Ammonium Bromide Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1813 Wednesday, December 31, 1969 17:00 Table 450. SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 3 OF 16) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Ammonium Carbonate Ammonium Chloride Ammonium Citrate Ammonium Formate <0.02 <0.05 >0.05 — <0.02 >0.05 >0.05 — <0.02 <0.02 >0.05 — <0.02 <0.05 — — <0.02 <0.05 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.002 — <0.02 Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite Ammonium Thiocyanate <0.002 <0.02 >0.05 <0.02 <0.02 <0.05 >0.05 <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 >0.05 — <0.002 <0.05 >0.05 <0.02 <0.002 <0.05 <0.05 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 Amyl Acetate Amyl Chloride Aniline Aniline Hydro-chloride <0.002 >0.05 — >0.05 — — — >0.05 — — <0.02 >0.05 — — <0.02 >0.05 — — <0.02 >0.05 <0.002 >0.05 <0.02 >0.05 <0.002 — <0.02 >0.05 <0.002 <0.02 <0.002 <0.02 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1814 Wednesday, December 31, 1969 17:00 Table 450. SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 4 OF 16) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Antimony Trichloride Barium Carbonate Barium Chloride Barium Nitrate >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 >0.05 — >0.05 <0.02 <0.02 — >0.05 <0.02 <0.05 — >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 Barium Peroxide Benzal-dehyde Benzene Benzoic Acid <0.05 >0.05 — >0.05 — >0.05 — >0.05 — <0.02 — — >0.05 — <0.02 <0.02 — — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 Boric Acid Bromic Acid Butyric Acid Cadmium Chloride <0.05 >0.05 <0.05 >0.05 >0.05 >0.05 >0.05 >0.05 <0.002 — >0.05 >0.05 <0.02 >0.05 <0.05 >0.05 <0.02 >0.05 <0.05 >0.05 <0.002 >0.05 <0.02 <0.02 <0.002 >0.05 <0.02 <0.02 <0.02 — <0.002 <0.02 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1815 Wednesday, December 31, 1969 17:00 Table 450. SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 5 OF 16) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Cadmium Sulfate Calcium Acetate Calcium Bicarbonate Calcium Bromide <0.02 <0.02 <0.02 — <0.02 <0.05 — — — — — — — <0.02 — <0.02 <0.002 <0.02 — <0.02 <0.002 <0.02 — <0.02 <0.002 <0.02 — <0.02 <0.002 <0.02 — — Calcium Chlorate Calcium Chloride Calcium Hydroxide Calcium Hypochlorite <0.002 <0.002 <0.02 <0.05 <0.02 <0.02 <0.02 <0.05 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 >0.05 <0.02 <0.05 <0.02 >0.05 <0.02 <0.02 <0.02 <0.05 <0.02 <0.02 <0.02 <0.05 <0.02 <0.002 <0.02 <0.02 Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas — <0.02 >0.05 >0.05 — — >0.05 >0.05 — — >0.05 >0.05 >0.05 — >0.05 >0.05 <0.002 — >0.05 >0.05 >0.05 <0.02 >0.05 — <0.02 <0.02 >0.05 — <0.002 <0.02 >0.05 — Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1816 Wednesday, December 31, 1969 17:00 Table 450. SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 6 OF 16) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Chromic Acid Chromic Sulfates Citric Acid Copper Nitrate >0.05 >0.05 >0.05 >0.05 <0.05 — >0.05 >0.05 <0.05 — >0.05 >0.05 >0.05 >0.05 <0.05 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.002 <0.002 <0.002 <0.002 Copper Sulfate >0.05 >0.05 <0.02 <0.02 <0.02 <0.02 <0.002 — — — — — — — — — — >0.05 (90%) — >0.05 (90%) — — — >0.05 (90%) — — Ethylene Glycol >0.05 <0.002 (60%) >0.05 (90%) <0.02 — <0.02 Ferric Chloride Ferric Nitrate Ferrous Chloride Ferrous Sulfate >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 — >0.05 — >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 Diethylene Glycol Ethyl Chloride Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1817 Wednesday, December 31, 1969 17:00 Table 450. SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 7 OF 16) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 <0.05 (40%) >0.05 <0.02 (30%) >0.05 <0.05 (40%) >0.05 <0.02 <0.002 >0.05 <0.05 (40%) >0.05 <0.02 (30%) — <0.05 <0.02 (80%) — <0.05 <0.002 (30%) — <0.002 (20%) <0.02 <0.002 (30%) <0.002 >0.05 >0.05 — >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 <0.05 >0.05 >0.05 <0.002 Corrosive Medium 1020 Steel Formaldehyde Formic Acid Furfural Hydrazine Hydrobromic Acid Hydrochloric Acid (Areated) Hydrochloric Acid (Air Free) Hydrofluoric Acid (Areated) — Stainless Steel 316 14% Si Iron <0.02 <0.002 <0.002 <0.002 <0.002 <0.02 (20%) — >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 >0.05 <0.02 — — <0.002 <0.002 >0.05 <0.002 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1818 Wednesday, December 31, 1969 17:00 Table 450. SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 8 OF 16) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Iodide >0.05 >0.05 <0.002 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 90 <0.05 (1%) >0.05 (20%) >0.05 90 >0.05 >0.05 (20%) — — >0.05 90 — <0.02 (20%) >0.05 90 <0.02 1%) <0.02 (20%) — — — >0.05 90 <0.05 <0.02 (20%) <0.02 (20%) <0.02 90 >0.05 <0.02 (20%) <0.02 >0.05 >0.05 (20%) >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 >0.05 <0.02 <0.002 <0.02 — <0.002 >0.05 — <0.02 <0.02 <0.02 <0.02 <0.02 >0.05 — <0.02 <0.02 <0.02 <0.02 <0.002 Hydrogen Peroxide Hydrogen Sulfide Lactic Acid Lead Acetate Lead Nitrate Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1819 Wednesday, December 31, 1969 17:00 Table 450. SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 9 OF 16) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Lithium Chloride <0.02 (30%) <0.02 <0.02 <0.02 <0.02 (30%) <0.02 <0.02 <0.02 <0.002 (30%) <0.02 <0.02 <0.02 — — <0.002 (30%) <0.02 <0.05 <0.02 <0.02 <0.05 <0.02 <0.002 (30%) <0.02 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 (30%) >0.05 <0.002 <0.02 >0.05 >0.05 >0.05 >0.05 (40%) <0.02 >0.05 — <0.05 (40%) >0.05 — <0.02 <0.002 <0.02 <0.02 <0.002 <0.02 — — — <0.002 <0.02 <0.002 <0.02 (40%) <0.002 <0.02 <0.002 Maganous Chloride <0.02 >0.05 >0.05 >0.05 (40%) <0.02 (40%) — Mercuric Chloride Mercurous Nitrate Methallylamine Methanol >0.05 — <0.02 <0.02 >0.05 — — <0.02 >0.05 — <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide Magnesium Sulfate Maleic Acid Malic Acid Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1820 Wednesday, December 31, 1969 17:00 Table 450. SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 10 OF 16) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylamine Methylene Chloride <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — Monochloroacetic Acid Monorthanolamine Monoethalamine Monoethylamine >0.05 <0.02 <0.02 <0.02 >0.05 — — <0.02 — — <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.002 <0.02 <0.02 <0.05 <0.002 <0.02 <0.02 <0.05 <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 Monosodium Phosphate Nickel Chloride Nickel Nitrate Nickel Sulfate >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 — >0.05 >0.05 <0.02 — >0.05 >0.05 <0.02 — <0.02 >0.05 <0.02 <0.002 <0.02 >0.05 <0.02 <0.02 <0.02 <0.02 <0.002 <0.002 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1821 Wednesday, December 31, 1969 17:00 Table 450. SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 11 OF 16) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Nitric Acid Nitric + Sulfuric Acid Nitrous Acid Oleic Acid >0.05 — — — >0.05 — — — >0.05 — — — <0.02 — <0.05 <0.02 <0.02 — <0.02 <0.02 <0.002 — <0.02 <0.02 <0.002 — <0.02 <0.02 <0.002 <0.02 <0.002 <0.002 Oxalic Acid Phosphoric Acid (Areated) Phosphoric Acid (Air Free) Picric Acid >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 <0.02 >0.05 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.002 >0.05 >0.05 >0.05 >0.05 >0.05 <0.02 <0.02 <0.02 >0.05 >0.05 — <0.02 <0.02 <0.02 <0.02 <0.02 Potassium Bicarbonate Potassium Bromide Potassium Carbonate Potassium Chlorate <0.02 <0.05 <0.02 <0.02 <0.02 <0.05 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1822 Wednesday, December 31, 1969 17:00 Table 450. SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 12 OF 16) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Potassium Chromate Potassium Cyanide Potassium Dichromate Potassium Ferricyanide <0.02 <0.02 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite Potassium Iodide >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 — <0.02 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 <0.05 <0.02 <0.02 >0.05 <0.002 <0.02 Potassium Nitrate Potassium Nitrite Potassium Permanganate Potassium Silicate <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1823 Wednesday, December 31, 1969 17:00 Table 450. SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 13 OF 16) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Propionic Acid Pyridine Quinine Sulfate Silver Bromide >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 >0.05 >0.05 — <0.02 <0.02 >0.05 — <0.02 — >0.05 — <0.02 <0.02 >0.05 — <0.02 <0.02 >0.05 — <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 — Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate >0.05 >0.05 <0.02 <0.02 >0.05 >0.05 — <0.02 — — <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.002 <0.02 <0.02 — <0.002 <0.002 <0.002 Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride >0.05 <0.02 <0.002 <0.02 >0.05 — <0.002 <0.02 <0.002 <0.02 <0.002 <0.02 <0.002 <0.05 <0.02 <0.02 <0.002 <0.05 <0.02 <0.02 <0.002 <0.05 <0.02 <0.02 <0.002 <0.05 <0.02 <0.02 <0.002 <0.05 <0.02 <0.02 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1824 Wednesday, December 31, 1969 17:00 Table 450. SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 14 OF 16) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate <0.02 <0.002 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.002 >0.05 <0.002 <0.02 <0.002 >0.05 <0.002 <0.02 <0.002 >0.05 <0.002 <0.02 <0.002 >0.05 <0.002 <0.02 <0.002 >0.05 <0.002 <0.02 >0.05 — <0.02 Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 Sodium Sulfate Sodium Sulfide Sodium Sulfite Stannic Chloride <0.02 <0.05 <0.02 >0.05 <0.02 <0.05 >0.05 >0.05 <0.02 — <0.02 >0.05 <0.05 >0.05 <0.02 >0.05 <0.05 >0.05 <0.02 >0.05 <0.02 <0.02 <0.002 >0.05 <0.002 >0.05 <0.002 >0.05 <0.002 <0.02 <0.002 >0.05 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1825 Wednesday, December 31, 1969 17:00 Table 450. SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 15 OF 16) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Stannous Chloride Strontium Nitrate Succinic Acid Sulfur Dioxide >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 — >0.05 <0.02 <0.02 — >0.05 <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 — Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfurous Acid Tannic Acid >0.05 >0.05 <0.05 >0.05 >0.05 >0.05 — — <0.02 <0.02 <0.05 — <0.05 >0.05 >0.05 <0.02 <0.05 >0.05 >0.05 <0.02 >0.05 >0.05 <0.02 <0.02 <0.002 <0.05 <0.02 <0.02 <0.002 <0.02 <0.002 Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid Urea >0.05 >0.05 >0.05 <0.05 >0.05 >0.05 >0.05 — <0.02 >0.05 >0.05 — <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 >0.05 <0.02 <0.002 — >0.05 <0.02 <0.02 — >0.05 <0.02 <0.02 — <0.002 <0.02 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1826 Wednesday, December 31, 1969 17:00 Table 450. SELECTING IRON ALLOYS IN 10% CORROSIVE MEDIUM (SHEET 16 OF 16) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Zinc Chloride Zinc Sulfate >0.05 >0.05 >0.05 >0.05 <0.02 <0.02 — <0.05 — <0.05 — <0.002 — <0.02 — <0.002 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). † 10% corrosive medium in 90% water at 70˚F ©2001 CRC Press LLC 18.2 sel Chemical L Page 1827 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 1 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride <0.002 >0.05 >0.05 >0.05 <0.002 >0.05 >0.05 >0.05 <0.002 >0.05 >0.05 <0.02 <0.002 >0.05 >0.05 <0.05 <0.002 <0.002 <0.05 <0.05 <0.002 <0.002 <0.002 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.002 <0.002 Acetoacetic Acid Acetone Acetylene Acrolein >0.05 <0.002 <0.002 <0.02 >0.05 <0.002 <0.002 <0.02 — <0.002 <0.002 <0.02 — <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.002 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) <0.002 <0.002 <0.002 <0.002 <0.002 <0.02 <0.002 <0.02 <0.002 <0.02 <0.002 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.002 <0.002 <0.02 <0.002 <0.002 <0.002 <0.02 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1828 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 2 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Alcohol (Amyl) Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl) <0.02 <0.002 <0.002 <0.02 <0.02 — <0.002 — <0.02 — — — <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 Alcohol (Isopropyl) Allylamine Allyl Chloride Allyl Sulfide <0.002 <0.02 <0.002 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 Aluminum Acetate Aluminum Chlorate Aluminum Chloride Aluminum Fluoride — — <0.002 — — — >0.05 — <0.02 — >0.05 — <0.02 — <0.002 >0.05 — — <0.002 >0.05 <0.02 — <0.002 >0.05 <0.02 — — <0.05 <0.002 <0.002 <0.02 >0.05 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1829 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 3 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Aluminum Fluosilicate Aluminum Formate Aluminum Hydroxide Aluminum Nitrate >0.05 >0.05 — — >0.05 — — — — — — — <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — — Aluminum Potassium Sulfate Aluminum Sulfate Ammonia Ammonium Acetate — — <0.002 <0.002 — — <0.002 <0.02 — — <0.002 <0.002 <0.05 >0.05 <0.002 <0.002 >0.05 >0.05 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 — <0.02 <0.002 <0.002 <0.002 <0.02 <0.02 <0.02 Ammonium Bicarbonate Ammonium Bromide Ammonium Carbonate Ammonium Chloride <0.002 >0.05 <0.002 <0.02 <0.02 >0.05 <0.02 — <0.02 — <0.02 — — >0.05 <0.02 >0.05 — — <0.02 >0.05 <0.05 <0.05 <0.02 >0.05 <0.02 — <0.02 — <0.002 — <0.02 <0.02 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1830 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 4 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Ammonium Citrate Ammonium Formate Ammonium Nitrate Ammonium Sulfate <0.002 — <0.02 — — — <0.05 <0.02 — — — <0.02 — — <0.02 — — — <0.02 — — <0.02 <0.002 — — <0.02 <0.002 — — <0.02 — <0.002 Ammonium Sulfite Amyl Acetate Amyl Chloride Aniline — <0.02 <0.02 <0.002 — <0.02 <0.02 <0.002 — <0.002 — <0.02 — <0.002 <0.05 <0.02 — <0.02 <0.05 <0.02 <0.05 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 — <0.002 <0.02 <0.002 Aniline Hydrochloride Anthracine Antimony Trichloride Barium Carbonate >0.05 <0.02 <0.05 <0.02 >0.05 <0.02 — <0.02 >0.05 <0.02 — <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 — <0.02 <0.02 <0.02 — <0.02 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1831 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 5 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Barium Chloride Barium Hydroxide Barium Nitrate Barium Oxide <0.002 <0.02 <0.02 <0.002 <0.02 <0.02 — — — — — — — <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 Barium Peroxide Benzaldehyde Benzene Benzoic Acid <0.002 <0.002 <0.02 >0.05 — >0.05 <0.02 >0.05 — <0.002 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.002 <0.02 Boric Acid Bromic Acid Bromine (Dry) Bromine (Wet) — >0.05 <0.05 >0.05 — >0.05 >0.05 >0.05 <0.02 — <0.02 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 — >0.05 >0.05 <0.02 — >0.05 >0.05 <0.02 — >0.05 >0.05 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1832 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 6 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Butyric Acid Cadmium Chloride Cadmium Sulfate Calcium Acetate >0.05 <0.002 <0.02 <0.05 — — <0.02 <0.05 >0.05 — — — — — — <0.02 <0.05 — — <0.02 <0.02 — — <0.02 <0.02 — — <0.02 <0.002 — — <0.02 Calcium Bicarbonate Calcium Bromide Calcium Chlorate Calcium Chloride <0.02 <0.05 <0.02 <0.002 <0.02 <0.05 <0.02 <0.002 — — <0.02 — <0.02 <0.02 — — <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.002 <0.02 <0.02 — <0.02 Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide Carbon Monoxide <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 — — <0.002 <0.002 <0.02 >0.05 <0.002 <0.002 <0.02 >0.05 <0.002 <0.002 — — <0.002 <0.002 — — <0.002 <0.002 — <0.05 <0.002 <0.002 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1833 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 7 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas <0.002 <0.02 >0.05 <0.02 <0.05 <0.05 >0.05 <0.02 <0.02 <0.002 >0.05 <0.02 <0.02 <0.002 >0.05 <0.05 <0.002 <0.002 >0.05 <0.05 <0.02 <0.02 — <0.002 <0.02 <0.02 — <0.02 <0.002 <0.002 >0.05 <0.02 Chlorine Liquid Chloroform (Dry) Chromic Acid Chromic Hydroxide <0.02 <0.002 <0.002 <0.02 — <0.002 <0.02 — — — <0.02 <0.02 — <0.002 <0.02 <0.02 — <0.02 — <0.02 — <0.002 — <0.02 — <0.002 — <0.02 — — <0.02 <0.02 Chromic Sulfates Citric Acid Diethylene Glycol Ethyl Chloride >0.05 <0.002 <0.002 <0.002 — — — — — >0.05 — — >0.05 — — <0.002 >0.05 — <0.002 <0.002 <0.05 <0.02 <0.002 <0.002 — <0.02 <0.002 <0.002 <0.02 <0.002 <0.002 <0.002 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1834 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 8 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Ethylene Glycol Ethylene Oxide Fatty Acids Ferric Chloride <0.002 <0.002 >0.05 <0.02 <0.02 <0.02 >0.05 — <0.02 — <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.002 — <0.02 <0.02 <0.002 — Fluorine Formaldehyde Formic Acid Furfural <0.002 <0.002 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 — — >0.05 <0.02 >0.05 <0.02 <0.02 — <0.002 <0.002 <0.05 — <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.002 <0.02 >0.05 <0.002 <0.002 <0.02 Hydrazine Hydrobromic Acid Hydrocyanic Acid Hydrofluoric Acid (Areated) >0.05 <0.02 <0.002 <0.02 — <0.02 <0.02 >0.05 — >0.05 <0.02 <0.02 — — >0.05 — — — <0.05 — — >0.05 <0.02 <0.02 — — <0.02 <0.02 — >0.05 <0.02 >0.05 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1835 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 9 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride Hydrogen Iodide <0.05 <0.002 <0.002 <0.02 >0.05 <0.02 — <0.02 <0.02 <0.002 <0.02 <0.02 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 >0.05 >0.05 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 >0.05 <0.02 — <0.02 Hydrogen Peroxide Hydrogen Sulfide Lactic Acid Lead Acetate — <0.02 >0.05 <0.002 — <0.02 >0.05 — — <0.02 >0.05 — <0.02 <0.02 — <0.02 <0.02 <0.05 — <0.02 <0.02 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.05 Lead Chromate Lead Nitrate Lead Sulfate Lithium Chloride <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 — <0.02 — <0.02 — <0.02 — <0.02 — <0.02 — <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.002 <0.02 <0.02 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1836 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 10 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide Magnesium Sulfate <0.002 <0.002 <0.002 <0.02 — <0.02 — <0.02 — <0.02 <0.02 <0.02 — — <0.02 <0.05 — — <0.02 <0.02 — — <0.02 <0.02 — — <0.02 <0.02 — >0.05 — <0.002 Maleic Acid Malic Acid Mercuric Chloride Mercurous Nitrate <0.002 — — <0.02 — — — — — — — — <0.05 — >0.05 <0.02 <0.02 — >0.05 — <0.02 <0.002 >0.05 <0.02 <0.02 <0.002 — <0.02 <0.02 — <0.02 <0.002 Methallylamine Methanol Methyl Ethyl Ketone Methyl Isobutyl Ketone <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.002 <0.002 <0.002 <0.02 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1837 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 11 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Methylamine Methylene Chloride Monochloroacetic Acid Monorthanolamine <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 <0.05 <0.02 <0.02 <0.02 >0.05 — <0.02 <0.02 >0.05 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — Monoethalamine Monoethylamine Nitric Acid Nitric Acid (Red Fuming) <0.02 <0.02 >0.05 <0.05 — <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 <0.002 <0.02 <0.02 <0.05 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 Nitric + Hydrochloric Acid Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene >0.05 >0.05 >0.05 <0.002 >0.05 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 <0.05 >0.05 <0.02 <0.002 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1838 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 12 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Nitrocelluolose Nitroglycerine Nitrotolune Nitrous Acid <0.02 <0.05 <0.02 >0.05 <0.02 <0.05 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.05 <0.02 <0.002 Oleic Acid Oxalic Acid Phenol Phosphoric Acid (Areated) <0.02 >0.05 <0.002 >0.05 <0.02 >0.05 <0.02 >0.05 <0.002 <0.02 <0.02 >0.05 <0.02 >0.05 <0.02 — <0.02 >0.05 <0.02 — <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 <0.02 <0.002 <0.02 <0.002 <0.002 Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate Potassium Bromide >0.05 >0.05 <0.002 >0.05 >0.05 >0.05 — >0.05 >0.05 >0.05 — <0.02 >0.05 <0.02 — <0.002 >0.05 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.05 — <0.02 <0.02 — <0.02 <0.02 — <0.02 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1839 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 13 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Potassium Carbonate Potassium Chlorate Potassium Chromate Potassium Cyanide <0.02 <0.002 — <0.002 <0.02 — — <0.02 <0.02 — — — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 Potassium Dichromate Potassium Ferricyanide Potassium Hydroxide Potassium Hypochlorite — <0.02 <0.002 <0.002 — <0.02 <0.02 — <0.02 <0.02 — — <0.02 — <0.002 — <0.02 <0.02 <0.002 — <0.02 <0.02 <0.002 — <0.02 <0.02 — <0.02 — — >0.05 <0.002 Potassium Iodide Potassium Nitrate Potassium Nitrite Potassium Permanganate <0.02 <0.002 <0.02 <0.002 — <0.02 <0.02 <0.02 — — <0.02 — — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 — <0.02 <0.002 <0.02 — Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1840 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 14 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Potassium Silicate Propionic Acid Pyridine Quinine Sulfate <0.02 <0.02 <0.02 >0.05 <0.02 — <0.02 >0.05 <0.02 — <0.02 <0.02 <0.02 — <0.02 — <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Salicylic Acid Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide >0.05 <0.002 >0.05 >0.05 >0.05 <0.002 >0.05 >0.05 <0.02 <0.002 >0.05 >0.05 <0.02 <0.002 >0.05 >0.05 <0.02 <0.002 >0.05 >0.05 <0.02 <0.002 >0.05 <0.05 <0.02 <0.002 — — <0.02 <0.002 <0.002 <0.02 Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate >0.05 — <0.002 <0.05 >0.05 — <0.002 <0.05 — — — <0.02 >0.05 — <0.02 — >0.05 — <0.02 <0.02 >0.05 — <0.02 — — <0.02 <0.02 — <0.02 — <0.02 — Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1841 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 15 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride <0.002 <0.02 <0.02 <0.002 — <0.05 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 >0.05 — <0.02 — — — <0.02 — >0.05 — <0.02 — — — <0.02 — <0.002 — <0.02 — Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate <0.02 <0.02 >0.05 <0.002 <0.02 — — <0.02 <0.02 <0.02 — <0.02 <0.02 — >0.05 <0.002 <0.02 — >0.05 <0.002 <0.02 — >0.05 <0.002 <0.02 — >0.05 <0.002 <0.02 — — <0.02 Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate <0.02 <0.002 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.002 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.002 — <0.02 <0.02 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1842 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 16 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Sodium Sulfate Sodium Sulfide Stannic Chloride Stannous Chloride <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 — <0.02 <0.02 — — <0.02 >0.05 <0.02 — — >0.05 >0.05 — <0.05 <0.002 >0.05 — <0.05 <0.002 — — — <0.002 <0.02 — — Strontium Nitrate Succinic Acid Sulfur Dioxide Sulfur Trioxide >0.05 <0.02 <0.002 <0.02 >0.05 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — >0.05 >0.05 Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfuric Acid (Fuming) Sulfurous Acid <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.05 >0.05 >0.05 <0.05 <0.002 >0.05 >0.05 <0.05 <0.002 >0.05 <0.02 <0.05 <0.02 >0.05 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.2 sel Chemical L Page 1843 Wednesday, December 31, 1969 17:00 Table 451. SELECTING IRON ALLOYS IN 100% CORROSIVE MEDIUM (SHEET 17 OF 17) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium 1020 Steel Grey Cast Iron Ni–Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron Tannic Acid Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid <0.002 <0.05 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 — — <0.05 >0.05 <0.02 — >0.05 >0.05 <0.02 — >0.05 >0.05 <0.02 — <0.02 >0.05 <0.02 — <0.02 >0.05 <0.002 <0.02 <0.05 <0.002 Trichloroethylene Zinc Chloride <0.002 <0.002 <0.02 <0.02 <0.02 <0.02 <0.02 >0.05 <0.02 >0.05 <0.02 — <0.02 — <0.002 — Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). † Water-free, Dry or Maximum concentration of corrosive medium. Quantitatively ©2001 CRC Press LLC 18.3 sel Chemical L Page 1844 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 1 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead <0.002 >0.05 <0.02 >0.05 <0.02 >0.05 <0.002 <0.02 <0.002 <0.05 — <0.02 — <0.002 <0.02 <0.02 <0.02 >0.05 — <0.002 <0.002 >0.05 >0.05 <0.02 <0.02 <0.02 <0.002 <0.002 >0.05 <0.002 — — — — — — <0.002 — — — Acetoacetic Acid Acetone Acrolein Alcohol (Ethyl) — <0.002 <0.02 <0.002 — <0.002 <0.02 <0.002 — <0.002 <0.02 <0.002 <0.02 <0.002 — <0.002 <0.02 <0.002 — <0.002 — <0.002 — <0.002 <0.02 <0.002 — <0.002 <0.02 <0.02 <0.02 <0.02 — <0.002 <0.02 <0.002 — <0.002 — <0.002 Alcohol (Methyl) Alcohol (Benzyl) Alcohol (Butyl) Aluminum Acetate <0.02 — — <0.02 <0.02 — — — <0.02 — — <0.02 <0.002 — — <0.02 <0.002 — — <0.02 <0.002 — — <0.02 <0.002 <0.02 — <0.02 — — <0.002 <0.002 <0.02 — — <0.002 — — — — Corrosive Medium Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1845 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 2 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Aluminum Chlorate Aluminum Chloride Aluminum Fluoride Aluminum Formate — <0.02 <0.02 — — >0.05 >0.05 — — <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.05 <0.02 <0.02 <0.02 >0.05 — <0.02 <0.02 <0.002 <0.02 <0.02 — >0.05 <0.002 <0.02 <0.02 >0.05 <0.02 — <0.002 >0.05 — — Aluminum Hydroxide Aluminum Nitrate Aluminum Potassium Sulfate Aluminum Sulfate <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.002 — — — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 >0.05 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.002 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.002 <0.02 <0.002 Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1846 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 3 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium Ammonia Ammonium Acetate Ammonium Bicarbonate Ammonium Bromide Ammonium Carbonate Ammonium Chloride Ammonium Citrate Ammonium Formate Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead >0.05 — >0.05 — >0.05 — >0.05 <0.002 >0.05 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.02 — <0.002 — >0.05 >0.05 >0.05 — — — — <0.02 <0.02 — >0.05 >0.05 >0.05 <0.02 <0.02 — <0.02 >0.05 >0.05 — >0.05 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 <0.02 — >0.05 >0.05 >0.05 <0.02 <0.02 <0.02 <0.002 >0.05 >0.05 <0.002 >0.05 >0.05 >0.05 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.002 — — — <0.02 <0.02 <0.02 <0.002 <0.02 — <0.002 Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1847 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 4 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite Ammonium Thiocyanate Amyl Acetate Amyl Chloride Aniline Aniline Hydrochloride Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead >0.05 <0.05 >0.05 >0.05 >0.05 >0.05 >0.05 <0.02 >0.05 >0.05 <0.02 >0.05 <0.02 <0.02 >0.05 — <0.02 >0.05 <0.02 <0.02 — <0.02 >0.05 — >0.05 <0.02 — <0.05 <0.002 — >0.05 >0.05 >0.05 <0.02 <0.02 — — — — <0.02 <0.02 — <0.02 — — <0.02 — — <0.02 <0.02 <0.02 — <0.02 <0.02 — — — <0.002 — — — — — — — — — — — >0.05 >0.05 >0.05 >0.05 <0.05 >0.05 <0.02 >0.05 >0.05 <0.002 Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1848 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 5 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Antimony Trichloride Barium Carbonate Barium Chloride Barium Hydroxide >0.05 >0.05 >0.05 >0.05 >0.05 — >0.05 >0.05 <0.02 — <0.02 <0.02 >0.05 <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 — <0.02 <0.02 — <0.02 <0.02 — <0.02 >0.05 — <0.02 >0.05 — <0.002 — Barium Nitrate Barium Peroxide Benzaldehyde Benzene >0.05 >0.05 >0.05 <0.002 >0.05 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 — <0.02 — <0.002 <0.02 <0.02 — <0.002 <0.02 — — <0.002 <0.02 — — <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 >0.05 <0.02 — — — <0.002 Benzoic Acid Boric Acid Bromic Acid Butyric Acid <0.02 <0.02 >0.05 <0.05 <0.02 <0.02 >0.05 <0.05 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.05 <0.02 <0.02 >0.05 <0.05 <0.02 <0.02 >0.05 <0.05 <0.002 <0.002 — <0.002 <0.02 <0.05 >0.05 <0.02 >0.05 <0.02 <0.02 >0.05 <0.002 <0.002 — <0.002 Corrosive Medium Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1849 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 6 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Cadmium Chloride Cadmium Sulfate Calcium Acetate Calcium Bromide <0.02 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 — <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 >0.05 <0.02 — <0.05 — <0.002 <0.02 <0.02 — — <0.002 — Calcium Chlorate Calcium Chloride Calcium Hydroxide Calcium Hypochlorite <0.02 <0.002 <0.02 >0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.002 <0.02 <0.02 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.002 >0.05 <0.02 >0.05 >0.05 — <0.002 — <0.02 <0.02 <0.02 >0.05 >0.05 >0.05 <0.02 >0.05 <0.05 <0.002 Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1850 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 7 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead — — — <0.02 <0.02 <0.002 <0.002 — — — Titanium Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chromic Acid <0.02 — <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 — — >0.05 >0.05 >0.05 >0.05 — >0.05 <0.02 >0.05 — >0.05 — <0.02 <0.02 <0.02 >0.05 >0.05 >0.05 <0.02 — <0.002 Chromic Sulfates Citric Acid Copper Nitrate Copper Sulfate <0.02 <0.05 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 <0.05 >0.05 <0.02 — <0.02 >0.05 <0.02 — <0.02 >0.05 <0.02 — <0.02 >0.05 <0.02 <0.02 <0.002 <0.02 <0.002 — <0.02 >0.05 >0.05 <0.02 <0.02 — <0.02 — <0.002 — — Ethyl Chloride Ethylene Glycol Ferric Chloride Ferric Nitrate <0.02 <0.02 >0.05 >0.05 — — >0.05 >0.05 — — >0.05 >0.05 <0.02 — >0.05 >0.05 — — >0.05 >0.05 — — <0.05 >0.05 — — <0.002 <0.002 — <0.002 >0.05 >0.05 — — >0.05 <0.002 — — <0.002 <0.002 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1851 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 8 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Ferrous Chloride Ferrous Sulfate Formaldehyde Formic Acid <0.02 <0.02 <0.002 <0.02 >0.05 >0.05 <0.002 <0.05 <0.05 <0.02 <0.002 <0.02 >0.05 — <0.002 <0.02 <0.05 >0.05 <0.002 <0.02 >0.05 <0.02 <0.002 <0.02 <0.02 <0.02 <0.02 <0.002 >0.05 <0.002 <0.02 <0.02 >0.05 <0.02 <0.02 >0.05 <0.002 <0.002 <0.002 <0.02 Furfural Hydrazine Hydrobromic Acid Hydrochloric Acid (Areated) <0.02 >0.05 >0.05 <0.02 >0.05 >0.05 <0.02 >0.05 <0.02 <0.02 — >0.05 <0.02 — >0.05 <0.02 — — <0.02 — <0.02 — — >0.05 — >0.05 >0.05 — — — >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 <0.02 >0.05 <0.02 <0.02 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 >0.05 <0.02 <0.02 >0.05 >0.05 >0.05 >0.05 — — — <0.02 >0.05 — <0.02 >0.05 >0.05 <0.02 <0.02 <0.02 <0.02 >0.05 >0.05 >0.05 <0.02 >0.05 <0.02 <0.02 <0.02 <0.02 <0.02 >0.05 <0.002 >0.05 Hydrochloric Acid (Air Free) Hydrocyanic Acid Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1852 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 9 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide Lactic Acid — >0.05 <0.02 <0.002 — >0.05 <0.02 <0.05 — >0.05 <0.02 <0.05 <0.02 <0.02 — >0.05 — <0.02 — <0.02 — <0.02 <0.02 <0.02 — <0.002 — <0.02 — <0.002 — <0.02 — >0.05 — >0.05 — <0.002 — <0.002 Lead Acetate Lead Chromate Lead Nitrate Lead Sulfate <0.05 — — — — — — — — — — <0.02 — — — <0.02 — <0.02 <0.02 <0.02 — — — <0.02 — — — — >0.05 >0.05 >0.05 — — — — <0.002 — — — Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1853 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 10 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze Lithium Chloride <0.02 30 Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide 70-30 Brass Silicon Bronze <0.02 30 >0.05 <0.02 <0.02 30 >0.05 <0.02 <0.02 Magnesium Sulfate Maleic Acid Malic Acid Maganous Chloride Mercuric Chloride Mercurous Nitrate Methanol Methyl Ethyl Ketone Monel Nickel Inconel Hastelloy Aluminum Lead Titanium <0.002 30 <0.002 30 <0.002 30 <0.05 <0.02 — >0.05 <0.02 <0.002 30 <0.02 <0.002 <0.02 <0.002 <0.02 <0.002 <0.02 <0.002 >0.05 >0.05 >0.05 >0.05 — <0.002 <0.02 <0.02 <0.02 — — <0.02 >0.05 >0.05 — <0.002 <0.02 — — <0.02 <0.02 — — <0.002 <0.02 — — <0.02 <0.05 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.002 — <0.002 <0.002 — <0.02 <0.02 <0.02 <0.02 — <0.02 — — — — — — <0.002 >0.05 >0.05 <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 <0.02 <0.002 <0.02 <0.05 — <0.002 <0.02 >0.05 — <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 >0.05 >0.05 — <0.02 <0.05 — <0.02 <0.02 <0.002 — — <0.002 Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1854 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 11 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Methyl Isobutyl Ketone Methylamine Methylene Chloride Monochloroacetic Acid <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 — <0.02 — — — <0.02 — — — — — — — <0.02 <0.02 >0.05 — — — — >0.05 >0.05 >0.05 — <0.02 <0.02 — >0.05 >0.05 — Monoethalamine Monoethylamine Monosodium Phosphate Nickel Chloride — — — — — — — — — — — — — — <0.02 <0.02 — — — — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 >0.05 <0.02 — >0.05 >0.05 >0.05 <0.02 — — <0.002 >0.05 — <0.02 Corrosive Medium Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1855 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 12 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Titanium Nickel Nitrate Nickel Sulfate Nitric Acid Nitric + Sulfuric Acid <0.05 <0.02 >0.05 <0.05 <0.05 >0.05 <0.05 <0.02 >0.05 >0.05 — >0.05 >0.05 <0.02 >0.05 >0.05 <0.02 <0.02 <0.02 <0.02 <0.002 >0.05 >0.05 >0.05 — <0.02 >0.05 — — <0.002 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 — >0.05 >0.05 — Nitrous Acid Oleic Acid Oxalic Acid Phenol — — <0.02 — — >0.05 <0.02 — — — <0.02 — — — <0.02 <0.002 >0.05 — <0.02 — — — <0.02 — — — <0.02 — <0.05 — <0.02 — — — >0.05 — — — <0.02 — Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1856 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 13 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead >0.05 >0.05 >0.05 <0.05 <0.05 <0.02 <0.002 >0.05 <0.02 <0.02 <0.02 Titanium Phosphoric Acid (Areated) Phosphoric Acid (Air Free) Picric Acid Potassium Bicarbonate <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 >0.05 <0.002 — >0.05 >0.05 >0.05 <0.05 >0.05 — <0.02 >0.05 >0.05 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 >0.05 >0.05 — Potassium Bromide Potassium Carbonate Potassium Chlorate Potassium Chromate <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.05 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.05 <0.002 <0.002 <0.02 <0.02 <0.002 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.002 <0.002 <0.002 — Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1857 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 14 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium Potassium Cyanide Potassium Dichromate Potassium Ferricyanide Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite Potassium Iodide Potassium Nitrate Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead >0.05 >0.05 >0.05 <0.02 <0.02 <0.02 <0.02 >0.05 >0.05 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.002 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 — <0.02 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 >0.05 >0.05 <0.002 <0.02 >0.05 >0.05 <0.05 <0.05 <0.05 <0.02 >0.05 <0.02 <0.002 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 >0.05 <0.02 <0.002 <0.002 Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1858 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 15 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium Potassium Nitrite Potassium Permanganate Potassium Silicate Propionic Acid Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Titanium <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.05 <0.02 <0.02 <0.002 <0.02 <0.05 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 — >0.05 <0.02 — >0.05 — — Pyridine Quinine Sulfate Salicylic Acid Silver Bromide <0.02 <0.02 — >0.05 <0.02 <0.02 — >0.05 <0.02 <0.02 — >0.05 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 — — <0.02 <0.02 — <0.002 <0.02 — >0.05 >0.05 <0.02 — — — — — — — Silver Chloride Silver Nitrate Sodium Acetate Sodium Bicarbonate >0.05 >0.05 <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 — >0.05 <0.05 <0.02 — >0.05 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 >0.05 >0.05 <0.02 >0.05 — >0.05 — <0.02 <0.002 — — — Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1859 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 16 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Sodium Bisulfate Sodium Bromide Sodium Carbonate Sodium Chloride — <0.02 <0.02 <0.02 >0.05 <0.05 >0.05 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.02 >0.05 <0.05 >0.05 <0.05 <0.02 — <0.02 <0.02 — — — <0.002 Sodium Chromate Sodium Hydroxide Sodium Hypochlorite Sodium Metasilicate <0.02 <0.002 <0.02 >0.05 <0.02 <0.02 <0.02 <0.002 <0.02 <0.002 <0.02 <0.002 <0.02 <0.002 <0.02 >0.05 <0.02 <0.02 — <0.002 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 <0.002 >0.05 >0.05 <0.002 <0.02 <0.02 <0.02 <0.002 <0.002 <0.002 <0.002 >0.05 — — Sodium Nitrate Sodium Nitrite Sodium Phosphate Sodium Silicate <0.02 <0.02 <0.02 <0.02 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 >0.05 >0.05 >0.05 <0.02 <0.02 >0.05 — <0.002 — — Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1860 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 17 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Sodium Sulfate Sodium Sulfide Sodium Sulfite Stannic Chloride <0.02 >0.05 <0.02 >0.05 <0.02 <0.05 >0.05 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 <0.02 <0.002 >0.05 <0.02 >0.05 <0.02 <0.002 <0.02 >0.05 — <0.002 — <0.002 Stannous Chloride Strontium Nitrate Succinic Acid Sulfur Dioxide >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 — >0.05 <0.02 <0.02 >0.05 <0.05 <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 >0.05 <0.02 <0.02 >0.05 >0.05 — <0.02 — — — <0.002 — Sulfuric Acid (Areated) Sulfuric Acid (Air Free) Sulfurous Acid Tannic Acid >0.05 >0.05 >0.05 <0.05 <0.05 >0.05 <0.002 >0.05 <0.002 <0.02 <0.02 <0.05 <0.02 <0.002 <0.02 <0.05 <0.002 >0.05 <0.002 — <0.02 <0.02 <0.02 — <0.02 <0.02 >0.05 <0.02 <0.05 — <0.05 — <0.02 <0.02 <0.02 <0.02 <0.02 >0.05 <0.002 <0.002 Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1861 Wednesday, December 31, 1969 17:00 Table 452. SELECTING NONFERROUS METALS FOR USE IN A 10% CORROSIVE MEDIUM (SHEET 18 OF 18) Corrosion Rate * at 70˚F in a 10% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead <0.02 <0.05 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 Titanium Tartaric Acid Tetraphosphoric Acid Trichloroacetic Acid Urea — >0.05 >0.05 — — — — >0.05 >0.05 — >0.05 <0.02 >0.05 <0.02 — <0.02 — <0.02 — <0.02 — <0.02 <0.02 <0.02 >0.05 <0.02 >0.05 — <0.002 — Zinc Chloride Zinc Sulfate <0.02 <0.02 >0.05 <0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.002 <0.02 <0.02 >0.05 <0.05 <0.02 <0.02 <0.002 — Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). † 10% corrosive medium in 90% water ©2001 CRC Press LLC 18.3 sel Chemical L Page 1862 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 1 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Acetaldehyde Acetic Acid (Aerated) Acetic Acid (Air Free) Acetic Anhydride <0.002 <0.02 <0.002 <0.02 <0.002 >0.05 >0.05 >0.05 <0.002 >0.05 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 >0.05 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.05 <0.02 <0.002 <0.002 <0.002 <0.002 <0.002 Acetoacetic Acid Acetone Acetylene Acrolein — <0.002 <0.002 <0.02 — <0.002 <0.002 <0.02 — <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 — <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.02 <0.002 — — <0.002 <0.002 <0.02 Acrylonitril Alcohol (Ethyl) Alcohol (Methyl) Alcohol (Allyl) <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.002 <0.02 <0.002 <0.002 <0.002 <0.02 <0.002 <0.002 <0.002 <0.02 <0.002 <0.002 <0.002 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 — <0.002 Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1863 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 2 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Alcohol (Amyl) Alcohol (Benzyl) Alcohol (Butyl) Alcohol (Cetyl) <0.002 <0.02 <0.002 <0.02 — <0.02 <0.002 — <0.02 <0.02 <0.002 — — <0.02 <0.002 <0.02 — <0.02 <0.002 <0.02 — <0.02 <0.002 <0.02 — <0.02 — — <0.002 <0.02 <0.002 <0.02 — <0.02 — <0.02 <0.002 <0.002 <0.002 <0.002 Alcohol (Isopropyl) Allylamine Allyl Chloride Allyl Sulfide <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 >0.05 <0.02 — <0.02 — <0.02 — <0.02 — <0.02 — <0.02 — <0.02 — <0.02 — <0.02 — >0.05 <0.02 <0.002 — <0.05 >0.05 — — — — Aluminum Acetate Aluminum Chlorate Aluminum Chloride Aluminum Fluosilicate <0.02 — <0.02 <0.02 <0.02 — >0.05 <0.02 <0.02 — <0.02 <0.02 — <0.02 — <0.02 — <0.02 <0.02 <0.02 — <0.02 — <0.02 <0.02 <0.02 <0.002 <0.02 <0.002 — <0.02 — <0.002 <0.02 — <0.02 <0.002 — — — Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1864 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 3 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Aluminum Formate Aluminum Hydroxide Aluminum Nitrate Aluminum Potassium Sulfate <0.02 — — <0.02 — — — >0.05 <0.02 <0.02 — <0.02 <0.02 — — — <0.02 — — — <0.02 — — — <0.02 — — — <0.02 — <0.02 <0.02 <0.02 — — <0.02 <0.002 <0.002 <0.002 <0.002 Aluminum Sulfate Ammonia Ammonium Acetate Ammonium Bicarbonate <0.002 <0.002 >0.05 — <0.05 <0.002 >0.05 — <0.02 <0.002 >0.05 — <0.02 <0.002 <0.002 — <0.02 <0.002 <0.002 — — <0.002 <0.002 — <0.02 <0.002 <0.002 — >0.05 <0.002 <0.002 <0.02 — <0.02 — — — <0.002 — — Ammonium Carbonate Ammonium Chloride Ammonium Citrate Ammonium Formate — >0.05 — — — >0.05 — — <0.02 >0.05 — — <0.02 <0.02 — — <0.02 <0.02 — — <0.02 <0.02 <0.02 <0.02 — <0.02 — — <0.02 <0.02 <0.02 — — <0.02 — — — — <0.002 <0.002 Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1865 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 4 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Ammonium Nitrate Ammonium Sulfate Ammonium Sulfite Ammonium Thiocyanate >0.05 <0.02 >0.05 — >0.05 <0.02 >0.05 — >0.05 <0.02 >0.05 — <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 — — — — — <0.02 — — <0.02 <0.02 — — — <0.02 — — — — — — Amyl Acetate Amyl Chloride Aniline Aniline Hydrochloride <0.02 <0.002 >0.05 — <0.02 <0.02 >0.05 — <0.02 <0.002 — — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 — — — <0.002 <0.02 <0.02 <0.05 <0.002 <0.02 <0.02 >0.05 <0.02 >0.05 >0.05 — <0.002 — — — Anthracine Antimony Trichloride Barium Carbonate Barium Chloride <0.02 <0.05 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — — <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.02 >0.05 >0.05 <0.02 <0.002 >0.05 — <0.002 — — — Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1866 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 5 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Barium Hydroxide Barium Nitrate Barium Oxide Benzaldehyde — — — <0.02 — — — <0.02 — — — <0.02 <0.02 — <0.02 <0.02 <0.02 — — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 >0.05 — — <0.002 >0.05 — — >0.05 — — — — Benzene Benzoic Acid Boric Acid Bromic Acid <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 — <0.02 >0.05 <0.02 — <0.002 — <0.02 <0.02 <0.02 — <0.02 >0.05 <0.02 <0.02 <0.002 <0.002 — — Bromine (Dry) Bromine (Wet) Butyric Acid Calcium Acetate <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 — <0.02 <0.02 >0.05 <0.02 <0.02 <0.002 >0.05 <0.02 <0.02 <0.002 >0.05 <0.05 <0.02 <0.002 >0.05 <0.05 <0.02 <0.002 <0.002 <0.002 <0.02 <0.02 >0.05 <0.002 <0.05 <0.002 >0.05 >0.05 <0.02 >0.05 >0.05 <0.002 <0.002 Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1867 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 6 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Calcium Bicarbonate Calcium Bromide Calcium Chlorate Calcium Chloride <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.05 — >0.05 <0.05 <0.02 — — <0.002 <0.05 <0.002 — Calcium Hydroxide Calcium Hypochlorite Carbon Dioxide Carbon Monoxide — — <0.002 <0.002 — — <0.002 <0.002 — — <0.002 <0.002 <0.02 — <0.002 <0.002 <0.02 — <0.002 <0.002 <0.02 — <0.002 <0.002 — <0.02 <0.002 <0.002 >0.05 — <0.002 <0.002 — <0.002 <0.002 <0.002 — — <0.002 <0.002 Carbon Tetrachloride Carbon Acid (Air Free) Chloroacetic Acid Chlorine Gas <0.002 <0.02 >0.05 <0.02 <0.05 >0.05 >0.05 >0.05 <0.002 <0.02 <0.05 <0.02 <0.002 <0.05 <0.05 <0.02 <0.002 <0.02 <0.02 <0.002 <0.002 <0.002 <0.05 <0.02 <0.002 <0.002 <0.002 <0.02 <0.02 <0.002 >0.05 <0.02 <0.002 >0.05 >0.05 <0.02 <0.002 — <0.002 >0.05 Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1868 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 7 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Chlorine Liquid Chloroform (Dry) Chromic Acid Chromic Hydroxide — <0.002 — <0.02 — <0.02 >0.05 <0.02 — <0.02 — <0.02 <0.02 <0.002 — <0.02 — <0.002 — <0.02 — <0.002 — <0.02 — <0.02 <0.02 <0.02 — <0.02 >0.05 <0.02 <0.02 <0.02 — <0.02 — — — — Chromic Sulfates Citric Acid Copper Nitrate Copper Sulfate <0.05 <0.02 >0.05 >0.05 — <0.02 >0.05 >0.05 — <0.02 <0.05 >0.05 <0.05 <0.02 — — — <0.02 — — — <0.02 — — <0.02 <0.002 <0.02 <0.002 <0.05 <0.02 — >0.05 <0.02 >0.05 — <0.02 — — — — Diethylene Glycol Ethyl Chloride Ethylene Glycol Ethylene Oxide <0.002 <0.002 <0.02 >0.05 <0.002 <0.002 <0.02 >0.05 <0.002 <0.002 <0.02 >0.05 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.02 — <0.002 <0.02 <0.002 <0.002 <0.002 <0.02 <0.02 <0.05 <0.02 <0.002 <0.002 — <0.002 Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1869 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 8 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Fatty Acids Ferric Chloride Ferric Nitrate Ferrous Chloride <0.05 <0.02 — <0.02 <0.05 <0.02 — — <0.05 <0.02 — <0.02 <0.02 >0.05 — — <0.02 — — — <0.02 >0.05 — — <0.002 <0.02 — <0.02 <0.002 >0.05 — — >0.05 — <0.002 — <0.002 — — — Ferrous Sulfate Fluorine Formaldehyde Formic Acid <0.02 <0.002 <0.002 <0.02 <0.05 <0.02 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 <0.002 <0.002 — <0.02 <0.002 <0.002 <0.02 — <0.002 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 — >0.05 <0.002 <0.02 — <0.02 <0.02 >0.05 — — <0.002 <0.02 Furfural Hydrazine Hydrobromic Acid Hydrocyanic Acid <0.02 — <0.02 <0.02 <0.02 — >0.05 <0.02 <0.02 — <0.02 <0.02 <0.02 >0.05 — <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 — <0.02 <0.02 <0.002 — <0.02 <0.02 <0.002 >0.05 <0.002 <0.02 >0.05 — <0.02 <0.002 — — — Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1870 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 9 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Hydrofluoric Acid (Areated) Hydrofluoric Acid (Air Free) Hydrogen Chloride Hydrogen Fluoride <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 <0.002 <0.02 <0.02 <0.002 <0.02 <0.02 <0.05 <0.002 <0.02 — — >0.05 <0.02 — >0.05 <0.02 >0.05 — >0.05 — <0.002 Hydrogen Iodide Hydrogen Peroxide Hydrogen Sulfide Lactic Acid <0.02 >0.05 <0.02 <0.02 >0.05 >0.05 <0.02 <0.05 <0.02 >0.05 <0.02 <0.02 — <0.002 <0.02 — <0.02 <0.02 <0.02 — — <0.02 <0.02 — <0.02 <0.002 <0.002 <0.02 >0.05 <0.002 <0.002 <0.02 — <0.002 <0.02 >0.05 — >0.05 <0.002 <0.002 Lead Acetate Lead Chromate Lead Nitrate Lead Sulfate — <0.02 — <0.02 <0.05 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 — — — — <0.02 <0.02 <0.02 — — — Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1871 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 10 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Lithium Chloride Lithium Hydroxide Magnesium Chloride Magnesium Hydroxide — — <0.02 <0.02 — — — <0.02 — — <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 — — <0.02 <0.002 — — >0.05 — >0.05 <0.02 — >0.05 — — — <0.002 — Magnesium Sulfate Maleic Acid Malic Acid Mercuric Chloride <0.02 <0.02 — >0.05 <0.02 — — >0.05 <0.02 — — >0.05 <0.02 — — — <0.02 — <0.02 — <0.02 — <0.02 — <0.002 <0.02 — — <0.02 — <0.002 — — — — — — — <0.002 — Mercurous Nitrate Mercury Methallylamine Methanol >0.05 >0.05 >0.05 <0.02 >0.05 >0.05 >0.05 <0.02 — >0.05 >0.05 <0.02 — <0.02 <0.05 <0.002 — <0.02 <0.02 <0.002 — <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 >0.05 — <0.02 — — — — Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1872 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 11 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylamine Methylene Chloride <0.002 <0.02 >0.05 <0.002 <0.002 <0.02 >0.05 <0.002 <0.002 <0.02 >0.05 <0.02 <0.002 <0.02 — <0.002 <0.002 <0.02 — <0.02 <0.002 <0.02 — <0.02 <0.002 <0.002 — — <0.002 <0.002 <0.02 <0.002 <0.002 <0.002 — <0.02 <0.002 <0.002 — — Monochloroacetic Acid Monorthanolamine Monoethalamine Monoethylamine Nickel Chloride >0.05 >0.05 >0.05 >0.05 — >0.05 >0.05 >0.05 >0.05 — >0.05 >0.05 >0.05 >0.05 <0.02 <0.05 <0.02 — — <0.02 <0.02 <0.02 — — — <0.02 <0.02 — — <0.02 <0.002 — — — <0.002 >0.05 <0.02 <0.02 <0.02 >0.05 >0.05 — — — <0.02 <0.002 — — — — Nickel Nitrate Nickel Sulfate Nitric Acid Nitric Acid (Red Fuming) — <0.02 >0.05 >0.05 — <0.02 >0.05 >0.05 — <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 >0.05 <0.02 — >0.05 >0.05 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 — >0.05 <0.02 <0.002 <0.02 <0.02 >0.05 — — — — <0.002 Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1873 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 12 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Nitric + Hydrochloric Acid Nitric + Hydrofluoric Acid Nitric + Sulfuric Acid Nitrobenzene >0.05 >0.05 >0.05 <0.02 >0.05 — >0.05 <0.02 >0.05 — >0.05 <0.02 >0.05 — >0.05 <0.02 >0.05 — >0.05 <0.02 >0.05 — >0.05 <0.02 >0.05 <0.05 — <0.02 >0.05 — >0.05 <0.02 >0.05 — >0.05 <0.02 <0.02 >0.05 — — Nitrocelluolose Nitroglycerine Nitrotolune Nitrous Acid — <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 >0.05 <0.002 <0.02 <0.02 >0.05 <0.02 — <0.02 >0.05 <0.02 <0.02 <0.02 — — — — — <0.002 <0.002 <0.02 — <0.002 <0.05 <0.02 >0.05 — — — — Oleic Acid Oxalic Acid Phenol Phosphoric Acid (Areated) Phosphoric Acid (Air Free) <0.002 <0.05 <0.002 >0.05 — <0.02 <0.05 <0.002 >0.05 >0.05 <0.02 <0.02 <0.002 >0.05 — <0.002 <0.02 <0.002 — — <0.002 <0.05 <0.002 >0.05 — <0.002 <0.02 <0.002 >0.05 — <0.02 <0.02 <0.002 <0.002 <0.002 <0.002 <0.02 <0.002 <0.02 >0.05 >0.05 >0.05 <0.02 <0.02 <0.02 <0.002 — — >0.05 >0.05 Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1874 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 13 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Picric Acid Potassium Bicarbonate Potassium Bromide Potassium Carbonate Potassium Chlorate >0.05 <0.02 <0.02 <0.02 <0.05 >0.05 <0.02 <0.02 <0.02 <0.05 >0.05 <0.02 <0.02 <0.02 <0.05 >0.05 — <0.02 <0.02 — <0.02 — <0.02 <0.02 — <0.02 — <0.02 <0.02 — <0.02 — <0.02 <0.02 — <0.02 <0.02 — >0.05 <0.02 <0.02 — <0.02 >0.05 — — — — — — Potassium Chromate Potassium Cyanide Potassium Dichromate Potassium Ferricyanide — >0.05 — <0.02 <0.02 >0.05 — — <0.02 >0.05 — — — <0.02 — — — <0.02 — — — <0.02 — — — — — — <0.02 — <0.02 — — — — — — >0.05 — — Potassium Ferrocyanide Potassium Hydroxide Potassium Hypochlorite Potassium Iodide — — — <0.02 — — — — — >0.05 — <0.02 — — — <0.02 — — — <0.02 — — — <0.02 — — <0.02 <0.02 <0.02 — — — — >0.05 — — — — — <0.002 Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1875 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 14 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Potassium Nitrate Potassium Nitrite Potassium Permanganate Potassium Silicate <0.002 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 — <0.02 — <0.02 — <0.02 <0.002 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 >0.05 — — <0.002 — — Propionic Acid Pyridine Quinine Sulfate Salicylic Acid <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 — — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 — <0.02 — <0.02 — <0.02 >0.05 — <0.002 — Silicon Tetrachloride (Dry) Silicon Tetrachloride (Wet) Silver Bromide Silver Chloride <0.002 >0.05 — <0.02 <0.002 >0.05 — — <0.002 >0.05 — — <0.002 >0.05 <0.02 — <0.002 >0.05 <0.02 — <0.002 — — — <0.02 <0.02 — — <0.02 >0.05 — — <0.02 — — — — — <0.002 — Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1876 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 15 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Sodium Acetate Sodium Bicarbonate Sodium Bisulfate Sodium Bromide <0.02 <0.02 <0.02 <0.05 — — <0.05 — — — <0.02 — <0.02 — <0.02 — <0.02 — <0.02 — <0.02 — <0.02 — — — <0.02 — <0.002 <0.02 — — <0.02 — — — — — — — Sodium Carbonate Sodium Chromate Sodium Hydroxide Sodium Hypochlorite — <0.02 — — — <0.02 — >0.05 <0.02 <0.02 — >0.05 <0.02 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 — <0.02 <0.02 <0.002 — <0.02 <0.02 <0.002 <0.05 — <0.02 — >0.05 — <0.02 — >0.05 — — — <0.002 Sodium Metasilicate Sodium Nitrate Sodium Nitrite Sodium Phosphate <0.02 <0.05 — <0.02 <0.02 <0.05 — <0.02 <0.02 <0.02 — <0.02 <0.002 <0.02 <0.002 <0.02 <0.002 <0.02 <0.02 <0.02 <0.002 — <0.02 <0.02 <0.002 — — <0.02 <0.02 <0.02 — — — — — <0.02 — — — — Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1877 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 16 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Sodium Silicate Sodium Sulfate Sodium Sulfide Sodium Sulfite <0.02 <0.02 >0.05 <0.05 <0.02 >0.05 >0.05 >0.05 <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — — <0.02 <0.02 — <0.02 <0.02 <0.002 — — <0.002 — >0.05 — — <0.02 <0.002 <0.02 — — — — Stannic Chloride Stannous Chloride Strontium Nitrate Succinic Acid — — <0.02 <0.02 — — <0.02 <0.02 >0.05 <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 — — — <0.02 <0.02 — — — <0.02 — — — <0.002 Sulfur Dioxide Sulfur Trioxide Sulfuric Acid (Areated) Sulfuric Acid (Air Free) <0.02 <0.02 >0.05 — <0.05 <0.02 >0.05 — <0.02 <0.02 >0.05 — <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 — <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 >0.05 >0.05 <0.02 <0.02 >0.05 >0.05 — — >0.05 >0.05 Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1878 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 17 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Sulfuric Acid (Fuming) Sulfurous Acid Tannic Acid Tartaric Acid >0.05 <0.05 <0.02 <0.02 >0.05 >0.05 <0.05 — >0.05 <0.02 <0.02 <0.02 >0.05 >0.05 <0.02 — >0.05 >0.05 <0.02 — <0.02 <0.02 <0.02 — <0.002 <0.02 — <0.02 <0.02 <0.02 >0.05 — >0.05 <0.02 >0.05 >0.05 — <0.002 <0.002 <0.002 Tetraphosphoric Acid Trichloroacetic Acid Trichloroethylene Urea <0.05 >0.05 <0.002 — <0.05 >0.05 <0.02 — <0.05 <0.05 <0.02 — <0.05 >0.05 <0.002 — >0.05 <0.02 <0.002 — <0.02 — <0.02 — <0.02 <0.02 <0.002 — >0.05 >0.05 <0.002 <0.02 >0.05 >0.05 >0.05 — — >0.05 <0.002 — Titanium Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. ©2001 CRC Press LLC 18.3 sel Chemical L Page 1879 Wednesday, December 31, 1969 17:00 Table 453. SELECTING NONFERROUS METALS FOR USE IN A 100% CORROSIVE MEDIUM (SHEET 18 OF 18) Corrosion Rate * at 70˚F in a 100% Corrosive Medium † Corrosive Medium Copper, Sn-Braze, Al-Braze 70-30 Brass Silicon Bronze Monel Nickel Inconel Hastelloy Aluminum Lead Zinc Chloride Zinc Sulfate — <0.02 — <0.02 >0.05 <0.02 <0.02 — <0.02 — <0.02 — <0.02 — — — <0.02 — Titanium — — Source: data compiled by J.S. Park from Earl R. Parker, Materials Data Book for Engineers and Scientists, McGraw-Hill Book Company, New York, 1967. * <0.002 means that corrosion rate is likely to be less than 0.002 inch per year (Excellent). <0.02 means that corrosion rate is likely to be less than about 0.02 inch per year (Good). <0.05 means that corrosion rate is likely to be less than about 0.05 inch per year (Fair). >0.05 means that corrosion rate is likely to be more than 0.05 inch per year (Poor). †Water-free, Dry or Maximum concentration of ©2001 CRC Press LLC corrosive medium. Quantitatively 18.4 sel Chemical Page 1880 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 454. SELECTING CORROSION RATES OF METALS (SHEET 1 OF 5) Metal Corrosive Environment Corrosion Rate * (Mils Penetration per Year) Silicon iron Iron Nickel alloys Stainless steel Acetic, 5% (Non–oxidizing) Sodium Hydroxide, 5% Sodium Hydroxide, 5% Sodium Hydroxide, 5% 0–0.2 0–0.2 0–0.2 0–0.2 Nickel alloys Silicon iron Stainless steel Copper alloys Fresh Water Fresh Water Fresh Water Normal Outdoor Air (Urban Exposure) 0–0.2 0–0.2 0–0.2 0–0.2 Lead Nickel alloys Silicon iron Stainless steel Normal Outdoor Air (Urban Exposure) Normal Outdoor Air (Urban Exposure) Normal Outdoor Air (Urban Exposure) Normal Outdoor Air (Urban Exposure) 0–0.2 0–0.2 0–0.2 0–0.2 Tin Stainless steel Tin Aluminum Normal Outdoor Air (Urban Exposure) Acetic, 5% (Non–oxidizing) Fresh Water Normal Outdoor Air (Urban Exposure) 0–0.2 0–0.5 0–0.5 0–0.5 Zinc Copper alloys Nickel alloys Silicon iron Normal Outdoor Air (Urban Exposure) Fresh Water Sea Water Sodium Hydroxide, 5% 0–0.5 0–1 0–1 0–10 Stainless steel Stainless steel Silicon iron Silicon iron Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) 0–2 0–2 0–20 0–20 Stainless steel Silicon iron Gold Platinum Sea Water Sea Water Sulfuric, 5% (Non–oxidizing) Sulfuric, 5% (Non–oxidizing) 0–200*** 0–3 <0.1 <0.1 Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987). ©2001 CRC Press LLC 1880 CRC Handbook of Materials Science & Engineering 18.4 sel Chemical Page 1881 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 454. SELECTING CORROSION RATES OF METALS (SHEET 2 OF 5) Metal Corrosive Environment Corrosion Rate * (Mils Penetration per Year) Tantalum Zirconium Gold Molybdenum Sulfuric, 5% (Non–oxidizing) Sulfuric, 5% (Non–oxidizing) Acetic, 5% (Non–oxidizing) Acetic, 5% (Non–oxidizing) <0.1 <0.1 <0.1 <0.1 Platinum Silver Tantalum Titanium Acetic, 5% (Non–oxidizing) Acetic, 5% (Non–oxidizing) Acetic, 5% (Non–oxidizing) Acetic, 5% (Non–oxidizing) <0.1 <0.1 <0.1 <0.1 Zirconium Gold Platinum Tantalum Acetic, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) Nitric, 5% (Oxidizing) Nitric, 5% (Oxidizing) <0.1 <0.1 <0.1 <0.1 Zirconium Gold Molybdenum Platinum Nitric, 5% (Oxidizing) Sodium Hydroxide, 5% Sodium Hydroxide, 5% Sodium Hydroxide, 5% <0.1 <0.1 <0.1 <0.1 Silver Zirconium Gold Molybdenum Sodium Hydroxide, 5% Sodium Hydroxide, 5% Fresh Water Fresh Water <0.1 <0.1 <0.1 <0.1 Platinum Silver Tantalum Titanium Fresh Water Fresh Water Fresh Water Fresh Water <0.1 <0.1 <0.1 <0.1 Zirconium Aluminum Gold Molybdenum Fresh Water Fresh Water Sea Water Sea Water <0.1 0.1 <0.1 <0.1 Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987). ©2001 CRC Press LLC Shackelford & Alexander 1881 18.4 sel Chemical Page 1882 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 454. SELECTING CORROSION RATES OF METALS (SHEET 3 OF 5) Metal Corrosive Environment Corrosion Rate * (Mils Penetration per Year) Platinum Silver Tantalum Titanium Sea Water Sea Water Sea Water Sea Water <0.1 <0.1 <0.1 <0.1 Zirconium Tin Gold Molybdenum Sea Water Sea Water Normal Outdoor Air (Urban Exposure) Normal Outdoor Air (Urban Exposure) <0.1 0.1 <0.1 <0.1 Platinum Silver Tantalum Titanium Normal Outdoor Air (Urban Exposure) Normal Outdoor Air (Urban Exposure) Normal Outdoor Air (Urban Exposure) Normal Outdoor Air (Urban Exposure) <0.1 <0.1 <0.1 <0.1 Zirconium Titanium Titanium Iron Normal Outdoor Air (Urban Exposure) Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) Fresh Water <0.1 0.1–1 0.1–1 0.1–10** Iron Nickel alloys Nickel alloys Lead Sea Water Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) Fresh Water 0.1–10** 0.1–1500 0.1–1500 0.1–2 Titanium Lead Copper alloys Zinc Sodium Hydroxide, 5% Sea Water Sea Water Fresh Water <0.2 0.2–15 0.2–15** 0.5–10 Zinc Aluminum Tantalum Aluminum Sea Water Acetic, 5% (Non–oxidizing) Sodium Hydroxide, 5% Sea Water 0.5–10** 0.5–5 <1 1–50 Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987). ©2001 CRC Press LLC 1882 CRC Handbook of Materials Science & Engineering 18.4 sel Chemical Page 1883 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 454. SELECTING CORROSION RATES OF METALS (SHEET 4 OF 5) Metal Corrosive Environment Corrosion Rate * (Mils Penetration per Year) Iron Nickel alloys Copper alloys Copper alloys Normal Outdoor Air (Urban Exposure) Acetic, 5% (Non–oxidizing) Acetic, 5% (Non–oxidizing) Sodium Hydroxide, 5% 1–8 2–10** 2–15** 2–5 Tin Tin Lead Lead Acetic, 5% (Non–oxidizing) Sodium Hydroxide, 5% Sodium Hydroxide, 5% Acetic, 5% (Non–oxidizing) 2–500** 5–20 5–500** 10–150** Iron Zinc Aluminum Aluminum Acetic, 5% (Non–oxidizing) Sodium Hydroxide, 5% Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) 10–400 15–200 15–80 15–80 Tin Tin Lead Lead Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) 100–400 100–400 100–6000 100–6000 Copper alloys Copper alloys Zinc Iron Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) Acetic, 5% (Non–oxidizing) Sulfuric, 5% (Non–oxidizing) 150–1500 150–1500 600–800 1000–10000 Iron Aluminum Molybdenum Silver Nitric, 5% (Oxidizing) Sodium Hydroxide, 5% Sulfuric, 5% (Non–oxidizing) Sulfuric, 5% (Non–oxidizing) 1000–10000 13000 high high Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987). ©2001 CRC Press LLC Shackelford & Alexander 1883 18.4 sel Chemical Page 1884 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 454. SELECTING CORROSION RATES OF METALS (SHEET 5 OF 5) Metal Corrosive Environment Corrosion Rate * (Mils Penetration per Year) Zinc Molybdenum Silver Zinc Sulfuric, 5% (Non–oxidizing) Nitric, 5% (Oxidizing) Nitric, 5% (Oxidizing) Nitric, 5% (Oxidizing) high high high high Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987). * Corrosion Rate Ranges Expressed in Mils Penetration per Year (1 Mil = 0.001 in) Note: The corrosion–rate ranges for the solutions are based on temperature up to 212 ˚F. ** Aeration leads to the higher rates in the range. *** Aeration leads to passivity, scarcity of dissolved air to activity. ©2001 CRC Press LLC 1884 CRC Handbook of Materials Science & Engineering 18.4 sel Chemical Page 1885 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 455. SELECTING CORROSION RATES OF METALS IN CORROSIVE ENVIRONMENTS (SHEET 1 OF 5) Corrosive Environment Metal Corrosion Rate * (Mils Penetration per Year) Sulfuric, 5% (Non–oxidizing) Stainless steel Silicon iron Gold Platinum 0–2 0–20 <0.1 <0.1 Tantalum Zirconium Titanium Nickel alloys <0.1 <0.1 0.1–1 0.1–1500 Aluminum Tin Lead Copper alloys 15–80 100–400 100–6000 150–1500 Iron Molybdenum Silver Zinc 1000–10000 high high high Gold Molybdenum Platinum Silver <0.1 <0.1 <0.1 <0.1 Tantalum Titanium Zirconium Silicon iron <0.1 <0.1 <0.1 0–0.2 Stainless steel Aluminum Nickel alloys 0–0.5 0.5–5 2–10** Copper alloys 2–15** Acetic, 5% (Non–oxidizing) Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987). ©2001 CRC Press LLC Shackelford & Alexander 1885 18.4 sel Chemical Page 1886 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 455. SELECTING CORROSION RATES OF METALS IN CORROSIVE ENVIRONMENTS (SHEET 2 OF 5) Corrosive Environment Nitric, 5% (Oxidizing) Sodium Hydroxide, 5% Metal Corrosion Rate * (Mils Penetration per Year) Tin 2–500** Lead Iron Zinc 10–150** 10–400 600–800 Stainless steel Silicon iron Gold Platinum 0–2 0–20 <0.1 <0.1 Tantalum Zirconium Titanium Nickel alloys <0.1 <0.1 0.1–1 0.1–1500 Aluminum Tin Lead Copper alloys 15–80 100–400 100–6000 150–1500 Iron Molybdenum Silver Zinc 1000–10000 high high high Iron Nickel alloys Stainless steel Silicon iron 0–0.2 0–0.2 0–0.2 0–10 Gold Molybdenum Platinum Silver <0.1 <0.1 <0.1 <0.1 Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987). ©2001 CRC Press LLC 1886 CRC Handbook of Materials Science & Engineering 18.4 sel Chemical Page 1887 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 455. SELECTING CORROSION RATES OF METALS IN CORROSIVE ENVIRONMENTS (SHEET 3 OF 5) Corrosive Environment Fresh Water Sea Water Metal Corrosion Rate * (Mils Penetration per Year) Zirconium Titanium Tantalum <0.1 <0.2 <1 Copper alloys Tin Lead Zinc Aluminum 2–5 5–20 5–500** 15–200 13000 Nickel alloys Silicon iron Stainless steel Tin 0–0.2 0–0.2 0–0.2 0–0.5 Gold Molybdenum Platinum Silver <0.1 <0.1 <0.1 <0.1 Tantalum Titanium Zirconium Copper alloys <0.1 <0.1 <0.1 0–1 Aluminum Iron Lead Zinc 0.1 0.1–10** 0.1–2 0.5–10 Nickel alloys Stainless steel Silicon iron Gold 0–200*** 0–3 <0.1 0–1 Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987). ©2001 CRC Press LLC Shackelford & Alexander 1887 18.4 sel Chemical Page 1888 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 455. SELECTING CORROSION RATES OF METALS IN CORROSIVE ENVIRONMENTS (SHEET 4 OF 5) Corrosive Environment Normal Outdoor Air (Urban Exposure) Metal Corrosion Rate * (Mils Penetration per Year) Molybdenum Platinum Silver Tantalum <0.1 <0.1 <0.1 <0.1 Titanium Zirconium Tin Iron <0.1 <0.1 0.1 0.1–10** Lead Copper alloys 0.2–15 0.2–15** Zinc Aluminum 0.5–10** 1–50 Copper alloys Lead Nickel alloys Silicon iron 0–0.2 0–0.2 0–0.2 0–0.2 Stainless steel Tin Aluminum Zinc 0–0.2 0–0.2 0–0.5 0–0.5 Gold Molybdenum Platinum Silver <0.1 <0.1 <0.1 <0.1 Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987). ©2001 CRC Press LLC 1888 CRC Handbook of Materials Science & Engineering 18.4 sel Chemical Page 1889 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 455. SELECTING CORROSION RATES OF METALS IN CORROSIVE ENVIRONMENTS (SHEET 5 OF 5) Corrosive Environment Metal Corrosion Rate * (Mils Penetration per Year) Tantalum Titanium Zirconium Iron <0.1 <0.1 <0.1 1–8 Source: data compiled by J.S. Park from R. E. Bolz and G. L. Tuve, CRC Handbook of Tables for Applied Engineering Science, 2nd edition, CRC Press, Inc., Boca Raton, Florida, (1987). * Corrosion Rate Ranges Expressed in Mils Penetration per Year (1 Mil = 0.001 in) Note: The corrosion–rate ranges for the solutions are based on temperature up to 212 ˚F. ** Aeration leads to the higher rates in the range. *** Aeration leads to passivity, scarcity of dissolved air to activity. ©2001 CRC Press LLC Shackelford & Alexander 1889 18.4 sel Chemical Page 1890 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 456. SELECTING FLAMMABILITY OF POLYMERS (SHEET 1 OF 5) Polymer Flammability (ASTM D635) (ipm) Alkyds; Molded: Glass reinforced (heavy duty parts) Alkyds; Molded: Putty (encapsulating) Ceramic reinforced (PTFE) Chlorinated polyvinyl chloride Nonburning Nonburning Noninflammable Nonburning Fibrous (glass) reinforced silicones Fluorinated ethylene propylene (FEP) Granular (silica) reinforced silicones Polyphenylene sulfide: 40% glass reinforced Nonburning Noninflammable Nonburning Non—burning Polyphenylene sulfide: Standard Polytetrafluoroethylene (PTFE); Molded,Extruded Polytrifluoro chloroethylene (PTFCE); Molded,Extruded Non—burning Nonintlammable Noninflammable PVC–Acrylic Alloy: PVC–acrylic injection molded PVC–Acrylic Alloy: PVC–acrylic sheet Nonburning Nonburning Alkyds; Molded: Granular (high speed molding) Alkyds; Molded: Rope (general purpose) Chlorinated polyether Epoxies; High performance resins: Cast, rigid Self extinguishing Self extinguishing Self extinguishing Self extinguishing Epoxies; High performance resins: Glass cloth laminate Epoxies; High performance resins: Molded Melamines; Molded: Alpha cellulose and mineral filled Melamines; Molded: Cellulose electrical filled Self extinguishing Self extinguishing Self extinguishing Self extinguishing Melamines; Molded: Glass fiber filled Melamines; Molded: Unfilled Nylons; Molded, Extruded; Type 6: Cast Nylons; Molded, Extruded; Type 6: General purpose Self extinguishing Self extinguishing Self extinguishing Self extinguishing Nylons; Molded, Extruded; Type 8 Nylons; Molded, Extruded; Type 11 6/6 Nylon: General purpose extrusion 6/6 Nylon: General purpose molding Self extinguishing Self extinguishing Self extinguishing Self extinguishing Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1890 CRC Handbook of Materials Science & Engineering 18.4 sel Chemical Page 1891 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 456. SELECTING FLAMMABILITY OF POLYMERS (SHEET 2 OF 5) Polymer Flammability (ASTM D635) (ipm) 6/10 Nylon: General purpose Phenolics: Molded: Arc resistant—mineral filled Phenolics; Molded; General: woodflour and flock filled Phenolics; Molded; High shock: chopped fabric or cord filled Self extinguishing Self extinguishing Self extinguishing Self extinguishing Phenolics; Molded; Shock: paper, flock, or pulp filled Phenolics; Molded; Very high shock: glass fiber filled Phenylene oxides (Noryl): Glass fiber reinforced Phenylene oxides (Noryl): Standard Self extinguishing Self extinguishing Self extinguishing Self extinguishing Phenylene Oxides: Glass fiber reinforced Phenylene Oxides: SE—1 Phenylene Oxides: SE—100 Polyarylsulfone Self extinguishing Self extinguishing Self extinguishing Self extinguishing Polycarbonate Polycarbonate (40% glass fiber reinforced) Polyester; Moldings: Glass reinforced self extinguishing Polypropylene: Flame retardant Self extinguishing Self extinguishing Self extinguishing Self extinguishing Polyvinyl Chloride & Copolymers: Nonrigid—electrical Polyvinyl Chloride & Copolymers: Nonrigid—general Polyvinyl Chloride & Copolymers: Rigid—normal impact Polyvinyl Chloride & Copolymers: Vinylidene chloride Self extinguishing Self extinguishing Self extinguishing Self extinguishing Polyvinylidene— fluoride (PVDF) Reinforced polyester moldings: High strength (glass fibers) Reinforced polyester: Heat and chemical resistant (asbestos) Reinforced polyester: Sheet molding compounds, general purpose Self extinguishing Self extinguishing Self extinguishing Self extinguishing Rubber phenolic—asbestos filled Rubber phenolic—chopped fabric filled Rubber phenolic—woodflour or flock filled Standard Epoxies: Filament wound composite Self extinguishing Self extinguishing Self extinguishing Self extinguishing Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1891 18.4 sel Chemical Page 1892 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 456. SELECTING FLAMMABILITY OF POLYMERS (SHEET 3 OF 5) Polymer Flammability (ASTM D635) (ipm) Standard Epoxies: High strength laminate Standard Epoxies: Molded Ureas; Molded: Alpha—cellulose filled (ASTM Type l) Self extinguishing Self extunguishing Self extinguishing Ureas; Molded: Cellulose filled (ASTM Type 2) Ureas; Molded: Woodflour filled Self extinguishing Self extinguishing Standard Epoxies: General purpose glass cloth laminate Polyester; Thermoset: Cast polyyester: Flexible Slow burn to Self extinguishing Slow burn to self extinguishing Nylons; Molded, Extruded; Type 6: Glass fiber (30%) reinforced 6/6 Nylon: Glass fiber reinforced 6/6 Nylon: Glass fiber Molybdenum disulfide filled 6/10 Nylon: Glass fiber (30%) reinforced Slow burn Slow burn Slow burn Slow burn Polyester; Thermoplastic Injection Moldings: General purpose grade Polyester; Thermoplastic Injection Moldings: Glass reinforced grades Polyester; Thermoplastic Moldings: General purpose grade Polyester; Thermoplastic Moldings: Glass reinforced grade Slow burn Slow burn Slow burn Slow burn Silicones; Woven glass fabric/ silicone laminate Standard Epoxies: Cast rigid Thermoset Carbonate: Allyl diglycol carbonate Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: H4 0.12 0.3-0.34 0.35 0.5—1.5 Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: MH Cellulose Acetate Butyrate; Molded, Extruded; ASTM Grade: S2 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 1 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 3 0.5—1.5 0.5—1.5 0.5—1.5 0.5—1.5 Cellusose Acetate Propionate; Molded, Extruded; ASTM Grade: 6 Polystyrenes; Molded: High impact Cellulose Acetate; Molded, Extruded; ASTM Grade: H6—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: H4—1 0.5—1.5 0.5—1.5 0.5—2.0 0.5—2.0 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1892 CRC Handbook of Materials Science & Engineering 18.4 sel Chemical Page 1893 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 456. SELECTING FLAMMABILITY OF POLYMERS (SHEET 4 OF 5) Polymer Flammability (ASTM D635) (ipm) Cellulose Acetate; Molded, Extruded; ASTM Grade: H2—1 Cellulose Acetate; Molded, Extruded; ASTM Grade: MH—1, MH—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: MS—1, MS—2 Cellulose Acetate; Molded, Extruded; ASTM Grade: S2—1 0.5—2.0 0.5—2.0 0.5—2.0 0.5—2.0 Polystyrenes; Molded: Medium impact Nylons; Molded, Extruded; Type 6: Flexible copolymers Polypropylene: General purpose Polyacetal Homopolymer: 20% glass reinforced 0.5—2.0 Slow burn, 0.6 0.7—1 0.8 Polyacetal Homopolymer: 22% TFE reinforced Polystyrenes; Molded: Styrene acrylonitrile (SAN) Polyester; Thermoset: Cast polyyester: Rigid ABS–Polycarbonate Alloy 0.8 0.8 0.87 to self extinguishing 0.9 Polyacetal Copolymer: 25% glass reinforced Polypropylene: High impact Polypropylene: Asbestos filled Polypropylene: Glass reinforced 1 1 1 1 Polyethylenes; Molded, Extruded; Type I: Melt index 0.3—3.6 Polyethylenes; Molded, Extruded; Type I: Melt index 6—26 Polyethylenes; Molded, Extruded; Type I: Melt index 200 Polyethylenes; Molded, Extruded; Type II: Melt index 20 1 1 1 1 Polyethylenes; Molded, Extruded; Type II: Melt index l.0—1.9 Polyethylenes; Molded, Extruded; Type III: Melt index 0.2—0.9 Polyethylenes; Molded, Extruded; Type III: Melt Melt index 0.l—12.0 Polyethylenes; Molded, Extruded; Type III: Melt index 1.5—15 1 1 1 1 Polyethylenes; Molded, Extruded; Type III: High molecular weight ABS Resins; Molded, Extruded: Low temperature impact Polystyrenes; Molded: General purpose ABS Resins; Molded, Extruded: Medium impact 1 1.0—1.5 1.0—1.5 1.0—1.6 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC Shackelford & Alexander 1893 18.4 sel Chemical Page 1894 Wednesday, December 31, 1969 17:00 Selecting Chemical Properties Table 456. SELECTING FLAMMABILITY OF POLYMERS (SHEET 5 OF 5) Polymer Flammability (ASTM D635) (ipm) Polyacetal Homopolymer: Standard Polyacetal Copolymer: Standard Polyacetal Copolymer: High flow 1.1 1.1 1.1 ABS Resins; Molded, Extruded: High impact ABS Resins; Molded, Extruded: Very high impact ABS Resins; Molded, Extruded: Heat resistant 1.3—1.5 1.3—1.5 1.3—2.0 Source: data compiled by J.S. Park from Charles T. Lynch, CRC Handbook of Materials Science, Vol. 3, CRC Press, Boca Raton, Florida, 1975 and Engineered Materials Handbook, Vol.2, Engineering Plastics, ASM International, Metals Park, Ohio, 1988. ©2001 CRC Press LLC 1894 CRC Handbook of Materials Science & Engineering